A CYCLIC INEQUALITY AND A RELATED EIGENVALUE PROBLEM

J. L. SEARCY AND B. A. TROESCH

A cyclic sum $S(\underline{x}) = \Sigma x_i/(x_{i+1} + x_{i+2})$ is formed with the N components of a vector \underline{x} , where $x_{N+1} = x_1$, $x_{N+2} = x_2$, and where all denominators are positive and all numerators nonnegative. It is known that the inequality $S(\underline{x}) \ge N/2$ does not hold for even $N \ge 14$; this result is derived in a uniform manner by considering a related algebraic eigenvalue problem. Numerical evidence is presented for the conjecture that this cyclic inequality is true for even $N \le 12$ and odd $N \le 23$.

The corresponding cyclic inequality, namely the question for what value of N

 $S(x) \ge N/2$

holds, has been investigated by many mathematicians (cf. Mitrinović [7] and the references given there). In §1 we prove in a unified manner that the inequality does not hold for even $N \ge 14$. The method is based on the idea used first by Lighthill for N = 20 [4] and then by several other authors. The argument indicates why the case N = 12 remains still unresolved. Some properties of this type of solution are described in §2. Section 3 deals with numerical results that strongly suggest that the inequality is valid for N = 12 and, if N is odd, for N = 23. These numerical results definitely represent stationary values of the cyclic sum, and we are inclined to believe that they are indeed global minima. A connection between the inequality above and a related inequality with indices reversed is considered in the last section. In the Appendix some examples are listed for N = 14, 25 and 27.

1. The linear cyclic inequality. By considering the cyclic sum $S(\underline{x})$ it is obvious that for any N there exists a vector for which

S(x) = N/2

holds, namely $x_i = 1$ for $i = 1, 2, \dots, N$. If N is even, there exists also a wider class of "nominal" vectors,

(1.1)
$$x_i^{\circ} = \begin{cases} (1+lpha)/2 & \text{ for } i \text{ odd} \\ (1-lpha)/2 & \text{ for } i \text{ even} \end{cases} \quad 0 \leq lpha \leq 1$$
,

for which $S(\underline{x}^{\circ}) = N/2$. Vectors of this type seem to form the basis in the reported solutions for even N where the inequality does not hold, in particular, in Zulauf's solution [7, p. 133] for the important case N = 14.

If N is odd, the situation is much more difficult to understand. Indeed, while only N = 12 is unresolved for even N, for odd N the answer is still unknown for $N = 11, 13, \dots, 23$. A simple nominal vector of the form (1.1) exists for odd N only if $\alpha = 0$.

We now show in a uniform manner that the cyclic inequality is violated for even $N \ge 14$. (In the remainder of this section, Nis understood to be even.) We proceed by writing the vector \underline{x} as $\underline{x} = \underline{x}^0 + \underline{e}$ and expanding the cyclic sum $S(\underline{x})$ in terms of the components of the vector \underline{e} . If S can be made smaller than N/2 for small \underline{e} , the inequality is clearly violated.

By including quadratic terms in the expansion—the contribution of the linear terms vanishes—we obtain

$$S^* = N/2 + \sum e_k^2 - e_k e_{k+2} + (-1)^k lpha e_k e_{k+1} = N/2 + e^T A e/2$$

where again $e_{N+1} = e_1$, $e_{N+2} = e_2$ and where A is the symmetric matrix

$$A = \begin{pmatrix} 2 - \alpha - 1 & -1 \alpha \\ -\alpha & 2 & \alpha - 1 & -1 \\ -1 & \alpha & 2 - \alpha - 1 & \\ & & -1 - & \\ & & & -1 - & \\ -1 & & & -1 \alpha & 2 - \alpha \\ \alpha - 1 & & & -1 - \alpha & 2 \end{pmatrix}$$

In order to minimize S^* we must minimize $\underline{e}^T A \underline{e}$ with $\underline{e}^T \underline{e}$ kept constant. The corresponding eigenvalue problem $(A - \lambda I)\underline{e} = \underline{0}$ has the known solution, which can be easily verified,

(1.2)
$$e_k = \begin{cases} a \sin t_k & \text{for } k \text{ odd} \\ -a \cos t_k & \text{for } k \text{ even} \end{cases}$$

where $t_k = t_0 + (k - 1)h$; the amplitude a > 0 and the phase t_0 are arbitrary, and

$$h = 2\pi j/N$$
, $j = 1, 2, \dots, N$.

The N corresponding eigenvalues are

$$\lambda = 2\sin h \left(2\sin h - \alpha \right);$$

they are, with the exception of at most two of them, all double eigenvalues. We may choose $t_0 = 0$ so that the *e*-vector becomes

 $e = a(0, -\cos h, \sin 2h, -\cos 3h, \cdots, \sin (N-2)h, -\cos (N-1)h)$.

Now, at the stationary values of S^* we have

$$S^* = N/2 + \lambda e^{ \mathrm{\scriptscriptstyle T}} e/2$$
 .

Hence, S^* is smaller than N/2 if there exists at least one negative eigenvalue λ . This means that we must require that $0 < 2 \sin h < \alpha < 1$, i.e., $0 < \sin(2\pi j/N) < 1/2$, $2\pi j/N < \pi/6$, or finally N > 12j. The case where $5\pi/6 < 2\pi j/N < \pi$ can be excluded since it leads to the indentical result for \underline{x} and S^* . For N > 12, the condition N > 12j can indeed always be satisfied. We conclude that vectors of this kind with $S^* < N/2$, and therefore also for the full cyclic inequality with S < N/2, are always possible for $N \ge 14$, but not possible for $N \le 12$ (cf. also [10]). This concludes the main argument.

However, these considerations do not resolve the open case N = 12. The inequality holds in the neighborhood of a nominal vector \underline{x}_0 . Consequently, if a vector \underline{x} exists that violates the inequality, then it cannot be obtained by a perturbation of a nominal vector \underline{x}^0 .

2. The minimum of the linear cyclic sum. It seems worthwhile to elaborate on the vectors formed with (1.2) and add a few remarks.

First, we note that $\lambda = 4 \sin^2 h \ge 0$ for $\alpha = 0$. This means that for odd N, where the only simple nominal vector \underline{x}^0 is furnished by $\alpha = 0$, the eigenvalues are all nonnegative, so that the argument given above cannot be applied to odd N. Furthermore, higher order terms in the <u>e</u>-expansion do not alter this conclusion.

For $N \ge 14$ there exists a negative eigenvalue, namely exactly one for $14 \le N \le 24$. If $24 < N \le 36$ both j = 1 and j = 2 furnish negative eigenvalues, and similarly for larger N values, where for each increase of N by 12 a "higher harmonic" is added. The Figure 1 shows the eigenvectors for N = 26, j = 1 and j = 2. The values of the full (i.e., not linearized) cyclic sum for these vectors are S = 13-0.01913 and S = 13-0.0000787.

Since all x_k are required to be nonnegative, the amplitude a must be chosen sufficiently small, namely

(1.3)
$$a \leq (1-\alpha)/2$$
.

In some cases, a can be chosen slightly larger, e.g., for N = 14

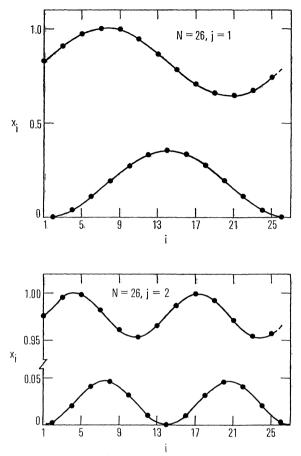


FIGURE 1. Eigenvectors for N=26, j=1,2.

and j = 1,

(1.4)
$$a \leq (1-\alpha)/2\cos h ,$$

since the trigonometric functions in (1.2) are evaluated only at discrete points.

The sum S^* is computable in closed form and gives, for the cases of interest,

$$S^* = N(2 + \lambda a^2)/4$$

or, using the (nearly) largest admissible a,

$$S^*(\alpha) = N\left(2 - \frac{1}{2}(1-\alpha)^2 \sin h(\alpha-2\sin h)\right)/4$$
.

For $\alpha = 1$ and $\alpha = 2 \sin h$, we obtain $S^* = N/2$, and S^* attains its minimum value (for either (1.3) or (1.4)) at

$$lpha_{\scriptscriptstyle 0} = (1+4\sin h)/3$$
 ,

namely

(1.5)
$$S^* = N \left(1 - \frac{1}{27} \sin h (1 - 2 \sin h)^3 \right) / 2 .$$

The linearized sum S^* has of course a different minimum than the full cyclic sum. As an example, we choose N = 14, j = 1. From (1.5) we obtain for $a = (1 - \alpha)/2$

 $S^* = 7 - 0.000260$,

and it can be shown that for $a = (1 - \alpha)/2 \cos h$ (1.5) gives

 $S^{st} = 7 - 0.000320$,

while the full cyclic sum for this vector is

$$S = 7 - 0.000323$$
.

On the other hand, a numerical minimization of the full cyclic sum furnishes

$$S = 7 - 0.000347$$
.

It is not difficult to include the cubic terms in the <u>e</u>-expansion. It turns out that in order to obtain this sum, let us call it S^{**} , one only needs to increase the amplitude a. However, the amplitude is in general restricted to $a \leq (1 - \alpha)/2$. Hence, it seems reasonable to increase a, except that those x_k which would become negative are replaced by zero. A computation then leads to the result

$$S^{**} = 7 - 0.000331$$
.

One might expect that for large N where more than one negative eigenvalue occurs, the eigenvalue for j = 1 would give the smallest sum S^* . However, (1.5) shows that for $N \ge 74$ this is not the case.

3. The cases N = 12 and N = 23. By considering the numerical minimization for $N \ge 14$ (cf. Figure 2 and Table 1) we are led to the conjecture that for the still open case N = 12 the inequality is indeed satisfied. But it should be kept in mind that these numerical results have not been shown to be global minima.

Similarly, for N odd and larger than 23, the numerical results indicate that the inequality is valid for N = 23. Here the solution for N = 23 which is similar in structure to the solutions for $N \ge 25$ is also listed, although in this case the vector $x_k = 1$, for all k, furnishes the lower value N/2. The same conclusion has been reached by Malcolm [6] who solved the problem for N = 25 by

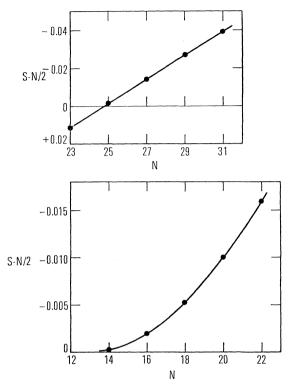


FIGURE 2. Extrapolation of the minimum cyclic sum to N=12 and N=23.

Extrapolation	of the minimum of the	he cyclic sum S t	to $N=12$ and $N=23$.
N	S-N/2	N	S-N/2
14	000347303	23	+.011689438
16	002004523	25	001514765
18	005287982	27	014469580
20	010062465	29	027056111
22	015979281	31	039127154

TABLE 1 Extrapolation of the minimum of the cyclic sum S to N=12 and N=23.

convincing numerical minimization and by Daykin [1] who also lists a solution in integer values for the x_i .

Additional numerical results are discussed in the Appendix.

4. The cyclic inequality with indices reversed. The solutions listed above exhibit an interesting general property. We define a vector \underline{b} by setting

(4.1a)
$$b_i = x_i/(x_{i+1} + x_{i+2})^2$$

and introduce also

(4.2a)
$$r_i = b_i / (b_{i-1} + b_{i-2})$$

as a counterpart to

(4.2b)
$$s_i = x_i/(x_{i+1} + x_{i+2})$$
.

At the stationary values of $S(\underline{x})$ for admissible vectors \underline{x} , either $x_i = 0$ or $\partial S/\partial x_i = 0$. This leads readily to the relations that either

$$(x_{i+1} + x_{i+2})(b_{i-1} + b_{i-2}) = 1$$
 or $x_i = b_i = 0$,

and hence,

(4.1b)

$$x_i = b_i / (b_{i-1} + b_{i-2})^2$$
 ,

$$r_i = b_i(x_{i+1} + x_{i+2}) = x_i(b_{i-1} + b_{i-2}) = s_i$$

and

 $x_i b_i = s_i^{\scriptscriptstyle 2} = r_i^{\scriptscriptstyle 2}$

for all i.

Clearly then, for any stationary solution $\underline{x}^{(1)}$ another stationary solution $\underline{x}^{(2)}$ can be formed, namely the vector \underline{b} read in reverse order. Both solutions lead to the same stationary sum $S = \Sigma s_i =$ Σr_i . Therefore, if the minimum of S is unique, the two vectors must be equivalent, i.e., $\underline{x}^{(2)}$ must be constant multiple of $\underline{x}^{(1)}$. The computation of many minima for both even and odd N showed that in all cases indeed, $\underline{x}^{(2)} = c\underline{x}^{(1)}$. As an example we list in the Appendix, Table 4, the results for N = 25 where $\underline{x}^{(1)}$ has been normalized so that c = 1, i.e., $b_i = x_{N+2-i}$ and $s_i = s_{N+2-i}$.

This means that for all computed minima (including the result in [6]) the vector \underline{s} exhibits a symmetry, and it might be of interest to prove this property, if indeed it holds in general.

Since the difficult cases where the cyclic inequality holds, namely N = 8 [3] and N = 10 [8], have been proved by discussing all relevant possibilities in turn, the symmetry in <u>s</u> might just restrict the number of cases sufficiently to make N = 12 amenable to a proof.

Appendix. Miscellaneous numerical results. In this appendix we present examples and computational results for the cyclic inequality.

The approach described in §1 enables us to obtain vectors \underline{x} for which $S(\underline{x}) < N/2$ without requiring an extensive search on a computer. In Table 2 we present the results for the vector \underline{x}_{Z} [7, p. 133], \underline{x}_{H} [5], and the vector \underline{x} suggested by (1.2). For the expansion for small e, one obtains $S(\underline{x}) = N/2 - qe^2 + 0(e^3)$. The minimum of the cyclic sum for these vectors is also listed; the comparison

	TABLE 2	
Vectors \underline{x} with	$S(\underline{x}) < N/2$ for small e	. N=14.

$\underline{x}_{H} = (1+10e, 7e, 1+8e,$	10e, 1+3e,		1, 0, $1+8e$, $3e$)
	vector q	minimum at $e=$ of $S-N/2$	
		$\begin{array}{rrrr} -0.0000215 & 0.0059 \\ -0.0000028 & 0.0017 \\ -0.0002661 & 0.0093 \end{array}$	

between \underline{x}_{z} and \underline{x}_{H} shows that a larger q need not lead to a smaller minimum.

The expansion in small e is not available for odd N. Convincing examples for $S(\underline{x}) < N/2$ are then furnished by vectors with nonnegative integers as components. Table 3 lists examples for N = 14, 25, 27. Clearly, there is a limit on how small the largest integer component can be chosen. We believe that the examples are quite close to optimal in this respect. The vector \underline{x}_D for N =

			TA	BLE 3		
Vectors	\underline{x}	with	integer	$\operatorname{components}$	and	$S(\underline{x}) < N/2.$

$\underline{x}_2 = (0, 44, 2)$ $\underline{x}_D = (3, 6, 2, 2)$	2, 44, 4, 43, 6, 1, 6, 0,		
vector	Ν	Largest x_i	S-N/2
\underline{x}_1	14	42	-151/28938140 = -0.00000522
x_2	14	44	-217/4280760 = -0.00005069
Table 4, \underline{x}_{int}	25	35	=-0.00013752
$x_{\text{int}}*$	25	35	-691 / 80013480 = -0.00000863
\underline{x}_{D}	27	12	-53/55440 = -0.00095599
\underline{x}_3	27	11	-8/ 3465 = -0.00230880
\underline{x}_{3}^{*}	27	11	-1/ 126 = -0.00079365

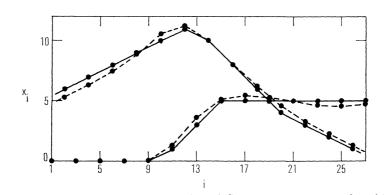


FIGURE 3. The numerical minimization of S.---., and an example with integer components $x_i \oplus - \oplus$ for N=27.

	8	x_{int}
$x_1 = b_1 = .8448196$.8448196	25
$x_2 = b_{25} = .0$.0	0
$x_3 = b_{24} = 1.0$.8448196	29
$x_4 = b_{23} = .0$.0	0
$x_5 = b_{22} = 1.1836847$.8448196	34
$x_6 = b_{21} = .1924932$.1160666	5
$x_7 = b_{20} = 1.2086162$.8133369	35
$x_8 = b_{19} = .4498554$.2777040	13
$x_9 = b_{18} = 1.0361416$.7447432	30
$x_{10} = b_{17} = .5837685$.4125654	17
$x_{11} = b_{16} = .8075051$.6676996	24
$x_{12} = b_{15} = .6074671$.5125019	18
$x_{13} = b_{14} = .6019168$.5925761	18
$x_{14} \!=\! b_{13} \!=$.5833803	.5925761	17
$x_{15} = b_{12} = .4323827$.5125019	13
$x_{16} = b_{11} = .5520990$.6676996	16
$x_{17} = b_{10} = .2915714$.4125654	9
$x_{18} \!=\! b_9 = .5352959$.7447432	16
$x_{19} = b_8 = .1714317$.2777040	5
$x_{20} = b_7 = .5473341$.8133369	16
$x_{21} = b_6 = .0699841$.1160666	2
$x_{22} = b_5 = .6029648$.8448196	18
$x_{23} = b_4 = .0$.0	0
$x_{24} = b_3 = .7137202$.8448196	21
$x_{25} = b_2 = .0$.0	0

TABLE 4

The numerical minimization of S(x) for N=25 and a case \underline{x}_{int} with integer components.

S(x) = 12.498485

27 is published in [2], and the vector \underline{x}_{int} is a slight modification of the vector given in [9] (the authors were unaware of the results in [1] and [6]) and is listed in Table 4. The vector \underline{x}_3 for n = 27is strongly suggested by the numerical minimization as Figure 3 shows, so that only a very limited search is required. We have also added vectors with the most pleasing fractions for S - N/2, namely \underline{x}_{int}^* obtained from \underline{x}_{int} by changing x_9 to 31, and x_3^* by changing the first 10 in \underline{x}_3 to an 11.

Table 4 lists the results of the numerical minimization and exhibits to high accuracy the relations conjectured in $\S 4$.

ACKNOWLEDGMENT. The authors wish to thank P. H. Diananda for valuable information and suggestions.

References

1. D. E. Daykin, Inequalities for functions of cyclic nature, J. London Math. Soc., (2), 3 (1971), 453-462.

^{2.} P. H. Diananda, On a cyclic sum, Proc. Glasgow Math. Assoc., 6 (1963), 11-13.

3. D. Ž. Djoković, Sur une inégalité, Proc. Glasgow Math. Assoc., 6 (1963), 1-10.

4. C. V. Durell, Query, Math. Gaz., 40 (1956), 266.

5. M. Herschorn and J. E. L. Peck, *Problem* 4603, Amer. Math. Monthly, 67 (1960), 87-88.

6. M. A. Malcolm, Note on a conjecture of L. J. Mordell, Math. Comp., 25 (1971), 375-377.

 D. S. Mitrinović, Analytic Inequalities, (Springer-Verlag, New York 1970), 132-138.
P. Nowosad, Isoperimetric eigenvalue problems in algebra, Comm. Pure Appl. Math., 21 (1968), 401-465.

9. J. L. Searcy and B. A. Troesch, The cyclic inequality, Notices Amer. Math. Soc., 23 (1976), A-604.

10. D. G. Thomas, On the definiteness of certain quadratic forms arising in a conjecture of L. J. Mordell, Amer. Math. Monthly, **68** (1961), 472-473.

Received October 24, 1977 and in revised form October 24, 1978.

UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES, CA 90007