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A CYCLIC INEQUALITY AND A RELATED
EIGENVALUE PROBLEM

J. L. SEARCY AND B. A. TROESCH

A cyclic sum S(x)~ΣxJ(xi+1+xi+2) is formed with the N
components of a rector x, where xN+1=xί9 %N+2~X29 and
where all denominators are positive and all numerators non-
negative. It is known that the inequality S(x)^N/2 does
not hold for even i\Π^14; this result is derived in a uniform
manner by considering a related algebraic eigenvalue pro-
blem. Numerical evidence is presented for the conjecture
that this cyclic inequality is true for even N^12 and odd

The corresponding cyclic inequality, namely the question for
what value of N

S(x) ^ N/2

holds, has been investigated by many mathematicians (cf. Mitrinovic
[7] and the references given there). In §1 we prove in a unified
manner that the inequality does not hold for even N ^ 14. The
method is based on the idea used first by Lighthill for N = 20 [4]
and then by several other authors. The argument indicates why
the case N = 12 remains still unresolved. Some properties of this
type of solution are described in § 2. Section 3 deals with numeri-
cal results that strongly suggest that the inequality is valid for
N = 12 and, if N is odd, for N — 23. These numerical results def-
initely represent stationary values of the cyclic sum, and we are
inclined to believe that they are indeed global minima. A connec-
tion between the inequality above and a related inequality with
indices reversed is considered in the last section. In the Appendix
some examples are listed for N = 14, 25 and 27.

1* The linear cyclic inequality* By considering the cyclic
sumS(ac) it is obvious that for any N there exists a vector for
which

S(x) = N/2

holds, namely χi: = 1 for i = 1, 2, , N. If N is even, there exists
also a wider class of "nominal" vectors,

f(l + a)β for i odd
(1.1) x\ = ' . 0 ^ a <, 1 ,

((1 — α:)/2 for % even

217
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for which S(x°) = N/2. Vectors of this type seem to form the
basis in the reported solutions for even N where the inequality
does not hold, in particular, in Zulauf's solution [7, p. 133] for the
important case iV = 14.

If N is odd, the situation is much more difficult to understand.
Indeed, while only N = 12 is unresolved for even JV, for odd N
the answer is still unknown for N = 11,13, , 23. A simple nom-
inal vector of the form (1.1) exists for odd N only if a == 0.

We now show in a uniform manner that the cyclic inequality
is violated for even N ^ 14. (In the remainder of this section, N
is understood to be even.) We proceed by writing the vector x as
x = χ° + e and expanding the cyclic sum S(x) in terms of the com-
ponents of the vector e. If S can be made smaller than N/2 for
small e, the inequality is clearly violated.

By including quadratic terms in the expansion—the contribution
of the linear terms vanishes—we obtain

S* = JV/2 + Σ el - ekek+2 + (-l)kaekek+ι = N/2 + eτAe/2

where again eN+1 — elf eN+2 — e2 and where A is the symmetric
matrix

A =

I 2
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In order to minimize S* we must minimize eτAewith eτe kept con-
stant. The corresponding eigenvalue problem (A — XI)e = 0 has the
known solution, which can be easily verified,

(1.2)
α sin tk

— α cos £Λ

for k odd

for k even

where tk = t0 + (fc — 1)Λ; the amplitude α > 0 and the phase ί0 are
arbitrary, and

Λ = 2πj/N , j = 1,2, , N .

The N corresponding eigenvalues are

λ = 2 sin h (2 sin h — a)
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they are, with the exception of at most two of them, all double
eigenvalues. We may choose ί0 = 0 so that the e-vector becomes

e = α(0, —cos h, sin 2h, —cos 3fe, , sin (N — 2)h, —cos (N — ϊ)h) .

Now, at the stationary values of S* we have

S* - N/2 + Xeτe/2 .

Hence, S* is smaller than JV/2 if there exists at least one negative
eigenvalue λ. This means that we must require that 0 < 2sinfc <
a < 1, i.e., 0 < sin (2πj/N) < 1/2, 2πj/N < ττ/6, or finally N > 12j.
The case where 5ττ/6 < 2πj/N < π can be excluded since it leads to
the indentical result for x and S*. For N > 12, the condition N >
12j can indeed always be satisfied. We conclude that vectors of
this kind with S* < N/2, and therefore also for the full cyclic in-
equality with S < NJ2, are always possible for N ^ 14, but not
possible for N <ί 12 (cf. also [10]). This concludes the main argu-
ment.

However, these considerations do not resolve the open case
N = 12. The inequality holds in the neighborhood of a nominal
vector x0. Consequently, if a vector x exists that violates the
inequality, then it cannot be obtained by a perturbation of a
nominal vector x°.

2. The minimum of the linear cyclic sum* It seems worth-
while to elaborate on the vectors formed with (1.2) and add a few
remarks.

First, we note that λ = 4 sin2 h Ξ> 0 for a = 0. This means that
for odd Nf where the only simple nominal vector x° is furnished
by a = 0, the eigenvalues are all nonnegative, so that the argument
given above cannot be applied to odd N. Furthermore, higher
order terms in the e-expansion do not alter this conclusion.

For N ^ 14 there exists a negative eigenvalue, namely exactly
one for 14 ^ N £ 24. If 24 < N ^ 36 both j = 1 and j = 2 furnish
negative eigenvalues, and similarly for larger N values, where for
each increase of N by 12 a "higher harmonic" is added. The Figure
1 shows the eigenvectors for N = 26, j = 1 and j = 2. The values
of the full (i.e., not linearized) cyclic sum for these vectors are
S - 13-0.01913 and S - 13-0.0000787.

Since all xk are required to be nonnegative, the amplitude a
must be chosen sufficiently small, namely

(1.3) a ^ (1 - α)/2 .

In some cases, a can be chosen slightly larger, e.g., for N = 14
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1.0 H-

5. 9 13 17 21 25

1 . 0 0 -

and j = 1,

(1.4)

1 5 9: 13 17 21 25
i

FIGURE 1. Eigenvectors for JV=26, j=l,2.

a :g (1 — ά)/2 cos ft ,

since the trigonometric functions in (1.2) are evaluated only at
discrete points.

The sum S* is computable in closed form and gives, for the
cases of interest,

S* - N(2 + λα2)/4

or, using the (nearly) largest admissible α,

S*(α) = N(2 - —(1 - af sin h(a - 2 sin h) )U .

For a = 1 and α = 2 sin ft, we obtain S* = JV/2, and S* attains its
minimum value (for either (1.3) or (1.4)) at

a0 = (1 + 4 sin ft)/3 ,
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namely

(1.5) S* = N(l - — sin Λ(l - 2 sin hf \J2 .

The linearized sum S* has of course a different minimum than
the full cyclic sum. As an example, we choose JV — 14, j — 1.
From (1.5) we obtain for a — (1 — a)β

S* = 7 - 0.000260 ,

and it can be shown that for a = (1 — α)/2 cos Λ (1.5) gives

S* = 7 - 0.000320 ,

while the full cyclic sum for this vector is

S = 7 - 0.000323 .

On the other hand, a numerical minimization of the full cyclic sum
furnishes

S = 7 - 0.000347 .

It is not difficult to include tire cubic terms in the e-expansion.
It turns out that in order to obtain this sum, let us call it S>**,
one only needs to increase the amplitude α. However, the amplitude
is in general restricted to a <; (1 — α)/2. Hence, it seems reasonable
to increase α, except that those xk which would become negative
are replaced by zero. A computation then leads to the result

S** = 7 - 0.000331 .

One might expect that for large JV where more than one nega-
tive eigenvalue occurs, the eigenvalue for j = 1 would give the
smallest sum S*. However, (1.5) shows that for JV ^ 74 this is not
the case.

3. The cases JV = 12 and N = 23* By considering the numer-
ical minimization for N ^ 14 (cf. Figure 2 and Table 1) we are led
to the conjecture that for the still open case N = 12 the inequality
is indeed satisfied. But it should be kept in mind that these numer-
ical results have not been shown to be global minima.

Similarly, for JV odd and larger than 23, the numerical results
indicate that the inequality is valid for JV = 23. Here the solution
for JV = 23 which is similar in structure to the solutions for JV^25
is also listed, although in this case the vector xk = 1, for all k,
furnishes the lower value JV/2. The same conclusion has been
reached by Malcolm [6] who solved the problem for JV = 25 by
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S-N/2 -0.010

- 0 . 0 0 5 -

22

FIGURE 2. Extrapolation of the minimum cyclic sum to N=12 and AΓ=23.

TABLE 1

Extrapolation of the minimum of the cyclic sum S to N=12 and N=2S.

N
14
16

18
20

22

S-N/2

-.000347303
-.002004523

-.005287982

-.010062465
-.015979281

N
2S

25
27

29
31

S-NI2

+ .011689438

-.001514765
-.014469580

-.027056111
-.039127154

convincing numerical minimization and by Daykin [1] who also
lists a solution in integer values for the xt.

Additional numerical results are discussed in the Appendix.

4* The cyclic inequality with indices reversed* The solutions
listed above exhibit an interesting general property. We define a
vector 6 by setting

(4.1a)

and introduce also

(4.2a)

6, = Xi! xi+2y

Tt = 6,7(6,-! + 6,_2)
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as a counterpart to

(4.2b) Si = Xi/(xi+1 + xi+2) .

At the stationary values of S(x) for admissible vectors x, either
Xi = 0 or dS/dXi = 0. This leads readily to the relations that either

(xi+1 + ίc£+2)(δί_1 + δi_2) = 1 or a?, = 6( = 0 ,

and hence,

(4.1b) *'= bJQb^ + btΛ ,

rt = bt(xi+ι + xi+2) = «<(&<_! + 6,_8) = Si

and

for all i.
Clearly then, for any stationary solution x{ί) another stationary

solution x{2) can be formed, namely the vector b read in reverse
order. Both solutions lead to the same stationary sum S = Σst —
Σrt. Therefore, if the minimum of S is unique, the two vectors
must be equivalent, i.e., x{2) must be constant multiple of ^(1) The
computation of many minima for both even and odd N showed that
in all cases indeed, x(2) — cx{1). As an example we list in the
Appendix, Table 4, the results for JV = 25 where x{1) has been nor-
malized so that c = 1, i.e., bt = xN+2-i a n ( i s% = SN+2-Ϊ'

This means that for all computed minima (including the result
in [6]) the vector s exhibits a symmetry, and it might be of inte-
rest to prove this property, if indeed it holds in general.

Since the difficult cases where the cyclic inequality holds, namely
N = 8 [3] and N = 10 [8], have been proved by discussing all rele-
vant possibilities in turn, the symmetry in s might just restrict
the number of cases sufficiently to make N = 12 amenable to a
proof.

Appendix* Miscellaneous numerical results* In this appendix
we present examples and computational results for the cyclic in-
equality.

The approach described in § 1 enables us to obtain vectors x
for which S(x) < N/2 without requiring an extensive search on a
computer. In Table 2 we present the results for the vector xz [7,
p. 133], xH [5], and the vector x suggested by (1.2). For the ex-
pansion for small e, one obtains S(x) = N/2 — qe2 + 0(e3). The mini-
mum of the cyclic sum for these vectors is also listed; the comparison
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TABLE 2

Vectors x with S(x)<N/2 for small e. N=U.

Xyz=z(\~\~1β 7β
β —(Λ-L. \Qβ 7β

v — (Λ -1-11 P Rp

l+4e,
l+8e,
l+8e,

6e,
lOe,
lOe,

1+e,
l+3e,
l+3e,

5e,
lOe,
8e,

1,
l-2e,
1,

2e,
5e,
3e,

1 + e,
l-2e,
l+2e,

0,
0,
0,

l+4e,
1,
l+6e,

e,
0,
0,

l+6e,
l+8e,
1+lOe

4e)
3e)

, 4e)

vector

Xz

XII

X

Q

2
3

11

minimum
of
- 0
- 0
- 0

S-N/2
.0000215
.0000028
.0002661

at e =

0.0059
0.0017
0.0093

between xz and xπ shows that a larger q need not lead to a smaller
minimum.

The expansion in small e is not available for odd N. Convinc-
ing examples for S(x) < N/2 are then furnished by vectors with
nonnegative integers as components. Table 3 lists examples for
N = 14, 25, 27. Clearly, there is a limit on how small the largest
integer component can be chosen. We believe that the examples
are quite close to optimal in this respect. The vector xD for N =

TABLE 3

Vectors x with integer components and S(x)<NJ2.

a?i = ( 0

£ 2 = (0,

XD = &,

Xs = (3,

4^
44
6,
5,

vector

^2

Table 4,

XD

^ 3

is"

, %
, 2,
2,
2,

I t

42, 4,
44, 4,

6, 1, 6,
5, 1, 5,

N

14
14
25
25
27
27
27

41
43,
0,
0,

5
5,
7,
6,

39,
41,
0,

0, '

4, 38,
4, 40,

8, 0, 9,
7, 0, 8,

Largest Xi

42
44
35
35
12
11
11

2,
0,
0

38
40,
10,
9

0

0,

. o,
0

40)
42)
11, 1, 12, 3, 11, 5, 9, 6, 7, 6, 5, 6)

10, 1, 11, 3, 10, 5, 8, 5, 6, 5, 4, 5)

S-NI2

-151/28938140 = - 0.00000522

- 217/ 4280760 = - 0.00005069

= -0.00013752

- 691 /80013480 = - 0.00000863

- 5 3 / 55440 =-0.00095599

- 8 / 3465=-0.00230880

- 1 / 126=-0.00079365

1 5 9 17 21 25

FIGURE 3. The numerical minimization of S. ---. , and an example with
integer components a?* •— for iV=27.



A CYCLIC INEQUALITY AND A RELATED EIGENVALUE PROBLEM 225

TABLE 4

The numerical minimization of S(x) for JV=25 and a case a?int with integer

components.

Xl=bi= .8448196

X2 — * 2 δ — •"

Xz = 624 = 1.0

X i =b2z= .0

#5 =622=1.1836847

Xΰ = δ 2 1 = = .1924932

α7 =620 = 1.2086162

x8 =b1Q= .4498554

XQ =6iβ = 1.0861416

#10 = 617 = .5837685

a?i i=δ l β = .8075051

#12=615= .6074671

x13=bu = .6019168

aj M =δi8= .5833803

α? 1 5 =δi 2 = .4323827

ίc16 = δn = .5520990

#17 = 610= .2915714

#18 = 69 = .5352959

# i 9 = δ 8 = .1714317

X2Q=b7 = .5473341

χ2ί=bβ = .0699841

#22=65 = .6029648

# 2 3 = δ 4 = .0

Xu=b3 = .7137202

#25 = 6 2 = .0

s

.8448196

.0

.8448196

.0

.8448196

.1160666

.8133369

.2777040

.7447432

.4125654

.6676996

.5125019

.5925761

.5925761

.5125019

.6676996

.4125654

.7447432

.2777040

.8133369

.1160666

.8448196

.0

.8448196

.0

25

0

29

0

34

5

35

13

30

17

24

18

18

17

13

16

9

16

5

16

2

18

0

21

0

S(x) = 12.498485

27 is published in [2], and the vector xlnt is a slight modification
of the vector given in [9] (the authors were unaware of the results
in [1] and [6]) and is listed in Table 4. The vector xB for n = 27
is strongly suggested by the numerical minimization as Figure 3
shows, so that only a very limited search is required. We have
also added vectors with the most pleasing fractions for S — N/2,
namely xfnt obtained from α5lnt by changing x9 to 31, and xζ by
changing the first 10 in #3 to an 11.

Table 4 lists the results of the numerical minimization and
exhibits to high accuracy the relations conjectured in § 4.
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