A CYCLIC INEQUALITY AND A RELATED EIGENVALUE PROBLEM

J. L. Searcy and B. A. Troesch

A cyclic sum $S(\underline{x})=\Sigma x_{i} /\left(x_{i+1}+x_{i+2}\right)$ is formed with the N components of a vector \underline{x}, where $x_{N+1}=x_{1}, x_{N+2}=x_{2}$, and where all denominators are positive and all numerators nonnegative. It is known that the inequality $S(\underline{x}) \geqq N / 2$ does not hold for even $N \geqq 14$; this result is derived in a uniform manner by considering a related algebraic eigenvalue problem. Numerical evidence is presented for the conjecture that this cyclic inequality is true for even $N \leqq 12$ and odd $N \leqq 23$.

The corresponding cyclic inequality, namely the question for what value of N

$$
S(\underline{x}) \geqq N / 2
$$

holds, has been investigated by many mathematicians (cf. Mitrinović [7] and the references given there). In $\S 1$ we prove in a unified manner that the inequality does not hold for even $N \geqq 14$. The method is based on the idea used first by Lighthill for $N=20$ [4] and then by several other authors. The argument indicates why the case $N=12$ remains still unresolved. Some properties of this type of solution are described in §2. Section 3 deals with numerical results that strongly suggest that the inequality is valid for $N=12$ and, if N is odd, for $N=23$. These numerical results definitely represent stationary values of the cyclic sum, and we are inclined to believe that they are indeed global minima. A connection between the inequality above and a related inequality with indices reversed is considered in the last section. In the Appendix some examples are listed for $N=14,25$ and 27 .

1. The linear cyclic inequality. By considering the cyclic sum $S(x)$ it is obvious that for any N there exists a vector for which

$$
S(\underline{x})=N / 2
$$

bolds, namely $x_{i}=1$ for $i=1,2, \cdots, N$. If N is even, there exists also a wider class of "nominal" vectors,

$$
x_{i}^{0}=\left\{\begin{array}{ll}
(1+\alpha) / 2 & \text { for } i \text { odd } \tag{1.1}\\
(1-\alpha) / 2 & \text { for } i \text { even }
\end{array} 0 \leqq \alpha \leqq 1,\right.
$$

for which $S\left(\underline{x}^{0}\right)=N / 2$. Vectors of this type seem to form the basis in the reported solutions for even N where the inequality does not hold, in particular, in Zulauf's solution [7, p. 133] for the important case $N=14$.

If N is odd, the situation is much more difficult to understand. Indeed, while only $N=12$ is unresolved for even N, for odd N the answer is still unknown for $N=11,13, \cdots, 23$. A simple nominal vector of the form (1.1) exists for odd N only if $\alpha=0$.

We now show in a uniform manner that the cyclic inequality is violated for even $N \geqq 14$. (In the remainder of this section, N is understood to be even.) We proceed by writing the vector x as $\underline{x}=\underline{x}^{0}+\underline{e}$ and expanding the cyclic sum $S(\underline{x})$ in terms of the components of the vector e. If S can be made smaller than $N / 2$ for small e, the inequality is clearly violated.

By including quadratic terms in the expansion-the contribution of the linear terms vanishes-we obtain

$$
S^{*}=N / 2+\sum e_{k}^{2}-e_{k} e_{k+2}+(-1)^{k} \alpha e_{k} e_{k+1}=N / 2+e^{T} A e / 2
$$

where again $e_{N+1}=e_{1}, e_{N+2}=e_{2}$ and where A is the symmetric matrix

In order to minimize S^{*} we must minimize $\underline{e}^{T} A \underline{e}$ with $\underline{e}^{T} \underline{e}$ kept constant. The corresponding eigenvalue problem $(A-\lambda I) \underline{e}=\underline{0}$ has the known solution, which can be easily verified,

$$
e_{k}=\left\{\begin{align*}
a \sin t_{k} & \text { for } k \text { odd } \tag{1.2}\\
-a \cos t_{k} & \text { for } k \text { even }
\end{align*}\right.
$$

where $t_{k}=t_{0}+(k-1) h$; the amplitude $a>0$ and the phase t_{0} are arbitrary, and

$$
h=2 \pi j / N, \quad j=1,2, \cdots, N
$$

The N corresponding eigenvalues are

$$
\lambda=2 \sin h(2 \sin h-\alpha) ;
$$

they are, with the exception of at most two of them, all double eigenvalues. We may choose $t_{0}=0$ so that the e-vector becomes

$$
\underline{e}=a(0,-\cos h, \sin 2 h,-\cos 3 h, \cdots, \sin (N-2) h,-\cos (N-1) h)
$$

Now, at the stationary values of S^{*} we have

$$
S^{*}=N / 2+\lambda \underline{e}^{T} \underline{e} / 2 .
$$

Hence, S^{*} is smaller than $N / 2$ if there exists at least one negative eigenvalue λ. This means that we must require that $0<2 \sin h<$ $\alpha<1$, i.e., $0<\sin (2 \pi j / N)<1 / 2,2 \pi j / N<\pi / 6$, or finally $N>12 j$. The case where $5 \pi / 6<2 \pi j / N<\pi$ can be excluded since it leads to the indentical result for \underline{x} and S^{*}. For $N>12$, the condition $N>$ $12 j$ can indeed always be satisfied. We conclude that vectors of this kind with $S^{*}<N / 2$, and therefore also for the full cyclic inequality with $S<N / 2$, are always possible for $N \geqq 14$, but not possible for $N \leqq 12$ (cf. also [10]). This concludes the main argument.

However, these considerations do not resolve the open case $N=12$. The inequality holds in the neighborhood of a nominal vector \underline{x}_{0}. Consequently, if a vector \underline{x} exists that violates the inequality, then it cannot be obtained by a perturbation of a nominal vector x^{0}.
2. The minimum of the linear cyclic sum. It seems worthwhile to elaborate on the vectors formed with (1.2) and add a few remarks.

First, we note that $\lambda=4 \sin ^{2} h \geqq 0$ for $\alpha=0$. This means that for odd N, where the only simple nominal vector \underline{x}^{0} is furnished by $\alpha=0$, the eigenvalues are all nonnegative, so that the argument given above cannot be applied to odd N. Furthermore, higher order terms in the e-expansion do not alter this conclusion.

For $N \geqq 14$ there exists a negative eigenvalue, namely exactly one for $14 \leqq N \leqq 24$. If $24<N \leqq 36$ both $j=1$ and $j=2$ furnish negative eigenvalues, and similarly for larger N values, where for each increase of N by 12 a "higher harmonic" is added. The Figure 1 shows the eigenvectors for $N=26, j=1$ and $j=2$. The values of the full (i.e., not linearized) cyclic sum for these vectors are $S=13-0.01913$ and $S=13-0.0000787$.

Since all x_{k} are required to be nonnegative, the amplitude a must be chosen sufficiently small, namely

$$
\begin{equation*}
a \leqq(1-\alpha) / 2 \tag{1.3}
\end{equation*}
$$

In some cases, a can be chosen slightly larger, e.g., for $N=14$

Figure 1. Eigenvectors for $N=26, j=1,2$.
and $j=1$,

$$
\begin{equation*}
a \leqq(1-\alpha) / 2 \cos h \tag{1.4}
\end{equation*}
$$

since the trigonometric functions in (1.2) are evaluated only at discrete points.

The sum S^{*} is computable in closed form and gives, for the cases of interest,

$$
S^{*}=N\left(2+\lambda a^{2}\right) / 4
$$

or, using the (nearly) largest admissible a,

$$
S^{*}(\alpha)=N\left(2-\frac{1}{2}(1-\alpha)^{2} \sin h(\alpha-2 \sin h)\right) / 4 .
$$

For $\alpha=1$ and $\alpha=2 \sin h$, we obtain $S^{*}=N / 2$, and S^{*} attains its minimum value (for either (1.3) or (1.4)) at

$$
\alpha_{0}=(1+4 \sin h) / 3
$$

namely

$$
\begin{equation*}
S^{*}=N\left(1-\frac{1}{27} \sin h(1-2 \sin h)^{3}\right) / 2 \tag{1.5}
\end{equation*}
$$

The linearized sum S^{*} has of course a different minimum than the full cyclic sum. As an example, we choose $N=14, j=1$. From (1.5) we obtain for $a=(1-\alpha) / 2$

$$
S^{*}=7-0.000260
$$

and it can be shown that for $a=(1-\alpha) / 2 \cos h(1.5)$ gives

$$
S^{*}=7-0.000320
$$

while the full cyclic sum for this vector is

$$
S=7-0.000323
$$

On the other hand, a numerical minimization of the full cyclic sum furnishes

$$
S=7-0.000347
$$

It is not difficult to include the cubic terms in the e-expansion. It turns out that in order to obtain this sum, let us call it $S^{* *}$, one only needs to increase the amplitude a. However, the amplitude is in general restricted to $a \leqq(1-\alpha) / 2$. Hence, it seems reasonable to increase a, except that those x_{k} which would become negative are replaced by zero. A computation then leads to the result

$$
S^{* *}=7-0.000331
$$

One might expect that for large N where more than one negative eigenvalue occurs, the eigenvalue for $j=1$ would give the smallest sum S^{*}. However, (1.5) shows that for $N \geqq 74$ this is not the case.
3. The cases $N=12$ and $N=23$. By considering the numerical minimization for $N \geqq 14$ (cf. Figure 2 and Table 1) we are led to the conjecture that for the still open case $N=12$ the inequality is indeed satisfied. But it should be kept in mind that these numerical results have not been shown to be global minima.

Similarly, for N odd and larger than 23, the numerical results indicate that the inequality is valid for $N=23$. Here the solution for $N=23$ which is similar in structure to the solutions for $N \geqq 25$ is also listed, although in this case the vector $x_{k}=1$, for all k, furnishes the lower value $N / 2$. The same conclusion has been reached by Malcolm [6] who solved the problem for $N=25$ by

Figure 2. Extrapolation of the minimum cyclic sum to $N=12$ and $N=23$.

Table 1
Extrapolation of the minimum of the cyclic sum S to $N=12$ and $N=23$.

N	$S-N / 2$	N	$S-N / 2$
14	-.000347303	23	+.011689438
16	-.002004523	25	-.001514765
18	-.005287982	27	-.014469580
20	-.010062465	29	-.027056111
22	-.015979281	31	-.039127154

convincing numerical minimization and by Daykin [1] who also lists a solution in integer values for the x_{i}.

Additional numerical results are discussed in the Appendix.
4. The cyclic inequality with indices reversed. The solutions listed above exhibit an interesting general property. We define a vector \underline{b} by setting

$$
\begin{equation*}
b_{i}=x_{i} /\left(x_{i+1}+x_{i+2}\right)^{2} \tag{4.1a}
\end{equation*}
$$

and introduce also

$$
\begin{equation*}
r_{i}=b_{i} /\left(b_{i-1}+b_{i-2}\right) \tag{4.2a}
\end{equation*}
$$

as a counterpart to

$$
\begin{equation*}
s_{i}=x_{i} /\left(x_{i+1}+x_{i+2}\right) . \tag{4.2b}
\end{equation*}
$$

At the stationary values of $S(\underline{x})$ for admissible vectors \underline{x}, either $x_{i}=0$ or $\partial S / \partial x_{i}=0$. This leads readily to the relations that either

$$
\left(x_{i+1}+x_{i+2}\right)\left(b_{i-1}+b_{i-2}\right)=1 \text { or } x_{i}=b_{i}=0
$$

and hence,

$$
\begin{gather*}
x_{i}=b_{i} /\left(b_{i-1}+b_{i-2}\right)^{2} \tag{4.1b}\\
r_{i}=b_{i}\left(x_{i+1}+x_{i+2}\right)=x_{i}\left(b_{i-1}+b_{i-2}\right)=s_{i}
\end{gather*}
$$

and

$$
x_{i} b_{i}=s_{i}^{2}=r_{i}^{2}
$$

for all i.
Clearly then, for any stationary solution $\underline{x}^{(1)}$ another stationary solution $\underline{x}^{(2)}$ can be formed, namely the vector \underline{b} read in reverse order. Both solutions lead to the same stationary sum $S=\Sigma s_{i}=$ Σr_{i}. Therefore, if the minimum of S is unique, the two vectors must be equivalent, i.e., $\underline{x}^{(2)}$ must be constant multiple of $\underline{x}^{(1)}$. The computation of many minima for both even and odd N showed that in all cases indeed, $\underline{x}^{(2)}=c \underline{x}^{(1)}$. As an example we list in the Appendix, Table 4, the results for $N=25$ where $\underline{x}^{(1)}$ has been normalized so that $c=1$, i.e., $b_{i}=x_{N+2-i}$ and $s_{i}=s_{N+2-i}$.

This means that for all computed minima (including the result in [6]) the vector s exhibits a symmetry, and it might be of interest to prove this property, if indeed it holds in general.

Since the difficult cases where the cyclic inequality holds, namely $N=8$ [3] and $N=10$ [8], have been proved by discussing all relevant possibilities in turn, the symmetry in \underline{s} might just restrict the number of cases sufficiently to make $N=12$ amenable to a proof.

Appendix. Miscellaneous numerical results. In this appendix we present examples and computational results for the cyclic inequality.

The approach described in §1 enables us to obtain vectors \underline{x} for which $S(\underline{x})<N / 2$ without requiring an extensive search on a computer. In Table 2 we present the results for the vector \underline{x}_{z} [7, p. 133], \underline{x}_{H} [5], and the vector \underline{x} suggested by (1.2). For the expansion for small e, one obtains $S(x)=N / 2-q e^{2}+0\left(e^{3}\right)$. The minimum of the cyclic sum for these vectors is also listed; the comparison

Table 2
Vectors x with $S(\underline{x})<N / 2$ for small $e . \quad N=14$.

$$
\left.\begin{array}{lllll}
x_{Z}=(1+7 e, & 7 e, 1+4 e, 6 e, 1+e, 5 e, 1, & 2 e, 1+e, & 0,1+4 e, e, 1+6 e, & 4 e) \\
\underline{x}_{H}=(1+10 e, 7 e, 1+8 e, 10 e, 1+3 e, 10 e, 1-2 e, & 5 e, 1-2 e, 0,1, & 0,1+8 e, & 3 e) \\
x=(1+11 e, & 8 e, 1+8 e, 10 e, 1+3 e, 8 e, & 1, & 3 e, 1+2 e, 0,1+6 e, & 0,1+10 e,
\end{array}\right)
$$

vector	q	minimum of $S-N / 2$	at $e=$
\underline{x}_{Z}	2	-0.0000215	0.0059
$\underline{x}_{I I}$	3	-0.0000028	0.0017
\underline{x}	11	-0.0002661	0.0093

between \underline{x}_{Z} and $\underline{x}_{I I}$ shows that a larger q need not lead to a smaller minimum.

The expansion in small e is not available for odd N. Convincing examples for $S(x)<N / 2$ are then furnished by vectors with nonnegative integers as components. Table 3 lists examples for $N=14,25,27$. Clearly, there is a limit on how small the largest integer component can be chosen. We believe that the examples are quite close to optimal in this respect. The vector x_{D} for $N=$

Table 3
Vectors \underline{x} with integer components and $S(\underline{x})<N / 2$.

$\begin{aligned} & x_{1}=(0,42,2,42,4,41,5,39,4,38,2,38,0,40) \\ & x_{2}=(0,44,2,44,4,43,5,41,4,40,2,40,0,42) \\ & x_{D}=(3,6,2,6,1,6,0,7,0,8,0,9,0,10,0,11,1,12,3,11,5,9,6,7,6,5,6) \\ & x_{3}=(3,5,2,5,1,5,0,6,0,7,0,8,0,9,0,10,1,11,3,10,5,8,5,6,5,4,5) \end{aligned}$				
vector	N	Largest x_{i}		$S-N / 2$
\underline{x}_{1}	14	42		$1 / 28938140=-0.00000522$
\underline{x}_{2}	14	44	-21	$7 / 4280760=-0.00005069$
Table 4, $\underline{x}_{\text {int }}$	25	35		$=-0.00013752$
$\underline{x}_{\text {int }}$ *	25	35	-691	$180013480=-0.00000863$
\underline{x}_{D}	27	12	-53/	$55440=-0.00095599$
\underline{x}_{3}	27	11	-8/	$3465=-0.00230880$
$\underline{x}_{3}{ }^{*}$	27	11	-1/	$126=-0.00079365$

Figure 3. The numerical minimization of S.---., and an example with integer components x_{i} for $N=27$.

Table 4
The numerical minimization of $S(x)$ for $N=25$ and a case $x_{\text {int }}$ with integer components.

	s	$x_{\text {int }}$
$x_{1}=b_{1}=.8448196$. 8448196	25
$x_{2}=b_{25}=.0$. 0	0
$x_{3}=b_{24}=1.0$. 8448196	29
$x_{4}=b_{23}=.0$. 0	0
$x_{5}=b_{22}=1.1836847$. 8448196	34
$x_{6}=b_{21}=.1924932$. 1160666	5
$x_{7}=b_{20}=1.2086162$. 8133369	35
$x_{8}=b_{19}=.4498554$. 2777040	13
$x_{9}=b_{18}=1.0361416$. 7447432	30
$x_{10}=b_{17}=.5837685$. 4125654	17
$x_{11}=b_{18}=.8075051$. 6676996	24
$x_{12}=b_{15}=.6074671$. 5125019	18
$x_{13}=b_{14}=.6019168$. 5925761	18
$x_{14}=b_{13}=.5833803$. 5925761	17
$x_{15}=b_{12}=.4323827$. 5125019	13
$x_{18}=b_{11}=.5520990$. 6676996	16
$x_{17}=b_{10}=.2915714$. 4125654	9
$x_{18}=b_{9}=.5352959$. 7447432	16
$x_{19}=b_{8}=.1714317$. 2777040	5
$x_{20}=b_{7}=.5473341$. 8133369	16
$x_{21}=b_{6}=.0699841$. 1160666	2
$x_{22}=b_{5}=.6029648$. 8448196	18
$x_{23}=b_{4}=.0$. 0	0
$x_{24}=b_{3}=.7137202$. 8448196	21
$x_{25}=b_{2}=.0$. 0	0

$S(x)=12.498485$
27 is published in [2], and the vector $\underline{x}_{\text {int }}$ is a slight modification of the vector given in [9] (the authors were unaware of the results in [1] and [6]) and is listed in Table 4. The vector x_{3} for $n=27$ is strongly suggested by the numerical minimization as Figure 3 shows, so that only a very limited search is required. We have also added vectors with the most pleasing fractions for $S-N / 2$, namely $x_{i n t}^{*}$ obtained from $x_{\text {int }}$ by changing x_{9} to 31 , and x_{3}^{*} by changing the first 10 in \underline{x}_{3} to an 11.

Table 4 lists the results of the numerical minimization and exhibits to high accuracy the relations conjectured in $\S 4$.

Acknowledgment. The authors wish to thank P. H. Diananda for valuable information and suggestions.

References

1. D. E. Daykin, Inequalities for functions of cyclic nature, J. London Math. Soc., (2), 3 (1971), 453-462.
2. P. H. Diananda, On a cyclic sum, Proc. Glasgow Math. Assoc., 6 (1963), 11-13.
3. D. Ž. Djoković, Sur une inégalité, Proc. Glasgow Math. Assoc., 6 (1963), 1-10.
4. C. V. Durell, Query, Math. Gaz., 40 (1956), 266.
5. M. Herschorn and J. E. L. Peck, Problem 4603, Amer. Math. Monthly, 67 (1960), 87-88.
6. M. A. Malcolm, Note on a conjecture of L. J. Mordell, Math. Comp., 25 (1971), 375-377.
7. D. S. Mitrinović, Analytic Inequalities, (Springer-Verlag, New York 1970), 132-138. 8. P. Nowosad, Isoperimetric eigenvalue problems in algebra, Comm. Pure Appl. Math., 21 (1968), 401-465.
8. J. L. Searcy and B. A. Troesch, The cyclic inequality, Notices Amer. Math. Soc., 23 (1976), A-604.
9. D. G. Thomas, On the definiteness of certain quadratic forms arising in a conjecture of L. J. Mordell, Amer. Math. Monthly, 68 (1961), 472-473.

Received October 24, 1977 and in revised form October 24, 1978.
University of Southern California
Los Angeles, CA 90007

