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BETWEENNESS RELATIONS IN PROBABILISTIC
METRIC SPACES

R. MOYNIHAN AND B. SCHWEIZER

Four distinct versions of the betweenness concept for
probabilistic metric spaces are defined and studied. Conditions
under which some or all of the properties of metric between-
ness are satisfied are determined and the relationships among
the different concepts are investigated.

1* Introduction. In his original paper on probabilistic metric
spaces [8] K. Menger, in addition to introducing the basic concepts
and axioms, introduced a definition of betweenness, developed some
of its properties and showed that this relation was generally weaker
than ordinary metric betweenness. Shortly thereafter, A. Wald [25]
introduced a different definition of betweenness, based on a different
triangle inequality, and showed that his relation did have all the
properties of metric betweenness. Subsequently, J. F. C. Kingman
[6] and F. Rhodes [16] studied betweenness in "Wald spaces" and H.
Sherwood [23] considered a probabilistic version of the concept.
Otherwise the subject has lain dormant—primarily because adequate
tools for its analysis were not available. Our recent work on the
structure of semigroups on the space of probability distribution func-
tions [9, 11, 12, 17] and the development of "characteristic functions"
for certain classes of these semigroups [10, 13, 14] has changed this
state of affairs. Thus we return to the study of betweenness in
probabilistic metric spaces. We focus our attention on four different
versions of this concept. The first of these is the straightforward
generalization of Wald's betweenness from Wald spaces to arbitrary
probabilistic metric spaces. We show that this relation satisfies some,
but generally not all, of the usual properties of metric betweenness,
determine sufficient conditions for the validity of those properties
which are not always satisfied and show that in some instances these
conditions are also necessary. The second betweenness relation applies
to a restricted but nevertheless very large class of probabilistic metric
spaces. It always satisfies the metric betweenness properties and,
whenever it is comparable to the first relation, it is either identical
or weaker. The Jhird relation, which applies to the same class of
spaces as the second, is obtained by an extension of Kingman's idea
from Wald spaces to this class. It is a metric betweenness for
certain naturally defined metrics and is always weaker than the second
relation. The last relation is Menger's betweenness. We reformulate
Menger's definition in terms of triangle functions and show that in
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simple spaces and Wald spaces, Wald's and Menger's concepts coincide.
A more detailed study of Menger's betweenness still remains to be
carried out.

In order to present our results we need to recapitulate some of
the basic definitions and known results from the theory of probabilistic
metric (PM) spaces. Recall that such a space is an ordered triple
(S, ^ 7 τ), where S is a set, τ is a triangle function, and ά^ is a
mapping from S x S into the set of distribution functions

(1.1) J+ = {F: R —> [0, 1] I F is nondecreasing, left-continuous

and F(0) = 0}

such that, for all p, q, r in S,
( I ) Fvq = ε0 if and only if p = q,
(II) Fpq = Fqpf

(III) Fpr^τ(Fpq,Fqr).
Here Fpq = ^~(p9 q); ε0 is the distribution function defined by

ί θ , x^O,
(1.2) eo(x) =

(1, 0 < x
and a triangle function τ is a binary operation on Δ+ satisfying

(a) τ(F,eά = F,
(β) τ(F19 G,) ^ τ(F2, Gt), whenever Fλ ^ F2, G1 ^ G2,
(7) τ(F,G) = τ(G,F),
(δ) T(T(F, G), jff) = τ(ί\ r(G, IT)).

Thus τ is a commutative, order-preserving semigroup operation, with
unit ε0, on A+.

A sequence {FJ in ΔΛ~ converges weakly to FeJ+, and we write

Fn —> JP, if and only if the sequence {Fn(x)} converges to F{x) at
every continuity point x of the limit function F. This mode of con-
vergence is metrizable (an explicit metric is exhibited in [24]) and
the space J+ is compact in the induced metric topology. If the
triangle function τ is (uniformly) continuous then the collection of
sets {Np(e, λ) | ε > 0, λ > 0, peS}, where

(1.3) Np(e, X) = {qeS\ Fqp(e) > 1 - λ}

is a neighborhood basis for a metrizable topology on S [18, 21], called
the ε, X-topology. Moreover, a sequence {qn} in S converges to q e S

w

in this topology if and only if Fqq% —> ε0.
When τ is convolution (a continuous triangle function), then

(S, ^) is a Wald space; and (S, ά^) is a Menger space when r is]of
the form rΓ, where, for any F, G e A+ and any real x,
(1.4) rΓ(JP, G)(aj) = sup T(F(u), G(v))

u+v=x
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and T is a (left-continuous) t-norm, i.e., a (left-continuous) binary
operation on the unit interval [0, 1] such that

(a) T(a, 1) = α,
(b) T(cf d) ^ T(a, 6), whenever c ^ α, d ^ 6,
(c) T(α, 6) = Tφ, α),
(d) T(T(a,b),c)=:T(afT(b,c)).

In this paper we generally assume that Γ is continuous. This implies
that ττ is continuous on Δ+ [17]. The most important continuous
ί-norms are Min (α, 6), Prod (α, b) = α&, and Tm(α, 6) = Max {α + b — 1, 0}.

DEFINITION 1.1. A ί-norm Γ is Archimedean if it is continuous
on [0, 1] x [0, 1] and such that Γ(α, a) < a for all ae (0, 1); and Γ is
sίricί if it is continuous on [0, 1] x [0, 1] and strictly increasing in
each place on (0, 1] x (0, 1].

It is immediate that every strict ί-norm is Archimedean. The
ί-norms of Definition 1.1 are completely characterized by the following
representation theorem [7]:

THEOREM 1.1. The t-norm T is Archimedean if and only if
there exists a continuous and increasing function h: [0, 1] —> [0, 1],
with h(ΐ) = 1, such that

(1.5) Γ(α, 6) - W

where

(0 , 0 ^ x ^ Λ(0) ,

fc"1 is the usual inverse of h on [h(0), 1]. Furthermore, T is
strict if and only if h(0) = 0, in which case /ι[~1] = h'1.

The function h in (1.5) is called a multiplicative generator of
the ί-norm T and fec~1] is the pseudo-inverse of fc.

2* Wald-betweenness. If (S, cZ) is a metric space and p, g, r
are three distinct points of S then q is said to lie between p and
r—and one writes pqr—if and only if d(p, r) — d(p, q) + d(q, r). This
relation has the following properties [3]:

(Bl) If pqr then rqp.
(B2) If pqr then neither qrp nor rpq.
(B3) (a) If pqr and prs then pqs.

(b) If pgr and prs then grs.
(B4) The set B(p, r) U {p, r] is closed in the metric topology,

where B(p, r) — {q
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In his paper [25] Wald considered the straightforward generaliza-
tion of metric betweenness given by: If p, q, r are three distinct
points of a Wald space, then q lies between p and r if and only if

(2.1) Fpr = Fpq*Fqr,

where * denotes convolution. In this section we consider Wald's
betweenness for an arbitrary triangle function τ.

DEFINITION 2.1. Let (S,J^,τ) be a PM space and let p, q, r be
three distinct points of S. Then q is Wαld-between p and r—and we
write W(pqr)~if Fvr Φ εTO and

(2.2) Fpr = τ(Fpq, Fqr) ,

where s^ 6 Δ+ is defined by ejp) — 0 for all x.
Since ε^ and ε0 are, respectively, the mimimal and maximal

elements of J+, for any F e J + we have

(2.3) ε^ ^ τ{ε^ F) £ τ(εM, ε0) = ε^ ,.

whence τ ^ , JP) = ε^. Thus if W(pqr) then none of Fpr, Fpq, Fqr is
equal to ε^. Note also that, since p, q, r are distinct, W(pqr) implies
that none of Fprf Fpq, Fqr is equal to ε0.

LEMMA 2.1. Let the triangle function τ be continuous on A+.
Then the following are equivalent:

(i) There exist F, GeJ+, both different from ε^ and ε0, such
that τ(F, G) = F.

(ii) There exists an HeJ+, different from ε^ and ε0, such that
τ(H, H) = H, i.e., there exists a nontrivial idempotent in the semi-
group (J+

f τ).

Proof. Clearly (ii) implies (i) on letting F = G = H. Therefore
suppose (i) holds and let G2 = τ(G, G) and Gn+1 = τ(G, GΛ), for % =
2, 3, . Then ε0 > G ^ G2 ^ ^ Gn ^ , whence the weak limit
of the sequence {Gn} exists and is distinct from ε0. Denote this limit
by JET. Since τ is continuous, we have

H = lim G2n - lim r(G , Gw) =• r(iϊ, H) ,

whence ί ί is idempotent. Next, using (i) and the continuity of τ
yields

F = τ(F, G) = τ(τ(F, G), G) - r(F, (?)
%) = τ(F, lim G«) -

Since Fφε^ it follows from (2.3) that Jί Φ e*. Thus H satisfies (ii)
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and the proof is complete.

COROLLARY 2.1. // z is continuous then the semigroup (Δ+, τ)
has no nontrivial idempotents if and only if

(2.4) τ(F, G)<F

whenever F and G are both different from s^ and ε0.

On ΔΛ*, the conditions (i) and (ii) of Lemma 2.1 are not satisfied
by convolution nor by any zT when T is Archimedean [11], Thus
these semigroups have no nontrivial idempotents.

DEFINITION 2.2. A triangle function z is strictly increasing on a
subset Sf of 4+ if, for any F, Gy HeS^f z(F, G) > z(F, H) when-
ever F Φ ε^ and G > H.

It is easily seen that if the cancellation law holds in (J+, z) then
z is strictly increasing on A+; and that if z is strictly increasing on
J+ then (Λ+, z) has no nontrival idempotents.

THEOREM 2.1. Let (S, ^ 7 z) be a PM space. Then the Wald-
betweenness relation:

( i ) Always satisfies the betweenness properties (Bl) and (B3a).
(ii) Satisfies (B2) whenever z is continuous and has no non-

trivial idempotents.
(iii) Satisfies (B2) and (B3b) whenever z is strictly increasing

on Ran J^7 the range of Jf.
(iv) Satisfies (B4), ivίth respect to the e, X-topology on S, when-

ever z is continuous.

Proof. ( i ) The property (Bl) is trivial. Now suppose W(pqr)
and W(prs). Then Fpr = z(F9q, Fqr), Fps = z(Fpr, Frs) and, in view
of the triangle inequality, Fqs ^ z(Fqr, Frs) and Fps ^ z(Fpg, Fqs). Thus

(2.5) Fps = z{z{Fpq, F9r), Frs) - z(Fpq9 z(Fqr, Fr.))

£ z(Fpqf Fqs) £ Fps ,

whence W(pqs).
(ii) Suppose W(pqr). Then, by the remarks after Definition 2.1,

none of Fpqt Fqr, Fpr is equal to either ε0 or ε^. Thus, using Corol-
lary 2.1,

z(Fqrf Frp) - z(Fqr} z(Fpqf Fqr))

(2.6) = z(Fpq, z(Fqr, Fqr)) ^ z(Fpqf z{Fqr, ε0))

— τ{F'v^ Fqr) < Fpq ,
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whence W(qrp) does not hold. Similarly W(rpq) also does not hold.
(iii) To prove (B2), we have only to note that the display (2.6)

remains valid.
Now suppose W(pqr) and W(prs). If Fqs > τ(Fqr, Frs) then the

first inequality in (2.5) would be strict, which cannot be. Thus also
W(qrs), whence (B3b) holds.

(iv) Suppose that {qn} is a sequence in B(p, r) U {p, r) such that
Q* -» Qo 6 S in the s, λ-topology. If q0 — p or q0 = r, we are done.
Otherwise the points p, q0, r are distinct and we may also assume
without loss of generality that all the triples (p, qn, r) consist of
distinct points, so that W{pqnr) for all n. Then, using the fact that

Fpr ^ ?(Fp(lQ, Fqor) ^ τ(τ(FPQn, FQnQ(), τ(FgQ(!n, FQnT))

= τ(τ(F99n, FqJ, τ(Fw FqoJ)

— τ(F τ(F F )) W > F

since τ is continuous. Thus Wipq^r), whence qQeB(p,r), and the
proof is complete.

Note. The proofs of (i) and (iii) are generalizations of Wald's
arguments [25], and the proof of (iv) is a generalization of the
argument used by F. Rhodes in [16].

Theorem 2.1 applies in the following special cases:
(i ) τ — convolution. In this case Wald [25] has shown that τ

is strictly increasing on the subset 3$Λ~ of J+ given by

(2.7) £^+ = {Fe A+ \ \\mF{x) = 1} ,

and Wald's argument extends to A+. Equivalently, this follows from
the validity of the cancellation law in the semigroup (J+, *).

(ii) τ = rMin and Ran j^~~c £^'+. In this case, as was shown in
[9], the cancellation law holds in the semigroup ( ^ + , rM l n).

For example, if (,5fJ r ) is the simple space generated by the
metric space (S, d) and the distribution function Ge ^ + , so that for
any distinct p, q e S,

(2.8) Fpq(x) = G(x/d(p, q)) ,

then (S, J^) is a Menger space under rMin [18]. Moreover, it is easy
to show that in this case Wald-betweenness and ώ-metric betweenness
are equivalent.

(iii) τ = τT where T is a strict t-novm and Ran j^~£ Δ% (see
Definition 3.2). In this case the cancellation law holds in (J£, ττ)
[10].
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The following examples show that the relation W(pqr) may fail
to satisfy either (B2) or (B3b) when the corresponding hypotheses
of Theorem 2.1 are not satisfied.

EXAMPLE 2.1. Let τ be a triangle function for which there
exists a nontrivial HeJ+ such that τ(H, H) = H. Let (S, J H be
the equilateral PM space in which Fpq = i ϊ for any pair of distinct
points p and q. Then "FF(pgτ*) holds for all triples of distinct points
in S and thus (B2) fails.

EXAMPLE 2.2. In [9] it was shown that the cancellation law fails
in the semigroup (J+, τP r o d). The counterexample which established
this fact will serve us here as well. Let S = {p, q, r, s} and first
define J^ via:

Fpq(x) =

0 , x ^ 0 ,

x , 0 ^ a; ^ 1 ,

1 , l ^ a ;

Frs(x) =

Ό , x ^ 0 ,

1/2 , 0 < x ^ 1.45 ,

.1 , 1.45 < x

and Fpr — Γprθd(i^pg, Fqr), Fps — TProd(Fpr, Fr8), Fqs = τPrQύ(Fqrt Frs). Now,

by (i) of Theorem 2.1, it follows that

(2.9) •F ps qt •*- qs) 9

whence we have W(pqr), W(prs), W(qrs), and W(pqs). Using the
above, it is easily verified that (S, ̂ 7 rProd) is a PM space in which
Wald-betweenness satisfies (B1)-(B4). However, as shown in [9], we
can alter Fqs slightly and still maintain equality in (2.9). In fact,
if G e A+ is given by

G(x) =

then G > Fqs, b u t τProd(Fpg, G) - τPxoΛ(Fpg, Fqs). Thus, if we let Fq\ = G

and let the remaining distance distribution functions be defined as
before then we obtain a space (S, J^') which is still a PM space
under τP r o d. Furthermore in this new space W(pqr), W(prs), and
W(pqs) hold but, by construction, W(qrs), and hence (B3b), fails.

o ,
1/2,

. 5 5 ,

X

1

2.

2.

^ 1 >

< x^

4 < a; ϊ

45 < a;

2.4

S2

»

.45,
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Using some of the results of [9], similar counterexamples can be
constructed for any triangle function ττ, where T is a continuous
ί-norm.

We conclude this section with an interesting particular instance
of Wald betweenness.

Let (S, ̂ ) be a pseudo-metrically generated PM space, that is
to say, let S be a given set, let (D, ̂ , μ) be a probability space
whose elements are pseudo-metrics on S, and let ^~ be defined via

(2.10) Fpq(x) = μ{d 6 D \ d(p, q) < x) .

Then (S, J?~) is a Menger space under τTm [22]. Furthermore, Tm

is the strongest ί-norm for the class of pseudo-metrically generated
spaces [4]. (Note: This does not mean that Tm is the strongest t-
norm for all such spaces. For example, simple spaces, which are
Menger spaces under Min, are pseudo-metrically generated. In general,
for Wald-betweenness to be a meaningful relation in a specific Menger
space, it must be with respect to the strongest ί-norm for that space.)

As regards Wald-betweenness with respect to τTm, we have the
following:

THEOREM 2.2. // (S, ̂ ) is a pseudo-metrically generated PM
space and p, q, r are distinct points of S, then q is Wald-between
p and r, i.e., W(pqr) holds with respect to τTm, if and only if q is
between p and r for almost all pseudo-metrics d in the generating
collection D and either d(p, q) or d{q, r) is constant for almost all
d in D.

Proof. For any p, g e S , the mapping (pq): D —> R+ defined by
(pq)(d) = d(p, q) is a nonnegative random variable whose distribution
function is the function Fpq given by (2.10). Note that FPq e £έ?+,
where &+ is given by (2.7). Furthermore, for any p, q, reS the
joint distribution function of (pq) and (qr) exists and is given by

Fpq,qr(u, v) = μ{d I d(p, q) < u, d(q, r) < v) .

Let C be the connecting copula of (pq) and (qr) [20], so that

FPg,qr(uf v) - C(Fpq(u), Fqr(v)) .

Then the distribution function of the random variable (pq) + (qr),
i.e., d(p, q) + d(q, r), is given by

(2.11) Fφq+qr - σc(Fpq Fqr) ,

where σc is the binary operation on Δ+ defined via

σc(Fpqi Fqr)(x) = \ \ dC(Fpq(u)f Fqr(v)).
J Ju-τ-v<x
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Since each of the pseudo-metrics d e D satisfies the ordinary triangle
inequality, we have

(2.12) Fpq+qr(t) = μ{d I d(p, q) + d(q, r) < t)

^ μ{d I d(p, r ) < ί} = Fpr(t) .

So much holds in general. To proceed with the proof, suppose first
that W(pqr), i.e., that Fpr = τTm(Fpq, Fqr). Then (2.11) and (2.12) yield

σc(Fpq, Fqr) ^ τΐm(Fpq, Fqr) .

Now it is known that τTm(F, G) ̂ σc(F, G) for any F, GeJ+ [17].
Hence

(2.13) σc(Fpqt Fqr) = τTm(Fpq, Fqr) .

But Fpqy Fqr belong to the subspace 3fv of J + ; and in this case it
can be shown1 that (2.13) holds if and only if, for some a, b > 0,
either Fpq = εα or Fqr = εbf where εa(x) = εo(x - α), εb(x) = εo(x — 6).
Thus for almost all d e D, either d(p, q) = a or d(q, r) — b. Suppose
d(p, q) = a. Then

Fvr{%) - τ>m(εα, Fqr){x) - F,r(α; - a) ,

which, combined with the fact that d(p, r) ^ d(p, q) + d(q, r), yields
d(p, r) = a + ώ(g, r) for almost all d e Zλ Similarly, if d(q, r) — b
then d(p, r) = d(p, q) + b for almost all d e D. This proves the first
half of the theorem.

In the other direction, suppose that d(p, r) = d(p, q) + d(q, r) and
d(p, q) = a > 0, for almost all d e Zλ Then F P 9 = εα and

Fpr(x) = Fqr(x - α) = τ Γ m ( ^ g , 2

whence PΓ(^gr); and similarly if d(q, r) — b > 0.

COROLLARY 2.2. In a pseudo-metrically generated PM space
Wald-betweenness, with respect to τ>m, satisfies all the properties of
metric betweenness.

Proof. Since τTm is continuous and has no nontrivial idempotents,
only (B3b) needs verification. But this is immediate.

To illustrate Theorem 2.2, let L be the set of all Lebesgue
measurable functions on [0,1]. For any t e [0,1] and any /, g eL,
let dt be the pseudo-metric on L defined by

(2.14) dt(f,g)

1 The proof, which is rather lengthy, is given in [12; Theorem 7 and Corollary].
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Let D = {dt 1t e [0, 1]}, let μ be the measure on D induced by Lebesgue
measure λ on [0, 1] and let J^ be defined via

( 2 . 1 5 ) F f g ( x ) = μ{dt I dt(f, g)<x} = X{t \ \f(t) - g{t) \ < x ) .

Then (L, J^) is a pseudo-metrically generated space—and it is easy
to show that Tm is the strongest ί-norm under which it is a Menger
space. Furthermore, for any distinct /, g, h in L, g is Wald-between
/ and h if and only if the graph of g lies between the graph of /
and the graph of h almost everywhere and either | f(t) — g(t) \ = a > 0
almost everywhere or | g(t) — h(t) \ = b > 0 almost everywhere. In
particular, if f(t) = h(t) on a set of positive measure then there is
no g such that W(fgh). It follows that in L Wald-betweenness is
considerably stronger than betweenness with respect to either the
L^ (ess sup) metric or the L1 metric (LL betweenness is simply point-
wise almost-everywhere betweenness). However, for l < p < c o ,
Wald-betweenness is not comparable to betweenness with respect to
the Lp metric.

The space in the above example is an i?-space [22]; and since
any l?-space is a pseudo-metrically generated space, the above dis-
cussion generalizes at once to yield:

COROLLARY 2.3. Let (S, J^) be an E-space, of mappings from

the probability space (Ω,,9/,P) into the metric space (M, d). Let

p, q, r be distinct elements of S. Then W(pqr) if and only if q{t)

is between pit) and r{t) in (M, d) for almost all teΩ and either

d(p(t), q(t)) = a > 0 for almost all teΩ or d(q(t), r(ί)) = b > 0 for

almost all t e Ω.

3. Envelope-betweenness* It is desirable to have a between-
ness relation which satisfies (B1)-(B4) even when the triangle function
τ is not strictly increasing. When τ is of the form ττ, for some
Archimedean ί-norm T, such a relation exists. In order to define and
study it, we need some of the elements of the theory of the con-
jugate transform for τv-semigroups.2 This is the analog of the
Laplace transform for the convolution semigroup (z/+, *).

Throughout the rest of this paper, unless explicitly state other-
wise, T will denote an Archimedean ί-norm, h a fixed multiplicative
generator of T, and Λ[~1] the pseudo-inverse of h.

2 The conjugate transform was first defined by W. Fenchel [5] and later, independ-
ently, by R. Bellman and W. Karush [1, 2] who also developed many of its properties.
Their results apply directly to the semigroup (J+, rP r o d). The development of the theory
of this transform, its inverse transform, limit theorems, etc., for the semigroups (i+, ττ),
when T is an arbitrary Archimedean έ-norm, is the central topic of [10]. The details
are given in [13], [14], and [15].
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DEFINITION 3.1. The T-conjugate transform for the semigroup
(Δ+

9 ττ) is the mapping Cτ defined for any FeΔ+ via:

(3.1) CτF(z) = sup e~xzhF(x) , for all z ^ 0 ,

where hF e A+ is given by

f 0 , x < 0 ,U
T-conjugate transforms are completely characterized by the

following:

THEOREM 3.1. Let Aτ = {CTF\ FeΔ+}. Then

(3.3) *$/τ = {φ: [0, oo) > [h(0)f 1] ] φ is nonincreasing, positive,

continuous and log-convex} U {0T} ,

where Θτ(z) = fc(0) /or αM ^ ^ 0.

DEFINITION 3.2. ( i ) C? is the mapping defined for any
via

(3.4) Cj0(aO = ^c~1](inf exzφ(z)) , for all a; ,

and where, in addition, C*Φ is normalized so as to be left-continuous.
(ii) FeJ+ is T-log-concave if log (hF) is concave on (6^, oo),

where

(3.5) bF =- sup {x I ΛjP(a5) = 0} .

Furthermore,

(3.6) Δi = {Fe J + I F is T-log-concave} .

(iii) For any FeA+, ΈF is the function with the following pro-

perties: hF(x) = 0 for x ^ 6 ;̂ on (&Γ> oo) the graph of log (hF) is the

concave hull of the graph of log (hF).
(iv) For any FeΔ+

9 the T-log-concave envelope of F is the
function Fτ in Δ% given by

(3.7) Fτ = U-ι\hF) .

REMARK. The conjugate transform CΓ defined by (3.1) clearly
depends on the choice of multiplicative generator h. However, any
other multiplicative generator of T is of the form hλ, for some λ > 0.
From this it follows that T-log-coneavity is independent of the par-
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ticular choice of multiplicative generator, whence Λ% is completely
determined by T alone. Similarly, T-log-concave envelopes depend
only on T. Furthermore, if G'τ is the conjugate transform determined
by hλ, for some λ > 0, then for any Fe/!+,

C'τF(z) = [CτF(z/X)Y ,

whence log C'τF(z) = λ log CτF(z/X) so that the transforms determined
by distinct multiplicative generators of the same t-norm are essentially
equivalent.

The elements of the theory of the T-conjugate transform which
will be needed in the sequel are listed in:

THEOREM 3.2. For any F, G, HeJ+ and any φ, θeAτ, we have:
(C 1) Cττr(F, G)(z) = max [h(0), CτF(z) CτG(z)], for all z ^ 0.

Thus, if T is strict, Cτττ(F, G) = CTF-CTG.
(C 2) Cτ: Ai -> S^τ is one-one, onto, with inverse C*.
(C 3) If F ^ G then CTF ^ CTG.
(C 4) If Φ^θ then Cΐφ ^ Cϊθ.
(G 5) Fτ ^ F.
(C 6) If F^G then Fτ ^ Gτ.
(C 7) CTFT = CTF.
(C 8) CΐCτF = Fτ.
(C 9) // Fe AT then Fτ = F.
(CIO) ττ{Fτ, Gτ) is T-log-concave if and only if Cτ(ττ(F, G)) ==

CTF CTG.
(Cll) Cί(CτF-CτG) - τ Γ (F Γ , GΓ).
(C12) (r r (F, G))Γ ^ r r(jP r, GΓ), wiίfe equality if T is strict.
(C13) If ττ(Fτ, Gτ) — ττ(FΓ, Hτ) Φ ε^ and is T-log-concave then

Gτ = Hτ.
(C14) If T is strict then (At, ττ) is a subsemigroup in which

the cancellation law holds.
(C15) If, for some a > 0, G(x) = F(ax), for all x, then CτG(z)

= CτF(zja), for all z^O.

(C16) If Fn^F then CτFn(z) -> CτF(z), for all z>0.

(C17) For any z > 0, CτFn(z) -> 1 if and only if Fn ^ e0.
(C18) For any z > 0, CτF(z) = 1 if and only if F = ε0.
(C19) Fτ = ε0 i / αwd o î̂ / if F = ε0.
(C20) F r = εM i

Perusal of the above shows that the essential properties of T-
conjugate transforms, as well as their usefullness as analytical tools,
are independent of the particular choice of multiplicative generator
in (3.1).
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DEFINITION 3.3. Let (S, ̂ 7 ττ) be a PM space where T is an
Archimedean ί-norm. Let p, q, r be distinct points of S. Then q is
envelope-between p and r—and we write E(pqr)—if FPr Φ e^ and

(3.8) (Fpr)τ - ττ((Fpχ (Fqr)τ) ,

where, for any FeΛ+, Fτ is the T-log-eoneave-envelope of F.

Again, E{pqr) implies that Fpr, Fpqy and Fgr are all different from
both εM and ε0.

THEOREM 3.3. Let (S, J^ ττ) be a PM space, where T is an
Archimedean t-norm. Then the betweenness relation E(pqr) satisfies
(B1MB4).

Proof. To simplify the notation, we will denote the Γ-log-concave
envelope Fτ of any FeJ+ by F and τ>, Cr by τ and C, respectively.

Again (Bl) is trivial. To prove (B2) we merely replace the dis-
tribution functions in (2.6) by their T-log-concave envelopes. As
noted previously, Corollary 2.1 applies to (J+, ττ) when T is Archi-
medean and (C19), (C20) imply that none of Fpq, Fqrf Fpr is equal to
either ε0 or ε^.

To establish (B3) suppose E(pqr) and E(prs) hold, so that

Fpr = τ(Fpq, Fpr) and Fps = τ(Fpri Fn) .

Note that, by (III), (C6) and (G12), we have

(3.9) Fq. ^ τ(Fqr, Frs) ^ τ(Fqr, Frs)

and, similarly, Fps ^ τ(Fpqy Fq8). Hence, replacing the distribution
functions in (2.5) by their Γ-log-concave envelopes yields E(pqs).
Next, using this fact, (C7) and (CIO), we have

CFpq CFqs - Cτ(F9q9 Fqs) - CFps

(3.10) - Cτ(F9r, Frs) = CFpr-CFrs

= Cτ{Fpq, Fqr) CFrs = CFpg CFgr CFr8 .

Since Fpq Φ £M, it follows from (3.1) that CFpq(z) > 0 for all z ^ 0.
Thus, cancelling CFpq in (3.10) yields:

whence, by (C8) and (Cll), we have

Fqs = C*CFq. = C*(CFqr-CFrs) = τ(Fqrf Frs)

and E(qrs).
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The proof of (B4) follows as in Theorem 2.1 (iv), using the facts
that:

( i ) ττ is continuous with respect to weak convergence on J+;
(ii) taking T-log-concave envelopes is a continuous operation,

i.e., if Fm_n -> ε0 then Fmn -» ε0 = εo; and
(iii) Fpr ^ τ(Fpq, Fqr) for any p,q, reS. This completes the

proof.

COROLLARY 3.1. Let J^r be the mapping defined on S x S by
^τ(p> Q) = (^Γ(P> Q))T Then (S, _^>, ττ) is also a PM space. Further-
more, in (S, ̂ τ , ττ) Wald-betweenness and envelope-betweenness coin-
cide.

Note that Wald-betweenness and envelope-betweenness coincide
in any PM space ( S , ^ τ r ) for which R a n ^ g J ^ .

For strict ί-norms, Wald-betweenness is stronger than envelope-
betweenness, for we have:

THEOREM 3.4. Let (S, J^~l τr) be a PM spacey where T is a strict
t-norm. Then, for any distinct p, qt r in S, W(pqr) implies E(pqr).

Proof. Suppose W(pqr) so that Fpr = ττ(Fpq, Fqr). Then, using

(C12), we have

(Fpr)τ - (ττ(Fpq, Fqr))τ = ττ((Fpq)τ, (Fqr)τ) .

In PM spaces (£, ̂  ττ), where T is Archimedean but not strict,
the relations W(pqr) and E(pqr) are generally not comparable.

4. Conjugate-metric-betweenness* In [6] J. F. C. Kingman
showed that in a Wald space the function d defined on S x S by

(4.1) d(p, q)= - lo

is a metric on S; that d-metric beteennesss and Wald-betweenness
are equivalent; and that the cί-metric topology and the ε, λ-topology
are also equivalent.

The right-hand side of (4.1) is just the negative of the logarithm
of the Laplace transform of Fpq evaluated at 1; and since the T-
conjugate transform is related to the semigroup (zf+, ττ) just as the
Laplace transform is related to (z/+, *), we are led to the following:

THEOREM 4.1. Let (S, J^ ττ) be a PM space, with T Archimedean,
and such that Fpq Φ ε^ for any p, qeS. Let Cτ be the T-conjugate
transform on (A+, ττ), as given by (3.1); and for any z > 0 let dz be
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the mapping defined on S x S by

(4.2) d,(p, q) = -log CτFpq(z) .

Then dz is a metric on S. Furthermore, the dz-metrίc topology is
equivalent to the ε, X-topology.

Proof.3 By (3.3), clearly 0 ̂  d£p, q) < oo for any p, qeS. If
da(p, q) = 0 then CFPq(z) = 1, whence by (G18) Fpq = ε0 and p = q.
Conversely, if p — q then dz(p, q) — 0.

Since Fpq = i*\p we have dz(p, .g) = d£q, p).
For any p,q, reS, using (III), (C3), and (Cl), we have

CFpr{z) ^ C(τ(Fpq, Fqr))(z) S CFpq(z)-CFqr(z) ,

whence, using (4.2), dz(p, r) < dz(p, q) + d£q, r). Thus dz is a metric
on S.

Next let {pn} be a sequence in S and let ^ e S . Then, by (4.2)
and (C17), the following are equivalent:

( i ) dz(pn, p) — 0;
(ii) C F V ( ^ ) - > 1 ;

(iii) FPnP -> εo;
(iv) pn —> p i n the ε, λ-topology.

This completes the proof.

For any z > 0 the function ώ2 defined by (4.2) will be called a
conjugate-metric on S. Clearly, any two conjugate metrics induce
the same topology on S. But more is true:

T H E O R E M 4 . 2 . Under the h y p o t h e s e s of T h e o r e m 4 . 1 , i f z ^ w
> 0 t h e n , for a n y p , q e S,

(4.3) dw(p, q) £ dz(p, q ) ^ ^ dw(p, q) .
w

Proof. The first inequality in (4.3) follows immediately from the
fact that CFpq is nonincreasing. Next, since the function f(y) =
— logCFpq(y) is concave and nonnegative on [0, oo), we have

(f(w) - f(0))/w ^ (/OO - /(0))/s .

Thus zf(w) ̂  it)/(ί?) + (z — w)f(0) ^ wf(z), which yields the second
inequality in (4.3) and completes the proof.

It follows from (4.3) that for any z, w > 0, the conjugate metrics
dt, dw are equivalent.

3 As in the proof of Theorem 3.3, in the proofs given in this section we suppress
reference to the subscript T, and denote FT by F.
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DEFINITION 4.1. Suppose the hypotheses of Theorem 4.1 are
satisfied and let p, q, r be three distinct points of S. Then q is
between p and r with respect to the conjugate metric dz—and we
write Mz(pqr)— if dz(p, r) = dz(pf q) •+ dz(q, r).

Since Mz(pqr) is a metric betweenness relation, it is immediate
that (B1)-(B4) are satisfied. There is also a connection between the
relations {Mz{pqr) \ z > 0} and envelope-betweenness E(pqr).

THEOREM 4.3. Let (S, J^, ττ) be aPM space, with T Archimedean.
Then, for any distinct p,q, re S, E{pqr) if and only if Mz(pqr)
for all z > 0.

Proof. Suppose E{pqr), so that Fpr = z(Fpg, Fqr). Then, by (C7)
and (CIO), we have

CFpr == CFpr = Cτ(Fpq, Fqr)

= CFpq CFgr = CFpq'GFqr ,

whence it follows from (4.2) and Definition 4.1 that Mz(pqr) for all
z > 0.

Conversely, if Mz(pqr) holds for all z > 0, then for all z > 0 we
have

(4.4) CFpr(z) = CFpq(z).CFqr(z),

and the continuity of the conjugate transform on [0, oo) yields (4.4)
at z — 0, and hence for all z ^ 0. Thus, using (C8) and (Cll), we
have

p „ c*CF — C*(CF -CF ) = z(F F )
Γ pr — W KJ± p r — KJ \\yJ- p q WX q r ) — L \± p q , ± q r ) ,

whence E(pqr).

COROLLARY 4.1. If T is strict then, for any distinct p, q, reS,
W(pqr) implies Mz(pqr) for all z > 0.

In the case of convolution the betweenness relations obtained via
(4.1) are independent of the particular point at which the Laplace
transform is evaluated. In contrast, there are virtually no connec-
tions among the conjugate metric betweenness relations {Mz(pqr)}
for different values of z. This is brought out by the following
example:

EXAMPLE 4.1. Let S = {p, q, r} and let r = τP r o d. Let φ{z) =
exp(—τ/"iΓ), for z ^ 0. Then φ is a Prod-conjugate transform. Let
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Fpq = Fqr = C*φ. To define ί7

pr we proceed as follows: Choose a fixed
w > 0 and let

-2Vw, w^z.

Thus / is linear between the points (0, 0) and (w, — 2]/w) and constant
thereafter. Note also that the points (0, 0) and (w, — 2\/uF) lie on
the graph of

- 2 τ / 7 = log (φ\z)) - log (CFpq(z)-CFqr(z)) .

In particular, f(z) *> --2τ/ΊΓ and, since / is convex on [0, oo), the
function θ{z) = exp (/(z)) is also a Prod-conjugate transform. Let
Fpr = C*ϋ. Then we have

(4:5) CFpr(z) = θ(z)^ CFpq(z)'CFqr(z) , for all z ^ 0.

Using (Cll), it follows that

Fpr - C*^ ^
pr

which, together with the obvious inequalities Fpq = τ(ε0, Fqr) ^
τCί7^, ί7,.,) and Fqr ^ r(F g p , jPpr), yields that S is a PM space under
Tprod However, by construction, equality in (4.5) holds only when
z = 0 or 2 = w. Thus Mw(pqr) holds while Mz(pqr) fails for any
other « > 0.

The above example can obviously be modified so that Mz(pqr)
holds for any z in the finite set of positive numbers {w19 , wn} and
fails otherwise. Similarly, it can be carried over from Prod to any
Archimedean ί-norm.

We conclude this discussion with a simple illustrative example.
Let (S, J?~) be the a-simple space generated by the metric space
(S, d) and the distribution function G, where G e &+ is continuous
and strictly increasing on [0, oo). Thus, for distinct p, qeS,

(4.6) Fpq{x) = G{xld\p,q)).

If a ^ 1 then da is also a metric on S and (S, ̂ " ) is the simple space
generated by the metric space (S, dα) and G; in this case remark (ii)
after Theorem 2.1 applies directly. Suppose therefore that a > 1.
Then, as shown in [19], (S, ̂ " ) is a Menger space under ττ, where
T is strict and multiplicatively generated by

(4.7) A(») = exp[-(G-1(a;))ι/ίl-"β)],

and G"1 is the inverse of the restriction of G to [0, oo). Thus, for

distinct p, qeS,
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ίO , X ^ 0 ,

(4.8) hFpq{x) = \ e x v [ ( x m p q))r,-a)] x

Evaluating the right-hand side of (3.1) yields that, for z ^ 0,

CτFpq(z) = exp [-a(a - ly^Wdfa q)] ,

whence, substituting in (4.2), we find that

(4.9) dt{p9 q) = a(a - iyι-a)'azι/ad(p9 q) .

Thus, for each z > 0, dz is a constant multiple of the metric d and
consequently, for any distinct points p, q, reS, we have Mz(pqr) if
and only if q is between p and r with respect to the metric d. It
follows that in this case the betweenness relation Mz(pqr) is in-
dependent of z. Furthermore, since it is clear from (4.8) that each
Fpq is T-log-concave, we have, finally, that in an ̂ -simple space with
a > 1, the following are equivalent:

( i ) W(pqr);
(ii) E(pqr); and
(iii) q is between p and r with respect to the metric d.

5. Menger-betweenness* Let T be a ί-norm and let (S, ̂ ~ , rΓ)
be a PM space. In [8] Menger postulated that q lies between p and
r if these three points are distinct and if, for all x9 y,

(5.1) 1 - Fpr(x + y)^ Γ(l - Fpq{x\ 1 - Fqr(y))

The probabilistic interpretation of (5.1) is that, for all x9 y,

Prob [dist (p, r) ̂  α + i/]

^ Γ(Prob [dist (p9 q) ̂  x], Prob [dist(?f r) ̂  y}) .

The condition (5.1) may be restated in a more perspicacious
manner. First of all, let T* be the t-conorm of T, i.e., the function
defined for all α, b in [0, 1] by

(5.3) Γ*(α, 6) = 1 - Γ(l - α, 1 - 6) .

Then (5.1) reads:

(5.4) F,r(α? + ») ̂  ^ ( ^ ( ^ .

Next, if Γ* is continuous then the binary operation τ>* defined on A+

via

(5.5) τΓ (F, G)(») - inf

is a continuous triangle function [17]. Since (5.4) holds for all x, y,
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it follows that q is between p and r in Menger's sense—and we write
M(pqr)—if these three points are distinct and if

(5.6) Fpr £ ττ*(Fpq, Fqr) .

This is the desired reformulation of (5.1). It states that M(pqr) if
and only if ττ*(Fpq, Fqr) is an upper bound for Fpr. Since

(5.7) ττ{F, G) £ τUF, G) ,

for any F, Ge J+ and any ί-norm T, the condition (5.6) is consistent
with the triangle inequality, which states that τT(Fpq, Fqr) is a lower
bound for Fpr.

It follows at once from (5.7) that W(pqr) implies M{pqτ), i.e.,
that Wald-betweenness implies Menger-betweenness. If T = Min then
T* = Max and a simple calculation shows that rMin = τM a x. Thus in
PM spaces under τMin, e.g., in simple spaces the relations W(pqr) and
M(pqr) coincide.

In Wald spaces the probabilistic distances between points are
generally assumed to be given by independent random variables.
Thus, for any three points p, q, r, the triangle inequality states that,
for all x,

Fpr(x) = Prob [dist (p, r) < x]

^ P r o b [d i s t (p, q) + d i s t (q, r)< x] = (Fpq*Fqr)(x) .

Similarly, in this context the analog of (5.2) is

1 - Fpr{x) = Prob [dist (p, r) ^ x]

^ Prob [dist (p, q) + dist (q, r) ^ x] = 1 -(Fpq*Fqr)(x) ,

for all x9 i.e.,
(5.8) Fpr £ Fpq*Fqr ,

whence, in view of the triangle inequality, Fpr = Fpq*Fqr. Thus, in
a Wald space, the relations W(pqr) and M(pqr) also coincide.

Generally, however, equality in (5.7) holds only under very re-
strictive circumstances. It fails, for example, for any £-norm T for
which T(a, b) < Min (α, b) for all α, b e (0, 1), and thus for any
Archimedean ί-norm. When this is the case, Menger's betweenness
restricts Fpr to a certain interval in A+. To gain some insight into
this situation, we consider several examples.

Let (S, ̂ ~) be a pseudo-metrically generated PM space (see § 2).
Since Tm is the strongest ί-norm for this class of spaces and since
T*(α, b) = Min (α + 6, 1), (5.6) becomes

(5.9) Fpr(x) £ inf Min (Fpq{u) + Fqr{v\ 1)
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and we have the following:

THEOREM 5.1. // (S, J^) is pseudo-metrically generated and if
p, q, reS are such that q is between p and r for almost all metrics
deD, then q is Menger-between p and r, i.e., M(pqr) holds.

Proof. Let x > 0 be given and choose u, v ;> 0 such that u + v = x.
If d(p, r) = d(p, q) + d(q, r) and d{p, r) < x then either d(p, q) < u or
d(q, r) < v. Consequently,

Fpr(x) = μ{d I d(p, r)< x) ^ μ{d \ d(p, q) < u) + μ{<Z | d(q, r) < v}

and the theorem follows.

The converse is false. To see this, consider again the space
(L, ^ " ) , where L is the set of Lebesgue measurable functions on
[0,1] and ^~ is given by (2.15). Let fix) = x and ft (a?) = 0, for
xe[Q, 1]; and let g(x) be given by

1/8 , 0 ^ x ^ 1/8 ,

a? , 1/8 ^ α ̂  1/2 ,

0 , 1/2 < a? ̂  1 .

Since #(#) > f(x) + ft(a?) for 0 ^ a? < 1/8, g{x) is not between f{x) and
Λ(#) for almost all x e [0,1]. Nevertheless, a straightforward com-
putation shows that M(fgh) holds.

Comparing the above with the known properties of betweenness
with respect to the usual Lp metrics on L, we find that here Menger-
betweenness is strictly weaker than betweenness in any L^-metric
for 1 ^ p < co and not comparable to betweenness in the L^ metric;
and comparing with the results of § 2 shows that Menger-betweenness
is a much weaker relation than Wald-betweenness.

As a final example, consider the α-simple space generated by
(S, d) and the strict distribution function G. In this case, using (4.6)
and (4.7), some calculation yields that M{pqr) is equivalent to the
inequality

(5.10) da(p, q)H(u) + da(q, r)H(v) ^ da(p, r)H(u + v), for all u, v ^ 0 ,

where H is the strictly increasing function from R+ to R+ given by

(5.11) H(x) = G-'il - Gil/x"-1)] .

If we choose a = 2 and let G be a strict distribution satisfying
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1 - G(x) = GQL/X) (for example, G(x) = x/2 for 0 ^ 0 ^ 1 and <?(&) =
1 - l/2a? for x^l) then #(&) = x and (5.10) reduces to

(5.12) d\p, q)n + <Z2(tf, r)v <: eZ2(p, r)(w + v) , for all it, v ^ 0 .

The inequality (5.12) holds if and only if d(p9 r) :> Max (d(p, q), d(q} r)).
In particular, when (S, d) is the Euclidean plane, the set of all points
q between two given points p and r is the closed convex region
bounded by two circular arcs of radius d(p, r), one with center at
p, the other with center at r. Thus, if p, q, r are vertices of an
equilateral triangle then M(pqr), M(rpq) and M(qrp) all hold.

Note that since H(0) = 0, setting, respectively, u = 0 and v — 0
in (5.10) yields that d(pf r) ^ Max (d(p9 q)9 d(q, r)) is a necessary con-
dition for M(pqr). In our particular example—and indeed, whenever
H(u) + H(v) <; H(u + v)—it is also sufficient.

One might conjecture that, in general, {q \ M(pqr)} is a "convex"
set having p and r on its boundary. In any event, Menger-between-
ness is a relation which merits further study.
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