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ON ENTIRE FUNCTIONS OF INFINITE ORDER
WITH RADIALLY DISTRIBUTED ZEROS

JOSEPH MILES

Suppose / is an entire function of infinite order with
zeros restricted to a finite number of rays through the
origin. It is shown for p > 1 that N(r, 0) = o{m+

p(r9f)) where
wj(r,/) is the Lp norm of log+ \f(rei$)\ and in addition that
N(r, 0) — o(T(r,/)) as r tends to infinity omitting values in
an exceptional set E of zero logarithmic density. The set
E is shown by example in general to be nonempty, even for
functions with zeros on a single ray and arbitrarily slow
infinite rate of growth. These results settle certain ques-
tions arising from previous work of Edrei, Fuchs, and
Hellerstein and of Hellerstein and Shea.

Introduction* In this paper we prove two theorems involving
the rate of growth of an entire function /, the angular distribution
of its zeros, and the Nevanlinna deficiency cZ(O, /) of zero, defined to
be

d(0, /) = 1 - lim sup N(r, 0)/T(r, /) ,
r-*oo

where N(r, 0) is the usual integrated counting function of the zeros
of / and Γ(r, /) is the Nevanlinna characteristic. Conditions on the
rate of growth of / and on the arguments of its zeros sufficient to
imply d(0, /) > 0 have been known for some time [1, Theorem 2].
Of particular interest here is the following result of Edrei, Fuchs,
and Hellerstein [3, Theorem 2].

THEOREM A. Suppose f is an entire function with zeros
restricted to the K distinct rays arg z = ah 1 ^ j <̂  K. There exists
K' = K'(pcίf •••, aκ) and an absolute constant i e ( 0 , 1 ) such that if
f has finite order λ > Kr then d(Q, f) > Bλ for some Bλ> A.

Later Hellerstein and Shea [7] showed that in Theorem A the
quantity Bx can be chosen so that Bλ —> 1 as λ —> oo, and in addition
obtained a sharp asymptotic bound for Bλ in the case that the zeros
of / are real. (For other related results, see [4], [5, Chapter 6],
[8], and [11].)

In view of Theorem A and the above result of Hellerstein and
Shea, it is natural to ask [6, Problem 1.12] if d(Q, f) > 0 or even
d(0f /) — 1 for entire / of infinite order with zeros on only a finite
number of rays through the origin. We answer this question in the
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negative and explore certain related questions by proving the follow-
ing two theorems. (We recall that a nondecreasing function
<p: (— co, co) -»[0, oo) is strongly convex if it is convex and φ(x)/x -> oo
a s x —> oo.)

THEOREM 1. Suppose f is entire of infinite order with zeros
restricted to a finite number of rays through the origin. Then

,7;f
N(r, 0)

for every strongly convex function φ and in particular for p > 1

(2) ^ ^ Lr— m+(r, f)

where

r, /) = (J

Furthermore there exists a set Ed[l, oo) having logarithmic density
zero such that

In general under the above hypotheses N(r, 0)/T(r, /) does not
tend to zero as r tends to infinity without restriction, even for
functions with zeros on a single ray and arbitrarily slow infinite
rate of growth, as is shown by

THEOREM 2. Suppose κ\ (0, co) _• (0, oo) is such that tc(r) —> oo as
r —> oo. Associated with fc there exists an entire f having infinite
lower order and positive zeros which satisfies d(0, /) = 0 and

( 4 )
logr

for sufficiently large r.

Our approach to both Theorem 1 and Theorem 2 is to study /
via the Fourier series of log \f(reίθ)\. We prove (3) by in fact
showing that as r tends to infinity through values not in E, the
ratio of N(r, 0) to the maximum term of the Fourier series of
log \f(reίθ)\ tends to zero. In our proof of Theorem 2 we achieve
d(0, /) = 0 by constructing / so that, for an appropriate sequence
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rn tending to ©o, the Fourier series of log \f(rne
iθ)\ is approximated,

in a suitable sense, by the Fourier series of the product of N(rn, 0)
and a certain Poisson kernel. Because of the intricate nature of
this construction, we provide an overview of the proof of Theorem
2 at the beginning of §3.

We assume familiarity with the notation of Nevanlinna theory.
Throughout the remainder of the paper we abbreviate n(rf 0) by
n(r) and N(r, 0) by N(r). It is not intended that the constant m0

have the same value with each occurrence.

1* Preliminaries* We recall for entire / the formulas, ap-
parently first noticed by F. Nevanlinna [10], for the Fourier coef-
ficients cJr, f) of log \f(rei9)\. If /(0) = 1 and log f(z) = Σ W near
0, then for m = 1, 2, 3,

(1.1) cm(r, /) = -^- Γ
2π Jo

θdθ

2

where {zv} denotes the sequence of zeros of / repeated according to
multiplicity. Clearly

cJr, f) = C-Λr, f) , m = - 1 , - 2 , - 3 , . . ,

and co(r, f) = N(r). A proof of these identities can be found in many
places, including [9].

The following lemma is used in the proof of Theorem 1. Its
essential idea is due to Weyl [13] and it appears in a form similar
to that given below in [3, pp. 149-151]. We include its proof for
completeness.

LEMMA 1.1. Suppose au <x2, ••, aκ are distinct elements of
[0, 2τr) For real x, let x* denote the unique number in [ — π,π)
congruent to x modulo 2π. There exists an increasing sequence
I = {nq} of positive integers such that I has positive density and

(1.2) ( Λ Λ ) *

for 1 ^ j ^ K and q = 1, 2, 3,

Proof. Without loss of generality we assume no aά is zero.
Let (ύj = aj/2π for 1 <J j <; K. Let M(<^K) be the maximum number
of the ωά which are linearly independent over the integers. Re-
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numbering if necessary, we assume ωl9 ω2, •• ,α>Jί are linearly in-
dependent over the integers.

If M = K, we let B = 1. If M < K, we define B as follows.
For M < p <L K, there exists an integer σ > 0 and integers m p ί such
that

(1.3) σωp = Σ m^ω, .

Set

-βp = Σ | w p i | , M < p ^ ί c ,

and

JS = sup (α , B^+i, JŜ +2, , J5J .

By a theorem of Weyl [13, Satz 16], since ωu ω2, •• ,ω 3 f are
linearly independent over the integers, there exists a sequence / '
of positive integers uq having positive density such that for
q = 1, 2, 3,

(1.4) \uqωs - Lqj\< i

for some integers L g i . Thus in the case that M = K, the proof is
finished by (1.4) upon setting I = /' and wg = i^.

Suppose M < K. We note for all q = 1, 2, 3,

(1.5) |<w9α), - σLffi| <-£-£±-, l£j£M.
ΔJS X.Δ

If p> M, then for all q by (1.3) and (1.4)

for some Sgi with |δ 9 i | < (12.B)"1 for 1 ^ i ^ Af and g = 1, 2, 3,
For M < p <L K and all g, we set

]C

\mpj\ \Sgj\

and notice

(1.6)

that
M

< i
""12 '
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From (1.5) and (1.6), we see that / = {nq} with nq = σuq satisfies all
requirements of the lemma.

Our proof of Theorem 1 also requires

LEMMA 1.2. // {nq} is an increasing sequence of positive integers
which has positive density, then there exists a subsequence nqk = mk

such that

(1.7) ( i ) mhjmh-+l

and

(π) Σ < - .
*=i mk+1 - mk

Proof. The fact that {nq} has positive density implies nq+ί/nq —> 1.
We let

Ίq = max {np+1/np: p^q)

and note that yQ —> 1. For each q and each a > 1 it follows that
there exists an integer p ;> q such that

(1.8) a <; np/nq <Ξ ατ ? .

We let n9ί = mx be arbitrary and see from (1.8) that there exists a
subsequence nq/e = mfc such that for k = 1, 2, 3,

(1.9) ( i + A ) ^ ^ ± i ^ ( l + JL) 7 ,
V &/ mk \ k' k

establishing (1.7i). Certainly (1.9) guarantees

log mk > 3 log k - 0(1) ,

which in conjunction with (1.9) yields

1 1 = 0(l\

establishing (1.7ii).

2* Proof of Theorem 1* We begin with

LEMMA 2.1. Suppose f is entire of infinite order with zeros on
the distinct rays arg z = a5 e [0, 2π)f 1 <̂  j ^ K. If rn —> oo such that

<2 « I i I ? i n ί > 0
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then there exists ηu η%, , ηκ in [0,1] with Σί=i Vs = 1 and there
exists a subsequence of rn (still denoted by rn) such that

(2.2) lim ^ ft

/or all integers m.

Proof. Without loss of generality we suppose /(0) = 1. Let
j^i(ί) be the integrated counting function of the zeros of / on the
ray arg z = ccj. By passing to a subsequence if necessary, we may
assume

(2.3) NjirJ/NirJ > ηs 6 [0, 1]

with Σ f = i ^ = i .
We write

)Π

with

where zvi is the sequence of zeros of / on arg z = α^ repeated ac-
cording to multiplicity and arranged in order of increasing modulus.
If h{z) = Σ αwzm, then for m = 1, 2, 3,

where by (1.1)

Two integrations by parts yield

(2.4) cm(r, /) = ̂ r™ + J e - ' - i ^ W + Nό(r)
& 3—1

where

and

._iy
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We set

K

QJX) = Σ Qimir).
2 = 1

Certainly the lower order of / is infinite. This fact (first
established in [2]) can be deduced as follows. If N(r) has finite
order, then /, an entire function of infinite order, can be represented
as the product of an entire function of finite order and a zero-free
entire function, trivially implying the lower order of / is infinite.
Suppose on the other hand that N(τ) has infinite order and let I be
the sequence of integers of Lemma 1.1. By (2.4) for each fixed
me I we have as r —> °°

(2.5) Re °«W>J> > )Z-±4r-"gj!r) + r~mN(r)) + 0(1)

r * - 2

ΎϊlV 3 \ • iy\b)j+ , Qrt\

8 Jo tm+l

By Nevanlinna's First Fundamental Theorem,

(2.6) \cjχ, f)\ £ 2T(r, f)

for all m. Since N(r) has infinite order, we conclude from (2.5) and
(2.6) that / has infinite lower order.

From (2.1) we thus conclude

(2.7) lim - J £ _ = 0 , m = 1, 2, 3, - - - .
»-<» N(rn)

We next establish

(2.8) gm(rn) = o{N(rn)) , m = 1, 2, 3, • .

If (2.8) were false, there would exist a positive integer m0, β > 0,
and a subsequence of rn (still denoted by rn) such that

9mo(rn) > εN(rn)

for all n. Since gm(r)/m is an increasing function of m for each
fixed r > 0, for m > m0 and me I we have

g M > JSLg^r J > «£i^( r J , n = 1, 2, 3, . -
m0 m0

and hence by (2.5) and (2.7)
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(2.9)

Since me I may be chosen arbitrarily large, (2.6) and (2.9) contradict
(2.1), establishing (2.8).

For an arbitrary positive integer m, we now set r = τ% in (2.4),
divide by N(rn), and appeal to (2.3), (2.7), and (2.8) to deduce (2.2).
For negative indices, (2.2) is established by conjugation. Its truth
for m = 0 is obvious. This proves Lemma 2.1.

We now prove (1). If (1) were false, there would exist a strongly
convex φ and a sequence rn --> oo such that

(2.io) sup Γ^togΊ/^IW < co.

Thus (2.1) would hold for rn, and by Lemma 2.1 we may consider a
subsequence (still denoted by r j for which (2.2) holds. We seek a
contradiction.

Nevanlinna's First Fundamental Theorem and (2.1) imply that
the sequence of measures on the unit circle T defined by

(2.11) dμ. = l0f 'fff'

is bounded in total variation norm, say by L. We show that the
measures (2.11) converge weakly to the measere on T with point
mass at eia* having weight η5. Suppose g is a continuous function
on T and let P be a trigonometric polynomial. We have

+ JL Γ l2ϊMp(θίί - Σ
2ττ J-- AΓ(rJ

= a>. + y. - Σ
3 = 1

where

and, by (2.2),
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Since Σf=i Vs = : 1> these last two observations imply

|wj ^ (L + l ) | b - P|U + o(l) , (n > o

Since the trigonometric polynomials are dense in the continuous
functions on T, the asserted weak convergence is established.

Without loss of generality we suppose ηι > 0. Let δ > 0 be such
that the arc J = {e**: |0 — at\ < 3} contains no point eia* for 2 <. j <> K.
Let g: T~> [0,1] be a continuous function vanishing on Γ - / with
0(eίβfl) = 1. In view of the weak convergence of the measures dμn,
for n > no(g)

J L Γ log \f^e)\ {eίd)dΘ

Thus {log+ \f(rne
ί0)\/N(rn)} is not a uniformly integrable family and

it follows by standard arguments [12, pp. 37-38] that (2.10) cannot
hold, giving the desired contradiction.

For p > 1 the choice in (1) of φ(t) = tp if t ^ 0 and ?>(ί) = 0 if
ί < 0 establishes (2).

We now turn to the proof of (3) and again assume with no loss
in generality that /(0) = 1. In view of Lemmas 1.1 and 1.2, we
may now let I — {m,J be an increasing sequence of positive integers
satisfying (1.7i and ii) and, in addition,

(2.12)

f or 1 ^ j ^ K and fc = 1, 2, 3,
Since / has infinite lower order (note the discussion leading to

(2.5) does not use hypothesis (2.1)), we may assume N(r) has infinite
order. For m = 1, 2, 3, we define a nondecreasing unbounded
sequence sm by

sm - inf {t έ e: log n(t)βog t ^ m/2} .

Thus

(2.13) nit) < tmί2 , e ^ t < sm .

Again letting z^ be the zeros of / on arg z = a3- repeated according
to multiplicity, we represent / as
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= eH(*> Π G,(Z)

where H(z) = Σ B^z™ is entire and

(2.14) G,-(z) = Π # ( — , ?„)

where qu = m if sw <£ |syJ | < sm+1 and qu = 0 if |2v i | < slβ We show
the product (2.14) converges to an entire function by establishing

(2.15)

ι«u
<

for every r > 0. Letting nό(t) be the number of zeros of G3 in
z\ < ί, we have from (2.13) for m = 1, 2, 3,

_L-V =\ ( T )

( T O

^(ΐ~ + 2fe) ^
Thus if smo > 4ra, then

Σ

establishing (2.15).
Certainly for positive m

(2.17) cm(r, f) =

where by (1.1)

Σ
3 —ι

Since qv < m is equivalent to |j5vί | < sw, integration by parts yields

β.(r, G,) = β - ^
2ms: 2s:

2 J o \ r ί 2 J..\ί t

Since iSΓ(r) ^ Ή.(r) log r + 0(1), for large m we have iSΓ(sM) <
(2.13). Combining (2.13), (2.17), and (2.19) we obtain

by



(2.20)

ON ENTIRE FUNCTIONS OF INFINITE ORDER

'% /) = Ίmrm + βJr)N(r) H
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5 = 1 J s m \ £ / E

*(*) dt

for a sequence of constants 7m with | 7 j 1 / w —> 0 and a function βm{r)
with |/Sm(r)| < 1 for all r > 0 and all m = 1, 2, 3,

For τ m ^ 0 we set 7m = |7m | eipm, 0 <: ρm < 2π9 and let V be the
set of me I with γm = 0 or

(2.21) < — f or q = 1 or g = 3 .
4

For m e F it follows from (2.12), (2.20), (2.21), and elementary
trigonometry that for r > 0

\cjχ, f) - /

(2.22)

7.r- + 2 .

12/2

l/"3"mfsin—)

IJ.«\t

For me V, we set δm = sTO.
For me I — V we set

ίθ N(t) = 0

L β-'^i+'-W^ί) N(t) > 0

and note that for N(t) > 0 the continuous function φm satisfies

(2.23) π

Thus from (2.20) for r > 0

Re (e-*-(c(r, /) - βmiχ)N{r)))

(2.24) _ k , ^ , «

Since JV(ί) has infinite order and |7M | 1 / m-^0, it follows from (2.23)
that for me I — V there exists a sequence bm -+ <χ> such that
N(bm) > 0 and

(2.25)



142 JOSEPH MILES

for m > m0. Thus by (2.23), (2.24), and (2.25) for m > m0 and r > 0

\cJr, f) - βJχ)N{r)\

12

(2.26) ^—^—IΓ (^)\ReΨm(t))ψdt
2sin —

12

W t

Without loss of generality we may suppose m0 is so large that m0 <
mkel implies mk+1/mk < 2.

Let Io = / n (m0, oo). From (2.6), (2.22), and (2.26) we see that
to prove (3), it is sufficient to demonstrate the existence of a set
2?c[l, oo) with logarithmic density zero such that

(2.27) lim N(r)

sup
m

[ (r
hm\t

t

= 0

as r tends to infinity through values not in E.
For

let

r ^ x0 = min {6m: m e l o } ,

= max {m: m e ί 0 and δm ^ r} .

We denote by S the range of the nondecreasing integer-valued func-
tion v. For m = mke S, we let mr — mk+1. From the definition of
v we have

(2.28) Jm ΞΞ v~l{m) c [&w, δm,) .

Furthermore

to o Q ^ Γ/y» r^^ II r
meS

where the right side is a union of disjoint intervals. For meS we
define 0 < εm < 1 by

(2.30) 1 + εm = m'/m

and note by (1.7i) that εm —> 0 as m tends to infinity through values
in S.

Letting mx denote logarithmic measure and letting St be the set
of m e S such that
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<

we see from (1.7ii) and (2.30) that if

then

(2.31) mι{Eι) <, Σ -τ±— < -

For meS — S1 we consider an arbitrary interval Jmc Jm with

(2.32) mι(JJ = - I - .

Since c£(log N(t))/d(log t) = n(t)/N(t) assumes a given value (m) at
only a finite number of points in any bounded interval on which
n(t) > 0, we see that there exists a real ym — ym(Jm) such that

Am Ξ {t e / m : log iV(ί) > m log t + yj

satisfies

(2.33) m z(AJ - - i - .

me1,!2

We note that r e J m — Am and ί e Am imply

(2.34) N(t) > N(r)(t/r)m .

Given τeJm — Am, let

A*(r) = A* = Am Π (0, r)

and

A**(r) = A** = Am Π (r, c>o) .

Thus either

mz(A*) ^

or

In the former case by (2.28) and (2.34)
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(2.35)
Λ'm\t/ t

In the latter case by (2.28), (2.30), and (2.34)

«' (*"' (r-Y™dt > m'N(r) \ (±Y-m'dt

(2.36) ^ TOW(r)m,(iii*) min (±Ym°m

teA" \ r /

^ m'N(r) _ (1 + εm)N(r)
~ 2emε1Jι

2 2eειJ?

since for t e A%*

—J = — mεw(log t — log r)

^ -mεmmι(Jm) = - 1 .

From (2.32), (2.33), (2.35), and (2.36) we see there exists a set

for which

Π [a?0, r)) = Π [α;0, r))) = o(log r)

and such that (2.27) holds as r tends to infinity through values in
E, - E2. Combined with (2.29) and (2.31), this establishes (2.27) with
E = £?! U E2 and thus proves (3).

3* Proof of Theorem 2* Due to the complicated nature of our
construction, we begin with a brief outline of the proof of Theorem
2. We first construct an entire g with zero counting function N(r)
having the property that log N(r) is approximately a piecewise-linear
convex function of logr (see (3.10)) such that, for a sequence rn

tending to infinity, d(logN(t))/d(logt) evaluated aXt = rn is much larger
(approximately M%) than is log N(r J/log rn (approximately Mn). (See
(3.18) and the remarks immediately preceding it.) This key property
enables us to construct polynomials hn so that an initial segment of
the Fourier series of ehng differs in U norm from the corresponding
portion of the Fourier series of
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by o(N(rn)). (See (3.26) and (3.28).) Because the sequence rn is
sufficiently well spaced, from the polynomials hn we are able to
construct an entire h (see (3.38)) so that the Fourier series of
log I/I = log \ehg\ behaves on \z\ — rn much like that of log \eh*g\,
leading to (3.53) and implying d(0, /) = 0.

It would seem a fair observation that the essential difference
between the infinite order and finite order situations is that in the
former case infinitely many coefficients of h{z) — Σ am^m are at our
disposal, subject only to the condition \am\l/m —• 0, and that they may
in fact be so chosen as to achieve N(rn)/T(rn, /)—>1 on a widely spaced
sequence; on the other hand, for / of finite order, only finitely many
nonzero αm are at our disposal and the approach employed below is
clearly unavailable. Finally, we remark that much of the intricacy
of the construction is a result of the requirement that / grow slowly
in the sense of (4).

We now turn to the details of the proof and begin with

LEMMA 3.1. Suppose 7: (0, oo)—> (0, oo) is a nondecreasing func-
tion with j(x)/x —• oo as x —* oo. For x > 4, let Ύ^x) = Ύ((x — 4)/4).
There exist sequences of positive integers Mn and xn tending to
infinity, a positive sequence βn tending upward to 1, and a
piecewise-linear convex function φ: [x19 ©o)—>[1, oo) such that

(3.1) ( i ) Mn+1 ^ nMl n - 1, 2, 3, •;

(i i) J β £ ! ^ < J L f n = l , 2 f 8 f . . . ;
1 - βΛ n

(iϋ) ®«±L = ι&jnf j n = integer, n = 1, 2, 3,

(iv) 1 - βϊ+1 < e->m*«, Mn+1 ^ m £ 2Mn+1, n = 1, 2, 3, . .
( V ) φ(x) ^ 7χ(a?), X 2> Xx\

(vi) φ is convex on [xn, xn+ί], linear on [xn, 8xn], and linear
on each segment [8xn + 4&, Sxn + 4(A; + 1)] contained in
[xnJ xn+1], k = integer, n = 1, 2, 3,

(vii) <£/(#) ^ ( '̂(a? — 4))4, x ^ ^ + 4, where φ' denotes the right
derivative of φ;

(viii) ΛC - 9>'(ίO g φ'W ^ MUlu x* ^ « < » +i, w = 1, 2, 3,

(ix) ^ί ϊa l ^ Mil2, n = 1, 2, 3, •;

n = 1,2,3, •••;

(xi) 4Mn+1x < y^x), x ^ xn, n = 1, 2, 3, .

Proo/ o/ Lemma 3.1. We let Mi = 2 and let M2 be an arbitrary
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integer greater than Ml Let 0 < β, < 1 be such that (3.1 ii) holds
with n = 1. Let xx be an integer greater than 4 so large that (3.1 xi)
holds with n = 1. Such an xγ exists since Ί^X)\X -> °o. Define
9>(a?!) = 1. We note (3.1 i), (3.1 ii), (3.1 ix), and (3.1 xi) are satisfied
for n = 1 and (3.1 v) holds with x = xt.

We now suppose for some positive integer p that we have a
sequence of positive integers Mίf Mi9 •• ,Λfp+1, a second sequence of
positive integers xlf x2, , αjp, an increasing sequence βlf β2, , βp

of positive numbers less than 1, and a function φ: [xu xp] —> [1, oo).
In addition we suppose (3.1 i), (3.1 ii), (3.1 ix), and (3.1 xi) hold for
n <Lp, (3.1 iii), (3.1 iv), (3.1 vi), (3.1 viii), (3.1 x) hold for positive
n <; p — 1, that (3.1 v) holds for x1 <; x <; xp, and that (3.1 vii) holds
for a?! + 4 <̂  a? < xp. These hypotheses are satisfied in the case p = 1,
vacuously in the case of (3.1 iii), (3.1 iv), (3.1 vi), (3.1 viii), (3.1 x),
and (3.1 vii).

We define numbers βp+1, Mp+2, and xp+1 and extend the definition
of φ to (xp, xp+1] in the following manner. We choose βp+ί e (βP, 1)
such that (3.1 iv) holds with n = p. We then let Mp+2 be an integer
such that (3.1 i) and (3.1 ii) hold with n = p + 1. We next choose

(3.2) xp+ί > 8xp + β ( i log Mp+1 - 2 log M

such that (3.1 iii) and (3.1 x) hold with n = p and (3.1 xi) holds with
n — p + 1.

We now define φ on (α?p, a?p+1]. Recalling that φf denotes the
right derivative, we specify

(3.3) φ\xp) - Ml

and

(3.4) φ'(8xp + 4k) = 2kM2

p , k = 0, 1, 2, . . , kp ,

where fcj, is the largest integer k such that

(3.5) 2k+1M2

p < M1^ .

We note from (3.2) and (3.5) that

8xp + A(kp + 1)< 8xp + 8(j-logMp+1 - 2 logikf,) < xp+1 .

We define φ on (α ,̂ ίcp+1] to be the unique function satisfying (3.1 vi)
with n = p, (3.3), (3.4), and

(3.6) φ'(x) - M"̂ \ , 8x
p
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Thus (3.1 viii) holds with n = p and (3.1 ix) holds with n — p + 1.
In the case p — 1, we observe that (3.1 v) holds for xp <; x <^ xp+ί

by virtue of (3.1 xi) with n = 1 and (3.1 viii) with w = 1, since
xL <* x <L x2 implies

<P{x) ^ 1

If p ^ 2, (3.1 viii) with % — p — 1 implies

φ{χp)

which in conjunction with (3.1 x) with n — p — 1 and (3.1 viii) with
n ~ p implies (3.1 v) holds for xp <; x <; flcp+1.

Finally we observe that (3.1 vii) holds for xι + 4 <| x < ccp+1.
If p = 1, this is a result of (3.4) and (3.6) with p = 1. For p ^ 2,
inequality (3.1 vii) holds for xp ^ x < xp+1 by (3.4) and (3.6), with
equality holding for xp <J a; < xp + 4.

This finishes the inductive step of the proof. We have (3.1 i),
(3.1 ii), (3.1 ix), and (3.1 xi) holding with n = p + 1 and (3.1 iii),
(3.1 iv), (3.1 vi), (3.1 viii), and (3.1 x) holding with n = p. In
addition (3.1 v) holds for xt ^ x <; xp+1 and (3.1 vii) holds for
xx + 4 <i a; < a;2>+ι. Finally we notice that the convexity of φ follows
from (3.1 vi) and (3.1 viii), and that βn -* 1 by (3.1 iv). This com-
pletes the proof of Lemma 3.1. In what follows we shall make no
use of (3.1 x). It is included only as an aid in the inductive step
of the proof of the lemma.

We now use the lemma to prove the theorem. It is elementary
that corresponding to K of Theorem 2, there exists a nondecreasing
7: (0, oo) —> (0, oo) and x' > 0 such that

X

and y(x)/x —> oo as x —> oo. We apply Lemma 3.1 to this 7 and define

f 0 0 <, t < eχi
n(t) =

We note that n(t) is nondecreasing and continuous from the right
on [0, 00). We shall construct an entire / with positive zeros and

(,/f) ()
We define N(r) = \\n(t)/t)dt and note for logr > x1 that

Jo

(3.8) N(r) - (1 - θ(r)) exp (φ(log r))

for some 0 < θ(r) < 1 with θ(r) —> 0 as r —> oo. It follows immediate-
ly from (3.8) and the definition of n(t) that
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(3.9)

and

(3.10) ?>(log t) = log ΛΓ(ί) + o(l) .

From (3.1 vii) and the convexity of φ we thus obtain

"(«)/#(*) - (1 + o(W(log t) ^ (1 + o(l))(9>'(-l + log ί))4

^ (1 + o(l))(φ(log t)Y ^ (1 + o(l))(log iV(ί))4 .

Let α(&) = φ(x)/x. The convexity of <£> together with φ'(xλ) >
a(Xj) implies a is continuous and strictly increasing on [xlf oo). By
(3.1 viii) certainly a is unbounded on [x19 oo). Thus, for m =
1, 2, 3, , we may define a strictly increasing, unbounded sequence
sm by specifying sm to be the unique solution of

(3.12) α(log t) = m/2 .

From (3.8) and (3.12) it follows that

(3.13) N(t) < tmβ , 0 < t ^ sm .

In view of (3.11) and (3.13)

n(sj £ (1 + o(l))N(sJ(log i\Γ(sm))4 = o(*!Γ/4) ,

implying the existence of A > 0 such that for m = 1, 2, 3, •

We let 0 < ^ <; z2 ^ ^3 ^ be the nondecreasing sequence of
positive numbers with counting function n(t). For zv ^ slf we let
q, = 0. For m ^ 2, we let qv = m — 1 if sm_! < ^ ^ sm. We define

= Π #(-, g) .

In view of (3.11), (3.13), and the choice of qv, an argument (with
n(t) replacing n5(t)) virtually identical to that leading to (2.15) shows
g to be entire.

We now define a sequence rn tending to infinity. For n ^ 1 we
select

(3.15) α>; 6 (x%, 2xn)

satisfying

(3.16) a(x'n) - Mn .
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Since

by (3.1 vi) and (3.1 viii), we see from (3.1 ix) and the continuity of
a that such an x'n exists.

We let

(3.17) rn = exp x'n .

For notational convenience we let pn = φ'(x'n) and note by (3.1 vi)
and (3.1 viii) that pn = Ml From (3.8), (3.16), and (3.17) we have

(3.18) N(rn) = (1 - o(l))r> .

For each n — 1, 2, 3, , we now define a finite sequence amn,
1 <: m <̂  Λfn+1., as follows. For 1 ̂  m ̂  2Mn, let

(3.19) α m % ^ ̂ ω + ̂ ω + ̂ ί^OSΓ - 1)

For 2Mn < m ̂  Λfn+1, define

msZ
(3.20)

, iV(gJ , 2N(rn){ m

sZ rZ

dt + m [ γ
r + i Jo \rϋ t

We note that sm > rn if and only if m > 2Mn. This is a consequence
of the monotonicity of a and the fact that a(log sm) = m/2 and
«(log r J = Jlf».

We now estimate the size of amn for n ^ 2. For 1 5ί m ̂  j|fn,
by (3.1 iv) and (3.14)

ι«~ι < 4 +
(3.21) m

< A. +

For Mn<m^ 2Mn, from (3.1 iv), (3.14), and (3.18)

(3.22) |α«.| < A + 2(1 - ^Γ) ^ A + 2β-«-»-i

For 2Λfw < m ̂  ΛfΛ+ι, (3.18) implies

(3.23)
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Elementary integration and (3.13) imply

(3.24) m \"^dt + m Γ" (±
JrB ί*+1 Jo Vr

dt r ^ .
t - 3

From (3.14), (3.23), and (3.24) we conclude for 2JίB < m ^ Mκ + 1 that

(3-25) |α«| < A + ^ .

Our choice of αm% is motivated by the fact that if

then

(3.26) c«(? n, e

where for 1 ^ m ^

ί 2 Jo \r

In fact if F(z) = eΐHz)g{z) where ί ί ^ ) = Σ &m^m, then, since gy < m is
equivalent to xv ^ sm, calculations similar to those involved in (2.18)
and (2.19) show that

Cm{r, F) = A^
(3.27) 2

m+ d t (
2 JS/,Λ t ' t 2 Jo V r

In view of (3.19) and (3.20), (3.26) is a special case of (3.27).

We now show

Σ Ai.) = o(N(rn)) .

m = l /

We begin by recalling, from the remarks following (3.20), that
1 ^ m <: 2ikf% is equivalent to sw ^ rΛ. From (3.1 vi), (3.1 viii), (3.10),
and (3.15) it follows that uniformly on the interval eXn <L t <̂  rn we
have as n tends to infinity

(3.29) N(t) = (1 + o(ΐ))N(rn)(tlrny« .

First suppose m ^ 2Mn is such that eXn ^ sm ^ ?%,. We write
Am% = Bmw + Cmn where

- — \rn ( t

2
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and

2 Jo \τj t

Elementary integration and (3.29) imply uniformly for the values of
m under consideration

(3.30) - ( 1 + o(l))- m N(rn) ^ Bmn rg (1 + o(l))—-™ -N(rn) .
2(/0Λ + m) 2 ( ^ — m)

In addition, uniformly in m

(,o.ΰl; |O m % | <, ^ (1 +

where the last inequality is a result of (3.1 ix), (3.10), (3.15), (3.17),
and (3.18). Since ρ% = Ml, (3.18), (3.30), and (3.31) imply

( \l/2 / \l/2 l/2

\l/2

N(rn) + o(N(rn)) = o(N(rn)) .

For m such that sm < eXn, we write Amn = β^% + d Λ , where

„/ _ m f ^ /rΛmN(t),f _ m frw / Π

and

mn ~ ~"2 Jo V

From (3.29) we have uniformly in m

(3.33) ϋ S i^ww ^ — \ (-yj —-—at

2 J.«. V ί / t ~ 2 2(/0w — m)

We note that m ^ 2ikί^2 implies by (3.1 ix)

(3.34) &(xn) ^ Mi/2 ^ m/2 = «;(log sm) .

Thus for sm < ex« we have m < 2M^, and hence by (3.18) and the
right half of (3.31)

(3.35)
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As before,

(3.36) \σmn\ ^ **ψL ̂  (l + oaww .

As in (3.32), the combination of (3.33), (3.35), and (3.36) yields

( \ 1/2

8 Σ n A L Λ ) =o(N(rn)),

which in conjunction with (3.32) establishes (3.28).
We note that the combination of (3.26) and (3.28) gives

(3.37) f i f K(rn, eh«g) - βϊN(r jrY" = o(N(rn)) .
\ m=l /

We now define /. We let

(amι 1 < m < M2(3.38) am= \ - ~
lαmΛ Λfw < m ^ ΛfΛ+1, % ^ 2 .

Letting fe(u) = Σ αw2;m, we note from (3.22) and (3.25) that h is entire.
We define

In order to show N(rn)/T(rn, f) ~> 1, and hence eZ(O, /) = 0, we
need an additional property of g, namely

(3.39) ( ^ Σ \cJr%9 g)\η = o{N{rn)) .

We first note from (3.1 iii), (3.15), and (3.34) that m > Mn+ι implies

(3.40) βϋ4 > e{x^)/4 > 2rn .

We consider (3.27) with bm = 0 and r = rn. From (3.14) and (3.40)
we have for m > Mn+1

/o ΛI\ Λ,m(n{sJ , N{sm)

In addition by (3.9), (3.10), and the convexity of φ there exists a
positive constant ί0 independent of n such that as n -> oo

uniformly for tQ <> t <^ rn. Consequently, uniformly for m > Mn+1 as
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0 <
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__ m f r» / t \mN(t)dt

2 Jo W

(3.42)

rj t

Jίo ί

< (1 + oil)) P;(N(rn)) + J ,
2(P + m) 2"

where we have used (3.18).
For m > MM+1, we have sm > es*n by (3.1 iii) and (3.34), and

consequently by (3.13) and (3.15)

(3.43) m
2

Uniformly for m > Mπ+1 we have by (3.1 vi), (3.9), and (3.15) as

f / ί

J f•"" /r s \"-" (1+βιl»dί
Jrκ V ί / t

(3.44)

2(m - (0.(1 +

Combining (3.43) and (3.44), we obtain uniformly for m > Mn+1

(3.45)
2 2 JrΛ V « / ί

The combination of (3.42) and (3.45) yields uniformly for m > AΓn+1

mrn)~τlΛ-f)-rdt~τi \τJ
(3.46)

(1 + 0
(

2 \m - + m + p,
+

Since |Ore = Ml, we see from (3.1 i), (3.27), (3.41), (3.46) and the
Schwarz inequality that as n —> °°

Σ Mr.,

establishing (3.39).
We next observe that

log |/(r .β") | - Re
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(3.47)

= 2 Σ K(rn, f) - /3?iSΓ(rJ|2 + 2

s 21. + 211. .

|c.(r., /) - βZN(rn)\>

To analyze Πn, we first note from (3.15), (3.22), (3.25), (3.38), and
(3.40) that

(3.48) \am\ < B(2rJ~

for some constant B > 0 independent of n for all m > ufB+1. Thus
by (3.1 ii), (3.39), and (3.48)

(
Σ K(rn,

m>Mn+ι

1/2

1/2

(3.49)
+ 2WSCn

From the definitions of hn and In we have

J 1 <9 I V~< / A \

n — \ X i ^m\' %> ^ i//
\ m=l

By (3.37) and (3.38) we have

(3.50)

From (3.18) and (3.21) we have

( Σ κM|vrY/2

(3.51) ^ o(iV(rJ)

^ o.(ΛΓ(r.))

Similarly

rJ = o(N(rκ)) .

1/2

(3.52)
Σ !«»l2rr)1/2 ^
ιw—1 /

Σ

The combination of (3.47), (3.49), (3.50), (3.51), and (3.52) yields

(3.53) log |/(r.β")| - Re ? + βflN{τn)

trivially implying m(rn, 1//) = o(N(rn)) and hence d(0, /) = 0.
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For the remainder of the proof, we reserve the letter r for a
value satisfying

(3.54) xn <> log r = xn + iq ^ xn+i/A

for some integers q and n. We must show

(3.55) log T(r, /) < τ(log r) , r > Ro ,

which in conjunction with (3.7) establishes (4).

We consider cm(r, f) given by (3.27) with bm = α w . For m ^
2Mn+1, from (3.14) and the fact that am~>0 we conclude

(3.56)

Noting

V 2 2sZ
= O(rm) =

2 Jo \ t

by (3.13), we see from (3.10), (3.18), and the monotonicity of a that
for 1 ^ m ^ 2M%+1

(3.57)

By (3.1 xi), (3.56), and (3.57)

(3.58) ( Σ \cjχ, /)|

From the definition of am, (3.1 iv), (3.23), (3.24), and (3.54) we

have for m > 2ikf

(3.59)

We have

n + l

9 V i* 1 / 2 / Om+l *

> e^+i >

for m > 2Mn+ί by (3.34). By (3.1 vi), (3.1 viii), (3.9), and (3.54)
uniformly for m > 2Mn+ι

N(r) __ m [e*r

2 2 Jr \ t

(3.60) _ m j ^ ( ^

2(m 2m
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where pr = φ'(\og r) ^ (m/2)1/2.
Since e4r < t < eXn+1 implies

N(f)

by (3.1 viii) and (3.9), we conclude by elementary integration

(3.6D

uniformly for m > 2Mn+1 as r tends to infinity through values
satisfying (3.54). Finally from (3.13) and (3.54), for m > 2Mn+ί

(3.62)
V y 2

Combining (3.60), (3.61), and (3.62), we conclude from (3.1 viii)

N(r)_ __ m fs-
2 2 Jr(3.63)

2V / 2

= 0(N(r)) + o(N(e4r)) = o(N(e4r)) .

Since N(r) < rTO/2 for m > 2Mu+ί9 a calculation similar to (3.42)
shows uniformly for m > 2Mn+1

implying

Σ
(3.64) \ι»ι>2Jfn.

N(r)
2 2 JoVr/ ί

= O(iSΓ(r)) - o(N(e4r)) .

Combining (3.27), (3.59), (3.63), and (3.64) with the Schwarz inequality,
we conclude

( \ 1/2

Σ K(r, f)ή = o(MeV)) = o(e^+1^>) ,

where we use (3.10) in the second equality.
From (3.1 v), (3.58), and (3.65) we have

(3.66) log mt(r, f) < τx(4 + log r)

for sufficiently large r satisfying (3.54). For sufficiently large r
there thus exists r with
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log r 6 [log r, 4 log r]

for which (3.66) holds. Thus for all r > Roy

T(r, f) £ Tir, f) :g mt(r, f)

establishing (3.55) and hence (4). It is clear that the lower order
of / is infinite because the lower order of N(t) is infinite. This
finishes the proof of Theorem 2.
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