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NONLINEAR DIFFERENTIAL EQUATIONS WITH
MONOTONE SOLUTIONS

KURT KREITH

The differential equation dy^dP — y — 0 has as a funda-
mental set of solutions sin t, cos tf e*9 and e~ι. The latter of
these is distinguished by the properties of being positive
and strictly decreasing to zero as £-» oo. As such, erι is the
prototype of the "monotone solution" whose existence will
be demonstrated for a large class of nonlinear differential
equations of even order.

Our method will be restricted to differential equations of order
2n which can be written as second order systems of the form

(1.1) x" = f(x, t)

where xeRn and f is a continuous function from Rn x [0, oo) into
Rn satisfying other conditions to be formulated in §2. Without
resolving the question of what scalar equations allow such a repre-
sentation, it is clear that our considerations will include nonselfadjoint
linear fourth order equations (see [5]), equations of the form

(PxV'Ύ = MV, V

and similar equations of higher order.
In case (1.1) is linear and

(1.2) x" = A(t)x

where A(t) = (α,, (f)) is a continuous n x n matrix, criteria for the
existence of monotone solutions of (1.2) are well known. In particular,
by letting w = —'ΛΓ, (1.2) can be written as a first order system of
the form

x\ I 0

According to Hartman [2; Ch 14, Theorem 2.1], the condition aiό{t) ^ 0
for 1 <̂  i, j <; n, and 0 ^ t < oo assures the existence of a nontrivial
solution of (1.3) for which xt(t) Ξ> 0 and #•(£) ̂  0 for 1 ^ i <; n and
0 ^ t < oo# Since x(t) also satisfies (1.2), these results readily carry
over to linear second order systems.

Nonlinear problems of the form (1.1) have also been studied by
Hartman and Wintner [3] in terms of the related first order systems.
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However their method is based on the assumption that solutions of
(1.1) can be extended to the semi-infinite interval [0, oo), and this
requires some restrictions on f(x, t) as | JC | —» ©o. Our methods are
essentially different and require no restrictions on the growth of f
for large values of x.

For the sake of clarity, the basic ideas are developed in §2 for
n — 2. In §3 a theorem of Sperner [1] is used to generalize these results
to the case n ^ 2, while some applications to scalar equations are
discussed in §4.

As a final introductory remark we note that the nonoscillatory
equation y" — y = 0, with fundamental solutions e* and e~\ is frequently
used to motivate the concept of "principal solution". Here e~~* is
singled out, not because it is monotone but because it is in an
appropriate sense "smaller" than all other linearly independent solutions.
The question therefore arises as to why e~ι should not be characterized
as a principal solution of y{ίv) — y = 0 rather than a monotone solution
and, more generally, why the distinguished solutions of higher order
equations to be considered below should not be called "principal
solutions".

Several answers can be given in the context of fourth order
equations. First, y{ίv) — y = 0 has both oscillatory and nonoscillatory
solutions, while in the second order case principal solutions are defined
only for nonoscillatory equations. Accordingly, we do not have
"lim^oo e~yy(t) — 0 for any linearly independent solution y(t)" whereas
such a condition characterizes principal solutions of second order
equations. Furthermore, there is an elegant generalization of the
scalar theory of principal solutions to disconjugate Hamiltonian systems
(see for example [6]). However, since the equation y{iv) — y = 0 is not
2 — 2 disconjugate in any interval [α,oo), the corresponding Hamiltonian
system will also not be disconjugate in such intervals [α, oo) (see for
example [5], Ch 6). It follows that the systems theory of principal
solutions does not apply to y{iv) — y — 0. For these reasons it seems
appropriate to consider the equation y{ίv) + iy = 0 with solutions
β~* sin t and e~ι cos t as the motivating example for principal solutions
of 2 — 2 disconjugate fourth order equations and to avoid this ter-
minology in problems motivated by the equation y{iv) — y = 0.

2* Systems in R2. In considering second order differential
systems of the form

(2.1) x" = f(x, t)

we shall require f to be sufficiently regular in R2 x [0, oo) to assure
the existence, uniqueness, and stability of solutions of the initial
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value problem

(2.2) x(a)=xa; x\a) - va

for all a ^ 0 and to assure that solutions of (2.1) can be continued
until some component of x(t) becomes unbounded. In most instance
we shall consider (2.2) with a — 0. The interval of existence of a
solution of (2.1) will be denoted by [α, ώ) where we allow ω = oo.
Writing v > 0 in case all components of a vector v satisfy vt > 0
and writing v > w in case v — w > 0, we formulate three additional
conditions which will be assumed throughout:

(A) f(x, ί) > 0 whenever x > 0 and f(0, ί) = 0;
(B) /<(*, ί) > 0 whenever xt = 0 and ^ > 0 for all j Φ i;
(C) for every initial value (ΛΓ0, t0) > 0 and every T < °°, f(x, t)

is bounded in

{x 10 £ x ^ x0} x {ί I ί0 ^ ί ^ Γ} .

By way of example of a large class of systems satisfying these
conditions in R2, we cite

where α, /9, 7, and 3 are nonnegative constants (or nonnegative con-
tinuous functions of ί) and the coefficients are continuous functions
satisfying

a(t) ^ 0 , 5(t) > 0 , c(t) > 0 , d(t) ^ 0

in [0, oo).

It will be convenient to think of systems such as (2.1) and (2.3)
as equations governing the motion of a particle of unit mass in a
force field given by f. Conditions (A) and (B) can then be interpreted
as requiring that this force field be "repulsive" in the closed first
tt-tant, J = {x\x ^ 0}, except at x — 0. The role of condition (C)
will become apparent in Lemma 2.1 below.

In discussing the initial position and direction of such a particle,
we define

and
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Then initial position can be specified by JC0 or by |JCO| and ΘQ while
initial direction is specified by v0 or by |ι?0| and φ0. We note that
\θo\ = \φo\ = Σ?=! θt(P) = Σ?=i <Pi(P) = l O u r first lemma asserts that
for each x0 in the first w-tant and every initial direction φ0 < 0 we
can choose an initial speed | v0 | sufficiently large so that the particle
must leave ΐ in finite time. It will be useful to let C(t; xQ, \ΌQ\, <pQ)
denote the trajectory determined in Rn by the solution x(t) of (2.1)
satisfying JC(O) = x09 ΛΓ'(O) = 11?01 <Po

LEMMA 2.1. For every xQ > 0 and φQ^0 there exists s(xQ9 φQ) so
that \vQ\ Ξ> s implies that C(t; x0, \vo\, φ0) exits the closed first n-tant
ϊ in finite time.

Proof. For sufficiently small t > 0 a solution x(t) of (2.1) satisfies

(2.4) Xt(t) = a>,(0) + x'i(0)t + Γ \rfi(x(σ), σ)dσdτ i - 1, . , n ,
Jo Jo

and this solution can be continued until some component becomes
unbounded. Fixing a finite T > 0, (C) assures the existence of a
constant k > 0 such that f(x, t) < k and

Xi(t) ̂  ^(0) + a?ί(0)ί + -^ί* i = 1, , n

as long as 0 ^ x(t) ̂  x0 and 0 ̂  t ^ Γ. Recalling that x't(0) =
ko!^i(O) < 0, we choose a sufficiently large so that the n binomials
^(0) + sφ^t + (kJ2)t2 all have zeros in [0, T]. Then it follows from
(2.4) t h a t C(t; xQ, \vo\φo) e x i t s I in [0, T] w h e n e v e r \vo\ ^ s.

Since f(x, t) > 0 whenever Λ: > 0, (2.4) implies that solutions of
(2.1) satisfying x(0) > 0 and x'(0) = 0 satisfy x(t) > 0 in [0, ω), their
interval of existence. Thus it follows from Lemma 2.1 that to
each x0 > 0 and initial direction <p0 < 0 there corresponds a "critical
speed"

(2.5) sc(x0, φ0) = inf {|ι?0| | C(ί; ΛΓ0, |ι?0|, <p0) exits J in finite time} .

Our objective is to show the existence of a "critical initial position"
xc and "critical initial direction" φc for which C(t; xe, sc(xc, φc), <pc) is
a monotone trajectory satisfying x(t) > 0 and x'(t) < 0 as t —> °o. To
that end we begin by restricting our attention to the case n = 2
and examine the critical trajectories C(ί; x0? sc(x0, φ0), φQ) in i?2. The
extension to n > 2 will be considered in §3.

For n = 2 we write x(ί) = (i/(ί), «(ί)) and let I denote the open
first quadrant in the (y, «)-plane. The components of C(t; x0, \vo\, <p0)
are now denoted by y(t; x0, \vo\, φ0) and z(t; xQ, \vo\, φ0), respectively,
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and [0, ώ) denotes the (possibly infinite) interval of existence of this
solution.

LEMMA 2.2. If sc is defined by (2.5), then for each x0 > 0 and
φ0 < 0 the components y(t), z(t) of C(t; x0, sc, <p0) satisfy at least one
of the following:

( i ) y(t) has minimum at some finite tt > 0, y(tt) = 0 and
z(t) ^ 0 for 0 £ t < ω;

(ii) y(t) I 0 and z(t) -> °o as 11 ω;
(iii) z(t) has a minimum at some finite t2 > 0, z(t2) = 0, and

y(t) ^ 0 for 0^t <ω;
(iv) z(t) I 0 and y(t) —> oo as t\ ω\
(v) y(t) I y and z(t) 1 z as 11 °°, where yz = 0.

Proof. We consider first the case where trajectories "near" 1

C(ί; xo> ^c> ^o) exit 7 across the positive z-axis. Then by stability
considerations y(t; ΛΓ0, SC, φ0) either has a zero or else approaches zero
as 11 ω. Since y'\t) > 0 and z"(t) > 0 in /, if #&; ΛΓ0, SC, φ0) = 0, then
it follows from (2.5) and the fact that sc(x0, <po)£ {\vo\ \C(t; AΓ0, \vo\φo)
exits J in finite time} that y has an absolute minimum at tλ and
that (i) describes C. If y(t; xQ, sc, φ0) | 0 and z(t; x0, sc, φQ) —> oo as
t] ω, then C is described by (ii). Finally, if y(t; x0, sc, <p0) I 0 and
z(t; x0, SC, <p0) remains bounded then both y(t) and z(t) remain bounded
in [0, ω) so that we must have ω — oo. Since it now follows from
(A) that z" > 0 in [0, oo), we must have z(t; ΛΓ0, se, <pQ) | z ^ 0, which
implies that C satisfies (v). Analogous considerations of the cases
where trajectories "near" C(t; xQ9 se, <p0) exit / across the positive
i/-axis lead to (iii), (iv), or (v).

Trajectories satisfying (i) or (ii) will be called y-critical at t — tx

or t = oo, respectively; trajectories satisfying (iii) or (iv) will be
called z-critical at t = t2 or t = oo, respectively; finally, trajectories
satisfying (v) will be called monotone. These categories are not
mutually exclusive, since a trajectory can be ^-critical at t = tx and
then ^-critical at t — t2 > t l e Such a trajectory will be called doubly
critical or, more specifically, (y, ^-critical at (tu t2); trajectories which
are (z, τ/)-critical at (t2, tt) are analogously defined when t2 <tt. Our
next lemma deals with the existence of such doubly critical trajectories.

LEMMA 2.3. For each x0 > 0 there exists a critical direction
φe < 0 such that the trajectory C(t; xQ, sc, <pc) is either doubly critical
or monotone.

1 By trajectories "near" C we refer to trajectories obtained by small variations in
initial conditions.
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Proof. Let AΓ0 > 0 be fixed. If φ0 = (0, -1), so that z'(0) < 0
and y\O) = 0, it follows that y(t) > y(O) > 0 for 0 < t < ω. Therefore
for sufficiently small ε > 0 all critical trajectories corresponding to
φε = — (ε, 1 — ε) must be z-critical and not ^-critical. Analogously,
for ε near 1 we have — (ε, 1 — ε) near ( — 1, 0) and the corresponding
critical trajectories must be ̂ /-critical and not ̂ -critical. Consider now

c = sup {ε\C(t; x0, sc(ε), φε) is ^-critical} ,

where sc is, by virtue of its dependence on φ, also a function of ε.
Then there will be trajectories "near" C(t; x09 sc, φc) which are ̂ -critical
and others which are ^/-critical. It follows from stability considera-
tions that C(t; xQ, sc, φc) itself is either doubly critical or monone.

Our final step in showing the existence of monotone trajectories
requires that initial position x0 be expressed in terms of

and ^ =

THEOREM 2.4. Given ξ0 > 0, there exist xc > 0, θc > 0, se > 0, and
<pc < 0 such that \xe\ = ξ0 cmd C(t; ξ0, θc, sc, φc) is a monotone trajec-
tory.

Proof. For each ΛΓ0 > 0 satisfying | x01 = ξQ we consider a doubly
critical or monotone trajectory whose existence is guaranteed by
Lemma 2.3. Defining θε = (ε, 1 — ε), we note that for sufficiently
small ε > 0 these doubly critical trajectories will be (z, τ/)-critical
and approaching the initial conditions

y(0) - 0, z(0) = ί0, y\0) = 0, z'(0) = -sc

as ε —> 0. Similarly, for sufficiently small positive values of 1 — ε,
the corresponding doubly critical trajectories will be (y, «)-critical
and approaching the initial conditions

7/(0) = ί0, z(0) - 0, y\0) = -sc, z\0) = 0

as ε 11. We therefore consider

c = sup {ε\C(t; ξOf θεf sc(ε), φe(ε) is (z, τ/)-critical} .

Then C(t; ξ0, θc, sc, φe) is "near" (y, ̂ -critical trajectories and "near"
other trajectories which are either (z, τ/)-critical or monotone. Since
C(t; ξ0, θc, 8C, φc) cannot itself be both (y, «)-critical and (z, #)-critical,
it must be monotone as asserted.

Monotone solutions as defined above satisfy either y(t) I 0 and
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z(t) i z or y(t) I y and z(t) [ 0 as t —> oo. The following theorem
establishes conditions under which both y(t) and z{t) must tend to
z e r o a s t —• oo.

THEOREM 2.5. // for any pair of positive constants M and m
there exists T > 0 such that for t ^ T

(2.6) y(t) ^ m implies that \ \ fx{σ9 y{σ\ z(σ))dσdτ ^> Mt
Jo Jo

(2.7) z(t) ;> m implies that I I /2(σ, #(<7), z(σ))dσdτ ;> Mi
Jo Jo

every monotone trajectory for (2.1) approaches 0 as ί —> oo.

P r o o / . I f κ ( ί ) 1 0 a n d z(t) [ z > 0 a s ί - » o o , t h e n

f((7f y(σ), z(σ))dσ .

However, if (2.7) is satisfied we obtain the contradiction that z(t)
analogously, if (2.6) is satisfied we cannot have z(t) I 0 and y(t) |
and this establishes the theorem.

In the special case of systems of the form (2.3) conditions (2.6)
and (2.7) are implied by

(2.6)' \ d(t)dt = oo

and

(2.7)' Va(t)dt - oo .

Therefore we have the following

COROLLARY 2.6. // (2.6)' and (2.7)' are satisfied, then every
monotone solution of (2.3) satisfies z(t) j 0 and y(t) I 0 as t —> oo,

3* Systems in Rn. Our discussion of the case n > 2 parallels
that of §2 up to (2.5) where the "critical speed" sc(xOf <p0) is defined.
The generalization of Lemma 2.2 is straightforward and leads to the
following.

LEMMA 3.1. If sc is defined by (2.5), then for each x0 > 0 and
φ0 the components ofC(t; xQf se, ψ0) satisfy at least one of the following

( i ) For some i,l<^i<^n, xt{t) has a minimum for some finite
U > 0, xtft) = 0, and xά{t) ^ 0 for 0 ^ t < ω for j = 1, , n;
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(ii) For some i,l<>i<^n, xt(f) j, 0 and xά(t) —> °o for some j Φ i
as 11 &>;

(iii) For all j , I S j S n, xd(t) [x5 as 11 oo, where Π?=i%s = °
Trajectories satisfying (i) or (ii) will be called xcoritical at t = tt

or t = oo, respectively; trajectories satisfying (iii) will be called
monotone. A trajectory which is a^-critical at ίΛl, ^-critical at
ti2 ^ ^ , and xίfc-critical at tik >̂ ti]c_x will be called k-multiple-
critical or, more specifically, (xh, xH, , x^-critical.

Further progress for the case n > 2 will require a result from
combinatorial topology closely related to Sperner's lemma. Let eί9 e2,
• , en denote the vertices of an n — 1 dimensional simplex and
ei^i2 "' ein

 a closed face determined by the vertices eiχ, •••, eik.

THEOREM 3.2. Let Flf , Fn denote a closed covering of ete2

with the property that Ft is disjoint from e1 et^ei+1 en for
i = 1, . . . , n. Then F1 π Fz n ΓΊ Fn is not empty.

Proof. See Alexandroff [1; p. 378].

Theorem 3.2 enables us to generalize Lemmas 2.3 and 2.4 of §2
as follows.

LEMMA 3.3. For each x0 > 0 there exists a critical direction
φc < 0 such that the trajectory C(t; x0, se9 φe) is either n-multiple-
critical or monotone.

Proof. Let xo>O be fixed. If for some fixed i,l<,i<^n, 9>i(0) = 0,
then xt(t) ̂  xt(0) > 0. Thus for 1^(0)1 sufficiently small, the critical
trajectory C(ΐ; x09 sc, φ0) will not be 05,-critical. Now consider the
n — 1-dimensional simplex whose vertices are denoted by e19 , en

and whose elements correspond to φ0 by the relation e = — <p0. Also,
for a given #0 > 0, let G4 denote the set of initial directions, expressed
in terms of e, for which the corresponding critical trajectory is
^-critical or monotone. If we let Ft = Gi9 then Ft is disjoint from
«!- e<_1e<+1 βΛ and, by Theorem 3.2, there exists a 9c(x0) correspond-
ing to a vector e in Π?=i -̂ t I* follows that C(ί; x0, ββ> 9>c) is either
monotone or else ^-critical for all i, 1 ̂  i ^ w.

In order to show the existence of a monotone trajectory we
express initial position x0 ̂  0 in terms of

* o | = Σ|s 4 (0) | a n d θ^-^-
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THEOREM 3.4. Given ξo> 0, there exist xc > 0, θc > 0, sc > 0, and
φc<0 such that \xc\ — ζ0 and C(t; ζ0, θc} se, φe) is a monotone trajectory.

Proof. Let \xQ\ be fixed. As Θ^O) [ 0, the time required to become
^-critical tends to zero. Therefore if fu , fn denote the vertices
of the simplex whose elements correspond to θ0 by the relation θ0 = f,
then there exists a neighborhood of f fi-1fi+1 /* in which
^-multiple-critical trajectories must be ^-critical before they can
become ccrcritical for all j Φ i. Let Gt denote the set of / for which
the special solution, whose existence is guaranteed by Theorem 3.2,
is either monotone or else ^-multiple critical with the xt component
becoming critical before any other x3-. If F€ = G\, then the F% again
provide a closed covering of fxf2 fn such that Ft is disjoint from
/i fi-ifi+i'' f* for ί = 1, , w. If ^c is chosen in the (necessarily
nonempty) intersection of i^, , Fn, then C(ί; |ΛΓO!> ΘC, SC, ψc) is either
monotone or else simultaneously critical in xlf , xn — i.e., there
exists a ί o < M such that je(ί0) = x\t0) — 0. Since this is contrary to
our assumption regarding the uniqueness of solutions, we conclude
that C(t; \xo\, θc, sc, ψc) is monotone.

Finally, we note that Theorem 2.5 allows a direct generalization
to n > 2.

THEOREM 3.5. If for any pair of constants M and m there
exists T > 0 such that for t ^ T

1 ft(σ, x(σ))dσdτ ^ Mt
o Jo

for all i, 1 ^ i ^ w, ί/̂ ê  every monotone trajectory for (2.1) ap-
proaches 0 as ί —> co.

4* Scalar differential equations* Given Theorems 2.4 and 3.4,
there arises the question of the class of scalar differential equations
which can be written as a second order system

(3.1) x" - A(t)x

or

(3.2) x" = f(t, x) .

For n — 2 a fairly complete answer is given in [5] where it is shown
(3.1) corresponds to nonself ad joint equations of the form

(3.3) (p8(t)»")" - {ptf)x')f + <&(«)&' + Po(t)s , feW > 0)

where the elements of A are related to (3.3) by
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α 2 1 = pi — \ qγ) — — ^ — 3?0 α , 2 = —
4p2L VJO / J 2 2ί

This transformation enables one to apyly Theorem 2.4 by requiring
that the a^it) be continuous and appropriately positive in [0, °o). it
also enables one to apply this theory to several nonlinear versions
of (3.3)—e.g., the case where p0 = pQ(t, x).

While there does not appear to be a general theory of such
representations for the case n > 2, it is clear that for pt > 0, i =
0,1, , n, the nonlinear equation

can be represented in the form (3.2) by setting x = x1 and

x" = 1 x
Pn

X" = "I x

Pn-ί

(3.5) :

x" = —x
Pn

χf: = Pott, x).

The existence of monotone solutions of (3.4) corresponds to solu-
tions of (3.4) which are strictly decreasing together with their second,
fourth, •• ,2wth derivatives, while x'9x'"9 •• ,# ( 2 % ~ 1 ) are increasing.
Theorem 3.5 establishes further criteria which assure that x9 x"9 •••,
x{2n) all tend to zero.

Added in proof. A different technique for generalizing the re-
sults of [3] is contained in Gunnar Aronsson's "On two theorems
by Hartman and Winter. An application of the Wazewski retract
method" soon to appear in J. Math. Anal, and Appl.
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