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AUTOMORPHISM GROUPS RETRACTING ONTO
SYMMETRIC GROUPS

MATTHEW GOULD AND HELEN H. JAMES

The main result of this note is that if a group G retracts
onto the symmetric group Sn (n finite) then G is isomorphic
to the automorphism group of the nth direct power of a
multi-unary algebra (equivalently: G is isomorphic to the
automorphism group of an algebra that is free on a basis
of n elements). It will be shown that the converse fails
for all n > 1, but a restricted form of the converse will be
proved.

It was noted by G. Birkhoff in [1] that for any group G the
right translations of G are precisely the automorphisms of the algebra
defined on G by taking the left translations as operations. Thus our
main result stated above is true for n = 1, in which case the class
of groups in question is simply the class of all groups. Moreover,
as the algebra of left translations is easily seen to be freely generated
by any one of its elements, the equivalent formulation of our result
is also true for n — 1. We therefore stipulate that n > 1 throughout
the sequel.

1* Preliminaries* Concepts and notations of universal algebra
used here and not explicitly defined are taken from Gratzer [5], while
group and semigroup teminology comes from Hall [6] and Clifford
and Preston [2] respectively. Additionally, the notations Aut (Sί)
and End (Sί) will denote respectively the automorphism group and
endomorphism monoid of an algebra Sί, and the term rigid will be
applied to an algebra Si satisfying | End (Sϊ) | = 1. An algebra is said
to be multi-unary if all its operations are unary.

We shall utilize the following four theorems from the literature.
The first (but for a slight modification) and second come from the
first author's work [3]; the first characterizes the endomorphism
monoids of direct powers, while the second (with its obvious converse)
characterizes the nontrivial automorphism groups of direct squares
(thereby implying our main result in the case n = 2).

THEOREM 1.1. Given a monoid ikf, the following are equivalent.
(a) M = End (8ΪΛ) for some algebra Sί.
(b) There exist an n-ary operation [ ] on M and distinct

elements dlf , d% of M satisfying the identities
(b.l) dtdi - dt
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(b.2) [xdιt , xdn] = X

(b.3) [a?!, •••, xn]dt = &,d<

/ o r a l l ΐ , j e {1, , w} a n d x, xί9 , xn β M.

Moreover, for every monoid M satisfying (b) ίfeerβ is a multi-
unary algebra 3ί of cardinality \Mdx\ such that M = End (8lw),
Sϊ is rifirid i/ c^ is a Ze/ί stfro 0/ M.

THEOREM 1.2. .For every group G containing an element of
order two there is an algebra 81 such that G = Aut (Sϊ2). Moreover,
Sί caw 6e chosen to be rigid and multi-unary.

The next result, due to the first author [4], establishes the
equivalence mentioned in the first paragraph; the additional equivalence
of (a) and (b) below is an immediate consequence of Theorem 1.1.

THEOREM 1.3. Given a group G, the following are equivalent.
(a) G = Aut (SΪΛ) for some nontrivial algebra Sϊ.
(b) G = Aut (W) for some nontrivial multi-unary algebra 9ί.
(c) G = Aut (35) for some algebra 33 that is free on an n-element

basis.
(d) G = Aut (33), where 35 is free on an n-element basis and

the operations of 33 are all n-ary.
Moreover, if there is a finite algebra satisfying one of these

conditions, then each condition is satisfied by a finite algebra.

The following theorem, due to J. R. Senft [8], concretely charac-
terizes the endomorphism monoids of free algebras.

THEOREM 1.4. Given a submonoid M of the monoid of all trans-
formations of a set A, and given a subset B of A with \B\ = n,
the following are equivalent.

(a) M — End (81) for an algebra Sί defined on A and freely
generated by B.

(Jo) M = End (8ί) for an algebra Sί defined on A, freely generated
by B, and having only n-ary operations.

(c) Every map of B into A extends to a unique member of M.

As we shall be dealing with retractions of groups, it will be
useful to adopt the equivalent concept of (external) semidirect product.
Given groups A and S and a homomorphism 0:S->Aut(A), define
a multiplication in S x A by: <s, α> <ί, b) = (st, (aθt)b) for all <s, a),
(t, b) 6 S x A, where θt denotes the image of t under θ. With this
operation S x A is a group, denoted SχθA, which retracts onto a
copy of S. Conversely, if we are given a retraction φ of a group
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G onto a subgroup S, then G ~ S Xo A, where A = Ker φ and θ: S—>
Aut (A) is given by α#s = s^αs for all se S and α e A. (See pp. 88-
90 of Hall [6].)

Finally, we adopt throughout the sequel the notation x =
(xlf ••••, a?Λ> for elements x of A*.

2. The retraction theorem. We can now prove our main result,
in a formulation that generalizes Theorem 3.1 of [3].

THEOREM 2.1. Given a group G that retracts onto Sn, there is
a rigid multi-unary algebra Sί such that G ~ Aut (W), and 21 is
finite if G is.

Proof. We have a subgroup A of G and a homomorphism θ: Sn —>
Aut (A) such that G^ SnX0A. Set Λf = Tn x A", where T* denotes
the set of all transformations of {1, •••, n).

For <α, α ) e J l ί define αα 6 A% by: (αα), = aia for all i. Also, let
Δ denote the diagonal of An, i.e., Δ = {α e A% | αL = α2 = = α j . Now,
define a multiplication in ikf as follows. For all (a, a), (β, b) eM,

< α ' α > < A 6 > = = l < « A 5 - > otherwise,

where ^ is the point wise application of θβ, and multiplication in An

is pointwise as well.
We shall show that M, with the above multiplication, is a monoid

whose group of units (invertibles) is isomorphic to G. Moreover, we
shall exhibit distinct elements d19 , dn of M and an w-ary operation
[ ] such that the duals of the identities (b.l)-(b.S) hold. (The dual
of an identity is the identity that results when every product xy is
replaced by yx.) Thus, by Theorem 1.1 M will be anti-isomorphic
to End ($ln) for a multi-unary algebra 91, which will be rigid because
we will show that dt is a right zero of M. Because anti-isomorphic
groups are isomorphic, we will have G^Aut(Sΐ w ) . Finally, the
cardinality statement in Theorem 1.1 will ensure the finiteness of Sΐ
if G is finite. (Indeed, the algebra will have cardinality \G\j(n — l)\.)

It is immediately verified that <1, e) serves as an identity element
for Mf where 1 is the identity of G and et = 1 for all i. To prove
associativity of multiplication, we first assert four claims; as the
first three are very easily demonstrated we prove only the fourth.

For all a, βeTn and a, be An:
( 1 ) (a*y = aβa;
(2 ) aaθβ = (aθβ)

a;
( 3 ) (ab)a = aaba;
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( 4 ) (a, a) (β, b) e Sn x A if and only if (a, α> and </3, b) both
belong to SΛ x A.

To prove (4), let (a, a) and </3, 6> belong to Sw x A and note
that α ^ e z/, whereupon <α, α> (β, δ> = <α£, (aθβ)b} eSnx A. For the
reverse implication, let (a, a) </5, b) e Sn x Δ. Then <£/3 6 SΛ, whence
α e S % and β e Sn. Also, 6 e A since otherwise we would have (from
the definition of multiplication) ba e A, implying b = 6α"1nr = (ba)a~~ι e A.
Thus </3, b) e Sn x A, and so the definition of multiplication yields
(aθβ)b G A, whereupon aθβ e Δ. As θβ is one-to-one it follows that a G A.
Hence (a, a) and (β, b) belong to Sn x A.

We now establish associativity, dividing the proof into four cases.
Let x = {a, α>, 1/ = </5, 6>, and z = <7, c> be elements of M.

Case 1. Suppose neither 7/ nor z belongs to Sn x Δ. Then by
(4) the same is true of yz, and so (using (1)) we have

(xy)z = (aβ, ba)z = <α/Sτ, caβ) = <a/37, (c )̂rt> = <α, α>.</3τ, cβ)

= x(yz) .

e 2. Suppose both 7/ and z belong to Sn x Δ. Then by (4)
the same is true of yz> and

(xy)z = (aβ, (aθβ)b)z = <α/5τ, [(aθβ)b]θ-rc)

, (aθβθr)(bθr)c) = (aβj, (aθβr)(bθr)c)

Case 3. Suppose y e Sn x A and z£ Sn x Δ. Then (4) implies
i/z ^ S ^ x J and so (using (1)) we have

{xy)z =

= (a, a) - (βy, cβ) = x(yz) .

Case 4. Suppose y g Sn x Δ and ze Sn x A. Then (4) implies
yz g Sn x Δ, whence by (2), (3) and the fact that ca = c (because ce A)
we have

(xy)z = (aβ, bn)z = (aβΊ, (baθr)c)

= (aβj, (bθr)
acay = (aβΎ, (bθyc)")

= <α, α> </S7, (ί>(?;-)c> = x(yz) .

Thus ilf is a monoid. As the map (a, a)-->(a, αx> is obviously an
isomorphism of SnxΔ onto SnX0A, we have SnxΔ~G. To see that
G is isomorphic to the group of units of lή it therefore remains only
to note that, by (4), Sn x A contains every invertible member of M.

As noted earlier our final task is to define in M distinct elements
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dί9 - , dn and an w-ary operation [ ] so that the duals of (b.l)-(b.3)
are satisfied and dt is a right zero. We begin by endowing Tn with
such structure.

For each i e {1, , n) let δt be the constant member of Tn whose
image is {i}. For al9 -",aneTn let [a19 •••,#*] be the member of
Tn that maps each i to ίaim It is clear that each £< is a right zero,
and it is readily verified (as was done in [4] in a more general con-
text) that Tn satisfies the duals of (b.l)-(b.3).

In An define an n-ary operation [ ] in the same manner as in
Tn: for elements Ul9 •••, Un of An, let [U19 •••, Un] be that member
V of An satisfying Vi = (U^ for all L

Finally, set dt = (δi9 e) e M for all ie{l9 , n}9 and define [ ]
on M by stipulating that [(al9 Ux), •••, (an, Un}] = <[^, •••, α j ,
[17,, - . . , CΓJ).

Since n > I, the df are distinct and are not members of Sn x zί.
Thus (a, a)dt = (aδu ea) = <5t, β> = d t for all <α, α> 6 M, whence each
dt is a right zero; in particular the dual of (b.l) holds.

Before verifying the other identities we note that dt{a, a) =
(δiCt, aδi) whether or not <α, a) e Sn x 4, and that αJ< = (aί9 , α<).
From the latter observation it follows that [αδί, •• ,α ί»] = α, and
that [t/j, •••, i7Jδ ί = {Ux)

h whenever U19 •••, Un are members of A%.
To verify the dual of (b.2), let x — (af a) e M and compute:

[dp, , d%x] = [ < ^ , a*31), , <δΛα, α3->]

Finally, to establish the dual of (b.3), let xt = <«<, Ut)eM and
compute:

whereupon the theorem is proved.

COROLLARY 2.2. Given a group G that retracts onto Snf there
is an algebra Sί such that Sί is free on an n-element basis and G =
Aut (81). Moreover, Sϊ cα^ 6e taken to have operations of rank n
only.

Proof. Apply Theorem 1.3 to the above theorem.

COROLLARY 2.3. // n Φ 6, every group containing Sn as a normal
subgroup is isomorphic to Aut(8lw) for some rigid multi-unary
algebra 81.
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Proof. In Rotman [7], pp. 132-135, it is proved that for n $
{2, 6}, Sn is a direct factor of every group in which Sn is normal. Thus
Theorem 2.1 applies, proving the corollary for n Φ 2. However, for
n — 2 the corollary is an immediate consequence of Theorem 1.2.

3* Counterexamples and a restricted converse* It is easily seen
that the converse of Theorem 2.1 is false, i.e., that there exist rigid
multi-unary algebras 81, even finite as well, for which Aut(8t*) does
not retract onto a copy of Sn.

For n > 2, choose any k such that kn — k > max {4, n). On a set
of cardinality k define an algebra by taking all constant functions as
unary operations: the resulting rigid multi-unary algebra Sί satisfies
Aut (SΓ) = Skn^k. Since the only proper normal subgroup of the latter
group is its alternating group, it has no proper retract other than
S2. (If one were to omit the requirement that the algebra be rigid
and multi-unary, a more interesting example would be Snk = Aut (81*),
where 9ί is the kth direct power of the two-element Boolean algebra,
and k is chosen so that nk > max {4, n}.)

For n = 2, counterexamples are immediately provided by Theorem
1.2, but the proof of this theorem (in [3]) does not produce a finite
algebra with the required properties. To exhibit such a finite algebra,
consider the alternating group A4 (which does not retract onto S2, as
A4 contains no subgroup of order 6), and note (by inspection) that
every one-to-one map of {1, 2} into {1, 2, 3, 4} extends to a unique
member of A4. Thus, if we let M denote the union of A4 with the
constant transformations of {1, 2, 3, 4}, M will be a monoid satisfying
condition (c) of Theorem 1.4 with respect to the set B — {1, 2}.
Theorems 1.4 and 1.3 now provide the desired finite multi-unary
algebra, which can (by inspecting the proofs of these theorems) be
shown to be rigid.

Although the converse of Theorem 2.1 fails, we have the following
restricted converse of Corollary 2.2. This result also shows that
while unary operations are sufficient to represent a group as the
automorphism group of a direct power, the corresponding situation
does not obtain in the case of free algebras.

THEOREM 3.1. If 9ί is a finite multi-unary algebra freely gener-
ated by an n-element set, then Aut (8Ϊ) retracts onto a copy of Sn.

Proof. We may suppose that SΆ is freely generated by the set
{1, '—,ri\. For each πeSn, let π* denote the extension of π to an
endomorphism of Sί; then in fact π*eAut(9ϊ) and SS = {TΓ* | π e Sn) is
a subgroup of Aut (5ί) and is isomorphic to Sn under the map 7Γ—>7Γ*.
We shall exhibit a retraction of Aut (Sί) onto S*. For convenience,
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the symbols i, j , k will invariably denote members of {1, •••, n), and
A will denote the carrier-set of SI. Also, the symbol [ ] will denote
the subalgebra of 9Ϊ generated by the enclosed element.

Because the operations of 2ί are unary, A is the union of the
sets [%]. By freeness, no member of the basis can belong to the
subalgebra generated by any other member; thus, [j] = [k] only if
j = k.

Since each [ί] is freely generated by a one-element set (relative
to the variety generated by 8ί), it follows that all [i] are isomorphic.
Moreover, for a e Aut (81), [ia] — [i]a ~ [ϊ\. Hence all sets of the form
[j] and [ίa] have the same finite cardinality, whence no such set can
be properly contained in another.

Fixing a e Aut (81), for each i we can find some j such that ίa e
[j]; it follows that [ia] Q [j], and so [ia] .= [j]. Moreover, the above
remarks imply that [ia] = [k] only when j — k. Thus we define a
transformation πa of {1, , n) by setting iπa equal to the unique j
for which [ia] = [j]. To see that πa e Sn9 note that iπa — kπa implies
[ia] = [ka], i.e., [i]a = [k]a, whence [i] — [k], and so i = Λ.

Clearly the map <x —> π% maps Aut (81) onto £* and is identity on
S*. Moreover, for α, /3e Aut(St) we have [iπaβ] = [ία^S] = [iα]/3 =
[Ϊ7ΓJ/3 = [iπaβ] = [ f e ^ ] for all i, whence πj^ = (πaπβ)* = πiπ*, where-
upon the map a —> TΓ* is the desired retraction.

Added in Proof. Professor J. B. Nation has pointed out to the
authors that the proof of Theorem 3.1 can readily be recast so as
to remove the assumption of finiteness. Moreover, Professor B.
Jόnsson has noted that for an algebra free in a regular variety
the assumption of unary operations can similarly be removed.
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