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DISTRIBUTIVE LATTICES WITH FINITE
PROJECTIVE COVES

A L A N DAY, HERB GASKILL, AND WERNER POGUNTKE

A projective cover in a category, J%Γ, of algebras is a
morphism φ\P-> A where A, Pe-%^, P is projective in JfΓ
and no proper subalgebra of P has A as its direct image
under φ. Projective covers of finite distributive lattices in
the categories *£?, of all lattices and -Ŝ πn of all finite lattices
are determined (when they exist).

1* Introduction* The notion of a projective algebra in a given
variety of algebras, J2Γ, is well-known and coincides with the cate-
gorical notion of g*-projectivity in 3ίΓ, qua category, where g7 is
the class of all surjective homomorphisms in 3ίΓ (c.f. Banaschewski
[5]). Moreover, since such J^-projective algebras (the g7 will be
fixed as above throughout) will be retracts of J%^fτee algebras, the
study of ^-projectives is ultimately linked with the study of sub-
algebras of J ^ free algebras.

In the case of <£?, the variety of all lattices, the sublattice problem
was the first to receive consideration (cf. [11], [13], [18], [19] and
especially Jόnsson and Nation [20]). The first serious treatment of
projective lattices seems to have been McKenzie's monumental paper,
[22], where he showed (among other things) that every finite sublattice
of a free lattice is projective. Kostinsky [21], extended this result
to finitely generated lattices and Freese and Nation, [11] completely
characterized arbitrary projective lattices.

Returing to finite lattices, several characterizations of finite
projective lattices have been found (cf. [22], [16], [17]). Most of
these have been shown interrelated ([11], [17], [20]) and all have fallen
short of proving Jόnsson's conjecture that finite sublattices of free
lattices are characterized by the two semidistributive implications,
(SDA) and (SDV) together with Whitman's condition, (W).

In attempting to prove Jόnsson's conjecture and in constructing
examples of finite projective lattices conflicts between (W) and finiteness
often appear (cf. [20; Lemma 7.4]). In an attempt to clarify the
connection the authors and several others1 in the area have (at present)
unpublished examples of finite posets and partial lattices which if
embedded in a lattice satisfying (W) force this lattice to be infinite.
This relation between (W) and infiniteness is still not completely
understood.

1 B. Sands and I. Rival, Planar Sublattices of a Free Lattice, Canad. J. Math., 30
(1978), 1256-1283.
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The purpose of this paper is to consider a method of producing
finitely generated projective lattices from finite distributive lattices
and to provide necessary and sufficient conditions (on the finite
distributive lattice) for the so-produced projective lattice to be finite.
Hopefully this will provide a beginning in analyzing the (TF)-infini-
teness connection. We also present three structure theorems. The
first classifies the "good" finite distributive lattices by exclusion of
certain sublattices; the second characterizes the resultant finite
projective lattices internally, and the third describes the "building
blocks" from which one produces these finite projective lattices.

The main ideas and results in this paper have had a long gestation
period. They were first obtained (in a very different form) by the
second author and circulated by him in preprint form (Gaskill [14]
and [15]). The other authors determined that his results fit nicely
into the theory of projective covers and that in this theory, GaskilΓs
main theorems could by simplified into their present form.

2 Preliminaries* Let 3ίΓ be a class of lattices. A lattice
P e , X is called , ^projective if for any A,Be^Γ9 epimorphism
(= surjection) φ: A -»B and map ψ:P—>B, there exists a "lift"
f\ P —> A with φ © ψ = ψ. An epimorphism φ: A >̂ B is called 3ίΓ-
essential ("tight" is another name in the literature) if for any other
Ce ,5Γ and ψ: C—> A, φoψ is surjective if and only if ψ is. All of the
classes of lattices we will consider here are closed under the formation
of sublattices and in this case φ: A -» B is essential if and only if no
proper sublattice of A has B as its image under φ. A J^projective
cover is an essential epimorphism φ: P -» B where P is J^projective.
These notions are completely categorical in nature and we suggest
Banaschewski [5] as a general reference.

The classes of lattices we are interested in are ^ff the variety
of all lattices, j^fin, the class of all finite lattices, and £&, the variety
of all distributive lattices. The projective lattices in each of these
classes have been described in Freese and Nation [12], Davey and
Sands [7], and Balbes and Horn [3], respectively. In [4] projective
covers in £& are described. Since we will be dealing only with
finitely generated lattices, we give the characterizations of them.

THEOREM 2.1 ([7] and also [22]). Le£fnn is projective if and
only if it satisfies Whitman's condition (W): a Λ b ^ c V d implies
{α, 6, c, d} f)[a Λ b,c V d] Φ φ.

THEOREM 2.2 ([2]). A finite (=finitely generated) distributive
lattice D is (&-) projective if and only if the set J(D), of join-
irreducibles is closed under the meet operation.
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THEOREM 2.3 ([21]; cf. also [22], and [19]). For a finitely
generated L e JZf, the following are equivalent:

(1) L is projective
(2) L is a sublattice of a free lattice
(3) L satisfies (W) and belongs to έ%,

where & is the class of all finitely generated lattices, L, satisfying:
A, a finitely generated lattice, f:A-»L an epimorphism then for
all xeL, f~\x) = [a(x), β(x)] for some bounded injections a, β: L>-> A.

We also need the "splitting of intervals" construction given
originally in Day [8]. If A is a lattice and I—[u, v] is an interval of
A, then A[I] = (A\I) U (1x2) and the original (and first projection) order
relating A\I and 1 x 2 . There is a canonical epimorphism K: A[I] -» A.

LEMMA 2.4 ([9]). If A e ^ then A[I] e & for all intervals IQ

An interval [u, v] £ A is called a (W)-iailure interval if there
exists a, b, c, d, $ [u, v] such that a Λ b — u and c V d — v.

LEMMA 2.5. For a lattice A and interval I Q A, tc: A[I] -» A is
essential if and only if I is a (WYfailure interval.

3* Projective covers in ^f and J*fnn. Even though in
every lattice is a homomorphic image of a projective lattice (free
lattices are projective), it does not follow that every lattice has a
projective cover in &. An example of such a lattice is Mz in Figure
(i). Suppose P — (x, y, z) -» M3 is a projective cover. If x ^ y V z
then x is join-prime in P. Also since / is essential, P would be
generated by {x A (y V z), y, z}. But then x would have to be a
meet of these generators which is impossible. Hence we have in
P, xVy = xVz = yVz. But by (SDV) we g e t x V y ~ x V z =

xV(yΛz). Therefore by applying /, 1 = a, a contradiction.

Ms
FIGURE (i)

The following result gives the existence of at least some lattices
with projective covers in

THEOREM 3.1. Every finite distributive lattice, D, has an
projective cover.
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Proof. For a suitable finite set, X, consider the bounded epimor-
phism f:FL(X)-»D with lower and upper bounds a, β:D>-* FL(X),
respectively. Now P = (β[M(D)]) ^ FL{X) is finitely generated and
therefore g = f [Pis bounded with lower and upper bounds aP, βP: D >->
P, respectively. Moreover βP = β. We compute aP at a join-prime
U 6 J(D).

aP{u) = Λ{qe β[M(D)]: u S g(q)}
= Λ {/3(m): m e M(D) and u <, m}

Now let Q = (aP[J(D)]) and h = / f Q. fe is surjective, and Q is
projective by 2.3. Moreover as h~\n) is a singleton for all u e J(D), h
is essential. Therefore h:Q -» D is an ^-projective cover.

For the category, ^fίίn9 one can easily see that having an J*ftin-
projective cover is equivalent with being the homomorphic image of
an ^fin-projective. For the case of finite distributive lattices, the
relationship between the two possible projective covers is explicit.

THEOREM 3.2. A finite distributive lattice possesses an J*ftin-
projective cover if and only if its ^-projective cover is finite. In
that case, the two projective covers are equal.

Proof. Since projective lattices satisfy (W), the condition is
sufficient for the existence of an ^in-projective cover.

f
Conversely let P-» D be the .Sfwprojective cover of D. We

must show that P is projective in £f. But ΰ e ^ and as P is finite
we can reach P in a finite number of steps by splitting (TF)-failure
intervals. Since & is closed under the splitting of intervals, we
obtain P e ^ and therefore by 2.3 P is projective in £f.

It is of interest then to know which finite distributive lattices
have finite projective covers in i^. If ^ is the class of all such
distributive lattices, then it is clear that ^ is closed under the
formation of subalgebras and homomorphic images. Our next result
shows that cέ? is not all distributive lattices. (Figure (ii))

FIGURE (ii)
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THEOREM 3.3. L19 L2, L3, Lif Li and Lf are not members of <&.

Proof. We consider Lz first. Easy checking shows that the map
/ in Figure (iii) is an essential epimorphism. Noting that another
copy of L3 appears in the domain of / , we see that an iterated
sequence of essential epimorphisms can be constructed, with no bound
on their cardinality. Since the projective cover of L must factor
through each of these it cannot be finite.

FIGURE (iii)

Re L2: The map in Figure (iv) is essential and its domain has L3 as
a sublattice.

FIGURE (iv)

ReLx: The map in Figure (v) is essential and its domain has Lx as
a sublattice.

FIGURE (V)

Re I/4: The map in Figure (vi) is essential and its domain has L3 as
a sublattice.
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FIGURE (vi)

It is clear that a lattice belongs to <g* if and only if its dual does.
Now ^ is closed under the formation of subalgebras so therefore

is definable by the exclusion of certain sublattices. The remainder
of this paper will be devoted to showing that the six mentioned in
the above list provide such a definable list. That is: —if & —
{D 6 &rtln: Vi = 1, 2, 3, 4, L, ^ D and L\ S D) then gf = <gf.

4* The class *%/ and the first reduction* As has been mentioned
earlier, a finite projective cover of a finite distributive lattice will
be produced after a finite number of splittings of (W)-ίailure intervals.
Two points then become of great interest.

Firstly, by adroit selection, we can initially split the (W)-tailure
intervals that keep the resultant lattice distributive. Such an interval
is called a distributive (TF)-failure interval. It is clear that [u, v] £ L
is such iff L = [u, —>) U (<—, v\. This produces the ^-projective cover

P&φ) £> D of the original lattice D.
Secondly, it will be important to know the structure of (W)-

failure intervals of members of gf. We answer the second question
first.

THEOREM 4.1. For fleg', let [u,v] be a proper (W)-failure
interval in D. Then there exists p, q, r, s eD that generate a sublattice
of D isomorphic to Nt in Figure (vii).

FIGURE (vii)
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Proof. By assumption there exists a, b, c, d e D with a A b = u,
c v d = v and {a, b, c, d} Π [u, v] = ̂ .

Now consider the sublattice of Z) generated by {a, b, c V d} which
must be a homomorphic image of the lattice in Figure (viii) with x~
a, y = c V d and z = b.

FD(x, y, z: x A z ^ y)

FIGURE (viii)

Since the lattice itself is a forbidden sublattice, the homomorphic
image must be a proper one and therefore one of the following must
hold

(A) a A (c V d) <; b
(B) 6 Λ (c V d) ^ a
(C) cV d <*aV b .
Dually by considering the sublattice of D generated by {a A b, c, d)

we must have one of:
(A') c^dV (a Ab)

(BO d ^ c V (α Λ 6)

(CO G Ad^a Ab .
Now if (A) and (AO hold, we have

and

dV{aAbAc) — d\Jc =v.

Therefore, let p = α, q = b V c V d, r = a Ab A c, and s = d.
If (A) and (CO hold, then without loss of generality b = δ V oV d.

But (CO forces the sublattice generated by {a, c, d} to also be a
homomorphic image of the lattice in Figure (viii) with x — c, y = α,
and z = d.

Since a^cVd, aAb^c, and α Λ & £ d follow from our (W)-
failure assumption, we must have

c <| a A b or d ^ a A b

either of which give us our desired sublattice of D.
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Now by symmetry and duality, we need only check the possibility
of (C) and (C) holding while the four other conditions do not. This
produces the two overlapping sublattices of D in Figure (ix).

\aVb

a Ah Xfehd

FIGURE (ix)

Now aAb<cV(aAb)<c\/d forces it to be comparable with
a A (c V d) or b A (c V d) since D does not contain L3. But then as
both pairs {a A (c V d), b A (c V d)} and {c V (a Λ 6), d V (α Λ 6)} are
complemented pairs, we must have {a Λ(cV <£), 6Λ(cVd)} = {cV(αΛδ),
d V (a A b)}. But this implies L2 <> D, a contradiction. Therefore
this case cannot occur.

COROLLARY 4.2. 1. // D does not contain any of the forbidden
sublattices and [u, v] is a proper (W)-failure interval in D, then

Proof. Consider the sublattice of D given by the theorem. If
[u, v] contained a four-element chain, we would have Lx ^ D. There-
fore, all chains in [u, v] have less than four members.

Now, if there are two incomparable members of [uf v], say, x
and y, the condition on chains forces xVy = vorxAy = u. However,
the first case implies Lά <L D and the second, Lf ^ D.

COROLLARY 4.3. 2. // D does not contain any of the forbidden
sublattices and [u, v] is a proper (W)-failure interval in D, then
there are precisely two possibilities for the sublattices guaranteed
by the theorem; namely, Nι and N2 (Figure (vii)). Moreover,

(1) All covering relations in the sublattice are covering relations
in D;

(2) u (and w) have precisely two covers in D;
(3) v (and w) cover precisely two elements of D.

LEMMA 4.4. 5f is closed under homomorphic images.

Proof. Consider an epimorphism f:A-^B. If B contains one
of L3,1/4 and their duals, then so does A as these are protective.
Suppose then that L1 <^ B and consider g: P^(LΣ) -» Llf which is given
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in Figure (iv). Since P&{L^) is protective, there exists g: P&(L^) -> A
with f°g = g. Since Ker g £ Ker g, either Ker g = ΔFsKLύ or Ker g =
Ker g. Therefore, L2 <; A or Z^ ̂  A, respectively. The case for
L2 ^ B is similar as Figure (iii) gives us P&(L2).

LEMMA 4.5. Ŝ  is closed under the splitting of distributive (W)-
failure intervals.

Proof. Take JD 6 gf and let I = [u, ^] be a (TΓ)-failure interval
with 2? = [0, v] U [w, 1]. Assume further that for some i == 1, 2, 3, 4,
Lέ <; JD[/]. (The dual possibilities will follow dually.) Since De&,
Ker (fc IL^ is a proper congruence on Lt and since | [̂ , v] | ^ 3, it has
at most three nontrivial congruence classes. We must then look at
all such possible congruences on the Li and, in order to work in D,
the possible fc[Li]. The contradictions will come from attempts to
fit together these fc[Lt] with the (W)-ΐailure sublattice of D given
by the last theorem. We prove these two cases and leave the rest
for the reader.

Case (i). i = 3 and fc[L3] is given by Figure (x). This forces
the (W)-ίailure sublattice of D to be JV2. But this contradicts
Corollary 2 on the number of elements w can cover.

FIGURE (X)

Case (ii). i — 1 and fc[Lx] is given by Figure (xi). But q > v
implies L2<^ D, a contradiction.

FIGURE (xi)

THEOREM 4.6. De& if and only if its ^-projective cover
6 5f.
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Proof. If P^(D) e gf, then so is D by 4.4. Conversely, if D e 2f,
then so is PJJ)) as P&(D) can be obtained from D by a sequence of
maps A+i = A M -» A where It is a distributive (W)-ίailure interval
in Di. Therefore 4.5 applies.

The above results allow us then to consider only ^-projective
distributive lattices in our proof of the converse G £ r#. The next
section will give the final reduction and this proof.

5* Final reduction and the main theorem* In this section,
we first introduce the notion of a •-decomposition of a finite lattice.
The characterization of the protective Q-indecomposables in <& will
then help us to prove the main theorem.

DEFINITION 5.1. Let K be a finite lattice. A sequence (Klf , Kn)
of intervals Kt of K is called a [^-decomposition of K if and only
if the following holds:

( i ) \JM**Kt = K;
(ii) for every 1 <; i <; n — 1, there is a coatom at in Kt and

an atom bί+1 in Kί+1 such that a, < 0K.+1, lκ. < 6<+1, and [0*., lκ.+ί] =
iίί U Ki+1. See Figure (xii).

FIGURE (xii)

K is \Z\-indecomposable if for any such •-decomposition it follows
that n = 1.

The following lemma is easily proved by induction:

LEMMA 5.2. Lei K be a finite lattice. Then K can be uniquely
^-decomposed into \Z\-indecomposable sublattices.

We next characterize the protective Q-indecomposables in Ŝ .

THEOREM 5.3. Let D be a finite protective distributive lattice
which is linearly and \Z\-indecomposable. If D e^, then D is iso-
morphic to 2* or to a sublattice of 22 x 5.
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Proof. Let us first recall that a distributive lattice L has breadth
n (b(L) = n) if and only if it has a sublattice isomorphic to 2n, but
none which is isomorphic to 2n+1. Equivalently, the width of the
partially orderd set J(L) equals n. This also implies that no element
of L has more than n upper (or lower) covers.

Since L3 as well as L4 are sublattice of 2s, b(D) <; 4. But as D
is linearly indecomposable, it is easy to see that b(D) = 4 already
implies D ~ 24. So the proof of 5.3 will be finished if we prove the
following two claims:

Claim 1. If b(D) = 8, then D ^ 22 x k for some 2 ̂  & ̂  5.

2. If b{D) = 2, then D = 3 x /b for some 3 <, k <* 5.

Proof of Claim 1. Let C be a sublattice of Z) isomorphic to 23

such that covers in C are covers in D; let α, 6, c be the atoms of
C, e: — a Λ b. We first notice that if a and b are join-reducible, then
in order not to generate Li as a sublattice of D the lower covers
e Φ u — < a and β ̂  v — < b must satisfy uΛv = uΛe = vΛe which
forces a cover-preserving sublattice of D isomorphic to 22 x 3 It
also follows that in this case, c, ee J(D) since Li S D-

FIGURE (xiii)

Suppose now that b and c are join-irreducible. We will show that
a is also in J{D) and e = 0.

Assume to the contrary that a has another lower cover u Φ e.
Since D is projective in 2$, e = b A c e J(D) and e Λ u must be the
unique lower cover of e (see Figure (xiv)). Since D is Π-indecom-
posable, D Φ [0, u] U [e, 1] and therefore t & < / = V { # e - D : # Λ e = eΛw}.
Moreover b S f and c S f imply there exists an upper cover, v, of
a distinct from α V b and α V c This however would force Lf <Ξ D
which is a contradiction and therefore α 6 J(D).

FIGURE (xiv)
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As the partially ordered set Jφ) has width 3, every join-irreducible
element of D is either beneath or above at least one of a, b, c, so
every element of Jφ) is comparable with e. As D is linearly inde-
composable, e == 0.

It is now clear that by starting with a cover-preserving C = 23

inside D and by "going down" until the lowest cube the atoms are
elements of Jφ) and by also "going up" dually, we end up with a
cover-preserving 0 — 1-sublattice E isomorphic to 22 x k for some
2 £ k <; 5—note that k ^ 6 is impossible, since Lt <ί 22x6! As J(E)Q
Jφ) by construction and E has the same length as D, it follows that
J(E) = Jφ) and E - D.

Proof of Claim 2. As ΰ has breadth two and is linearly inde-
composable, there are precisely two atoms say a and 6. Moreover
since D is Π-in<lempocosable, each of these atoms has another upper
cover besides a V b. This produces the interval sublattice of D in
Figure (xv).

FIGURE (XV)

Since L2 ^ D, either e or / must be meet irreducible so without
loss of generality assume feM(D). This implies D = [c, 1] U [0, / ] .

Now suppose e has another upper cover g Φ e V f and assume
g e Jφ). If h = \/ {x e D: x A g = e} we have e V / < h since D is
•-indecomposable. But bφ) = 2 implies [e V /, h] is a chain and
therefore h e Jφ). However this gives g Ah = e = c V d& Jφ) which
is a contradiction on the projectivity of D. Therefore if e has another
upper cover g Φ e V /, g must be join-reducible. Since any lower
cover of g must be in [c, 1] we end up with a join-irreducible k
covering c and an interval sublattice of D as in Figure (xvi).

FIGURE (xvi)
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By considering the interval [a, 1] in D and the fact that / e M(D),
it follows that k must have an upper cover in J(D) which produces
a sublattice isomorphic to 3 x 5. Further extensions cannot happen
as Lt ^ 3 x 6.

This finishes the proof of Theorem 5.3.

5.4. Proof of the main theorem

We only have to show that, given any projective D e ̂ , it follows
that De<^. Let (Dlf , Dn) be the unique Π-decomposition of D
into Π-indecomposables. First observe that in the case n = 1, we
are done, since 24 as well as 22 x 5 have finite protective covers (see
Figure xvii). So we may assume n > 1; note that all the Dά{l <̂  j <*n)
are protective. What we show is:

X 5)

FIGURE (xviii)

(1) that all the intervals of D of the form in Figure (xviii)
have finite projective covers, and

- 1

FIGURE (xviii)

(2) that the projective covers of these parts can be pasted
together to give the projective cover of D.

To prove (1), it is easy to check that because of 5.3 andDeS^,
all the pieces are sublattices of the lattices in Figure (xix). The
proof will be concluded by the following two lemmas:



58 ALAN DAY, HERB GASKILL, AND WERNER POGUNTKE

FIGURE (xix)

FIGURE (XX)

5.5. Let L be a finite lattice with finite projective cover L. If
there are two coatoms a, b of L such that L = [0, α] U {δ, 1}, then
there exist coatoms α, δ in L with L = [0, ά] U {δ, 1}.

Proof. Look at the essential map / : L -» L with lower and upper
bound α, /3: L —> L, respectively. Since / is essential, it follows that
L = [0, αα] U [βb, aϊ\. This implies al = ̂ 1 , αα = /Sα, and αδ = /36,
and by setting α: = aa, b: — βb, we get L — [0, α] U {b, 1}.

5.6. Let L be a finite lattice which is Π-decomposable into two
pieces [0, a] U [ί>, 1] (i.e., a A b < α, b < a V &). If the sublattices
[0, αVί>] and [α Λ b, 1] have finite projective covers, then L has a
finite projective cover.

Proof. By 5.3 the projective cover Px of [0, a V δ] has a hook at
the top, the cover P2 of [a Λ δ, 1] has one at the bottom. Pasting
Px and P2 together by identifying the hooks gives a lattice P which
is easily seen to satisfy (W) and to be the projective cover of L.
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