SIMPLICIAL SUBDIVISION OF INFINITE DIMENSIONAL COMPACT CUBES

Thomas E. Armstrong

Abstract

Finite dimensional polyhedra may be characterized as those finite dimensional convex sets S admitting a finite a simplicial subdivision with vertex set equal to the extreme point set of S. Alfsen has shown the existence of α-polytope which doesn't admit even an infinite simplicial subdivision of this type. It is shown here that any infinite dimensional compact cube does admit subdivisions of this type.

1. Introduction. In [5] cubes (i.e., affine isomorphs of unit balls of $\mathscr{C}(X)$ spaces with X compact and Hausdorff) were examined. In particular the compact cubes (i.e., unit balls of dual $\mathscr{C}(X)$ spaces and their affine isomorphs) were examined. The unit ball of $\mathscr{C}(X)$ is a compact cube iff $\mathscr{C}(X)$ is Banach lattice isomorphic to $L^{\infty}(S, \Sigma, \mu)$ for some positive localizable measure space (S, Σ, μ). The predual of such a $\mathscr{C}(X)$ space is a unique subspace of $\mathscr{I}(X)$ which consists of the signed normal measures $\mathscr{N}(X)$ on X, [7], [23], [5]. $\mathscr{N}(X)$ is Banach lattice isomorphic to $L^{1}(S, \Sigma, \mu),[7],[23],[5] . \quad X$ is said to be hyperstonian, iff it is extremally disconnected and possesses a collection $\left\{\mu_{\alpha}\right\}$ of normal probability measures such that $X_{\alpha}=\operatorname{supp}\left(\mu_{\alpha}\right)$ forms a disjoint collection of clopen subsets of X with dense union. The measure space (S, Σ, μ) can be taken to be $S=\bigcup_{\alpha} X$ with $\mu=\mu_{\alpha}$ on each $X_{\alpha} . L^{1}(S, \Sigma, \mu)$ or $\mathscr{N}(X)$ is Banach lattice isomorphic with the: \mathfrak{I}^{1}-direct sum $\left[\sum_{\alpha} L^{1}\left(\mu_{\alpha}\right)\right]_{1},[5]$. There is a unique affine toplogy on any compact cube rendering it compact. This may be considered as the weak* topology $\sigma(\mathscr{C}(X), \mathscr{N}(X))$ or $\sigma\left(L^{\infty}, L^{1}\right)$.

Examples of compact cubes include the Hilbert cube $\left\{\left(\chi_{n}\right) \in \mathfrak{I}^{2}:\left|\chi_{n}\right| \leqq\right.$ n^{-1} when $\left.n \in N\right\}$, which is norm compact in the Hilbert space \mathfrak{r}^{2}, and its affine homeomorph the unit ball of \mathfrak{l}^{∞} with topology $\sigma\left(\mathfrak{l}^{\infty}, \mathfrak{l}^{1}\right)$. The Tychonoff cube over a set T is a more general example and is defined as the unit ball of $\mathfrak{l}^{\infty}(T)$ with the topology $\sigma\left(\mathfrak{l}^{\infty}(T), \mathfrak{r}^{1}(T)\right)$ and is usually thought of as $\Pi_{t \in T}[-1,1]$. Another, more esoteric, example is the unit ball of $\mathscr{\mathscr { C }}^{\infty}(\theta)$ of all bounded harmonic functions on an open subset θ of a harmonic space of Constantinescu and Cornea on which constants are superharmonic, [4]. This compact cube has as its compact affine topology the topology of locally uniform convergence on θ. $\mathscr{C} \mathscr{C}^{\infty}(\theta)$ is isomorphic to $\mathscr{C}(X)$ for a hyperstonian compact Hausdorff space X which is the harmonic part of the Feller boundary of θ. $\mathscr{N}(X)$ is generated by the harmonic measures on X, [4], [24].

In [5] the infinite dimensional notions of polyhedrality which
have been put forth by various authors were examined and it was determined that for infinite dimensional cubes only the Alfsen-Nordseth definition of polyhedrality was true. One notion of polyhedrality for finite dimensional convex sets is the existence of a finite simplicial subdivision. This forms the basis of much of piecewise linear topology in finite dimensions. It would be nice if it were possible to carry out the program of piecewise linear topology in infinite dimensions. One very important tool in infinite dimensional topology is the Hilbert cube manifold. We shall exhibit subdivisions of compact cubes by Bauer simplexes. From this it follows that Hilbert cube manifolds admit simplicial subdivision. We will also see that L^{∞} spaces admit tesselation by Bauer simplexes. Hence, it would appear that L^{∞} manifolds have Bauer simplicial subdivisions.

One reason that the possibility of simplicial subdivision of infinite dimensional convex sets hasn't been considered is the following. In [2] Alfsen asked whether there was a characterization of those convex compact sets K such that Caratheodory's theorem was valid in that given any $k \in K$ there was a Choquet simplex S_{k} containing k with the extreme points, $\xi\left(S_{k}\right)$ of S_{k} in those of K. Of course in finite dimensions this is equivalent to Caratheodory's theorem and is valid for any compact convex K hence for all compact polyhedra. This is used by piecewise linear topologists to show that any compact polyhedron admits a simplicial subdivision (which consists of simplexes of the same dimension as the polyhedron) whose simplexes have extreme points contained in the extreme points of the original polyhedron. Alfsen, [2], gives an example of an α-polytope K, [18], and $k \in K$ for which there is no simplex S_{k} of the type prescribed by Caratheodory's theorem. We shall see that, in addition to Choquet simplexes, compact cubes satisfy Caratheodory's theorem. We conjecture that any Alfsen-Nordseth polyhedron satisfies Caratheodory's theorem and in fact admits Caratheodory simplicial subdivisions.

2. Convex complexes and simplicial subdivisions.

Definition 2.1.

1. A convex precomplex is a collection $\left\{C_{\alpha}\right\}$ of closed convex subsets of a locally convex Hausdorff space such that $C_{\alpha} \cap C_{\beta}$ is a face both of C_{α} and C_{β} for all α, β.
2. A convex precomplex is minimal iff when $C_{\alpha} \neq C_{\beta}$ then C_{a} isn't a face of C_{β}.
3. A convex complex is a precomplex which contains along with each C_{α} all of its closed faces.

Remarks. 1. Nontopological definitions are obtained if the
ambient vector space is given the finest locally convex topology. A precomplex then consists of linearly closed sets. Any face of a linearly closed convex set is linearly closed hence (3) of Definition 2-1 is the requirement that if C belongs to a complex so do all of its faces.
2. If A is a convex precomplex, adding all closed faces of its members to A yields the smallest convex complex containing the precomplex. If every element of a complex is in an element of the complex which is maximal with respect to inclusion the collection of maximal elements is a minimal precomplex which generates the complex.
3. By restricting the elements of precomplex to be in a certain class of convex sets one obtains the notions of Choquet simplicial complex, Bauer simplicial complex, cubical complex, compact cubical complex, convex compact complex etc. One must make sure that the class of convex sets one is using is closed upon taking closed faces. For instance if one considers cubes with their norm topology (as unit balls of $\mathscr{C}(X)$ spaces) not all norm closed faces are cubes [5] but compact cubes with their compact affine topology only have compact cubes as closed faces.
4. Any Hilbert cube manifold \mathscr{C} is homeomorphic to $C_{1} \times C_{2}$ where C_{1} is the union of a finite dimensional simplicial complex and C_{2} is a Hilbert cube [6]. Modulo orientability, there is a convex complex $\left\{S_{\alpha} \times C_{2}\right\}$ with $\bigcup_{\alpha}\left\{S_{\alpha} \times C_{2}\right\}=C_{1} \times C_{2}$ with each S_{α} a finite dimensional simplex.

One may define the sleleton of a closed convex set to be the complex of all closed faces. For any cardinal number n one may define n-complex as all closed faces of topological dimension at most n and the n^{-}-complex as all elements of the n-complex not of dimension n. The $\$_{0}^{-}$complex is the finite dimensional skeleton. Fon any cardinal n the n-skeleton consists of the faces of dimension n. The 0 -skeleton is the collection of extreme points. The 1 -skeleton consisting of all edges has been studied in [14] for compact convex sets in Banach spaces.

Definition 2.2. (a) A Choquet simplicial subdivision of a closed convex set C is a minimal Choquet simplicial precomplex whose union is C.
(b) A Caratheodory simplicial subdivision, $\left\{S_{\alpha}\right\}$, of a closed convex set C is a Choquet simplicial subdivision with $\xi\left(S_{\alpha}\right) \subset \xi(C)$ for all α.

Remark. It is very easy to give Choquet simplicial subdivisions of closed convex sets but even α-polytopes needn't have Caratheodory simplicial subdivision.
3. Construction of subdivision of cubes. The construction of a Caratheodory Bauer simplicial subdivision of a compact cube that we are about to give is a straight forward generalization of a well known procedure for subdividing finite dimensional cubes as found in [16] and algorithmatized in [12].

Since a simplicial subdivision of one cube readily gives corresponding subdivisions of all affine homeomorphs we shall only consider subdivisions of the positive unit ball of $L^{\infty}(S, \Sigma, \mu)$ of a positive localizable measure space (S, Σ, μ) which is denoted by \square^{+}. The cube \square^{+}is equipped with the topology $\sigma\left(L^{\infty}, L^{1}\right)$ under which all monotone nets are convergent. It is well known that the bounded linear functions on \square^{+}which arise as restrictions to \square^{+}of elements of $L^{1}(S, \Sigma, \mu)$ are just the $\sigma\left(L^{\infty}, L^{1}\right)$ continuous ones or the order continuous ones. By abuse of notation we may consider $\xi\left(\square^{+}\right)$as $\left\{\chi_{A}: A \in \Sigma\right\}$ whereas it actually consists of equivalence class modulo locally μ-negligible sets. When ordered by $L^{\infty+}(X, \Sigma, \mu), \xi\left(\square^{+}\right)$is a Boolean algebra isomorphic with the hyperstonian measure algebra of μ hence is a complete Boolean algebra.

Definition 3.1. (a) Chain (\square^{+}) denotes all chains (i.e., linearly ordered subsets) of $\xi\left(\square^{+}\right)$.
(b) C-Chain $\left(\square^{+}\right)$denotes all order complete chains in $\xi\left(\square^{+}\right)$.
(c) M-Chain (\square^{+}) denotes all chains of \square^{+}maximal with respect to inclusion.

Remarks. 1. If $C \in \operatorname{Chain}\left(\square^{+}\right)$then \bar{C}, the $\sigma\left(L^{\infty}, L^{1}\right)$ closure of C, is the smallest element of C-Chain $\left(\square^{+}\right)$containing it. Thus all element of C-Chain $\left(\square^{+}\right)$are $\sigma\left(L^{\infty}, L^{1}\right)$ compact.
2. M-Chain $\left(\square^{+}\right) \subset C$-Chain $\left(\square^{+}\right)$.
3. C-Chain $\left(\square^{+}\right)$is closed under arbitrary intersections.
4. The closure of M-Chain $\left(\square^{+}\right)$under arbitrary intersections is all $C \in C$-Chain $\left(\square^{+}\right)$with $\{0,1\} \subset C$. The proof of this is analogous to the proof that every proper filter is the intersection of all ultrafilters containing it.
5. Both Chain $\left(\square^{+}\right)$and C-Chain $\left(\square^{+}\right)$are increasing families with respect to inclusion (i.e., they are filtering to the left).
6. On any chain the order topology and $\sigma\left(L^{\infty}, L^{1}\right)$ coincide.

Definition 3.2. For $f \in \square^{+}, C_{f} \in C$-Chain (f) denotes the closure of the chain $\left\{\chi_{\{f \geqq 2\}}: 0<\lambda \leqq\|f\|_{\infty}\right\}$.

Remarks. 1. C_{f} contains $\chi_{\{f>\lambda\}}=\sup \left\{\chi_{\{f \geq \lambda+1 / n\}}: n \in N, \lambda+1 / n<\right.$ $\left.\|f\|_{\infty}\right\}$ for any $0 \leqq \lambda<\|f\|_{\infty} . \quad C_{f}$ is the closure of $\left\{\chi_{\{f>\lambda\}} 0 \leqq \lambda<\|f\|_{\infty}\right\}$.
2. $0 \in C_{f}$ iff $\left\{f=\|f\|_{\infty}\right\}=\varnothing$ and $1 \in C_{f}$ iff $\{f>0\}=X$.

Definition 3.3. For any $C \in \operatorname{Chain}\left(\square^{+}\right), S_{C}$ denotes the $\sigma\left(L^{\infty}, L^{1}\right)$ closed convex hull of C.

Remarks. 1. $S_{C}=S_{\bar{C}}$ and $\bar{C}=\xi\left(S_{C}\right)$ hence, we need only consider S_{C} with C complete.
2. If $C_{1} \subset C_{2}$ are in C-Chain $\left(\square^{+}\right)$then $\xi\left(S_{C_{1}}\right) \subset \xi\left(S_{C_{2}}\right)$ so $S_{C_{1}} \subset S_{C_{2}}$.

Proposition 3.1. Let $C \in C$-Chain (\square^{+}) have infimum χ_{A} and supremum χ_{B} in \square^{+}. Let S_{C}^{n} be the $\left\|\|_{\infty}\right.$-closed convex hull of C and let S denote the class of $f \in \square^{+}$with $\chi_{A} \leqq f \leqq \chi_{B}$ and with $C_{f} \subset C$. It is the case that $S=S_{c}^{n}=S_{C}$.

Proof. Note that any $f \in S_{C}$ must satisfy $\chi_{A} \leqq f \leqq \chi_{B}$. Next note that if f is in the convex hull of C so that $f=\sum_{i=1}^{n} \lambda_{i} \chi_{A_{i}}$ where $\lambda_{i}>0$ for all $\sum_{i=1}^{n} \lambda_{i}=1$ and $\left\{\chi_{A_{i}}: i=1, \cdots, n\right\} \subset C$ then $C_{f} \supset\left\{\chi_{A_{i}}: i=\right.$ $1, \cdots, n\}$. Thus, S contains the convex hull of C.

If $f \in S$ set $f_{n}=1 / n \sum_{k=1}^{n} \chi_{\{f \geqq k / n)}$ for $n \in N$. It is easily verified, even when $\|f\|_{\infty}<1$, that f_{n} is in the convex hull of C. Since $\left\{f_{n}: n \in N\right\}$ converges uniformly to f we have $f \in S_{c}^{n}$ thus, $S \subset S_{c}^{n}$.

If $\left\{f_{1}, f_{2}\right\} \subset S$ then $\left\{f_{1} \wedge f_{2}, f_{1} \vee f_{2}\right\} \subset S$. That $\chi_{A} \leqq f_{1} \wedge f_{2} \leqq$ $f_{1} \vee f_{2} \leqq \chi_{B}$ is immediate. If $\lambda>0$ then $\left\{f_{1} \vee f_{2} \geqq \lambda\right\}=\left\{f_{1} \geqq \lambda\right\} \cup\left\{f_{2} \geqq \lambda\right\}$ and $\left\{f_{1} \wedge f_{2} \geqq \lambda\right\}=\left\{f_{1} \geqq \lambda\right\} \cap\left\{f_{2} \geqq \lambda\right\}$. From these observations the inclusions $C_{f_{1} \wedge f_{2}} \subset C$ and $C_{f_{1} \vee f} \subset C$ are apparent.

If $\left\{f_{\alpha}\right\} \subset S$ is any order convergent net in S with limit $f \in \square^{+}$ then $f \in S$. This need only be verified for increasing and decreasing nets. For instance, if $\left\{f_{\alpha}\right\}$ is increasing then $\chi_{A} \leqq f \leqq \chi_{B}$ and for any $0<\lambda \leqq\|f\|_{\infty}, \chi_{\left\{f_{\alpha} \leq \lambda\right\}}=\inf _{s>0} \sup _{\alpha} \chi_{\left\{f_{\alpha} \geqq \lambda-\varepsilon\right\}} \in C$.

Since any uniformly convergent net in \square^{+}is order convergent, S is uniformly closed. Since the convex hull of C lies in S and $S \subset S_{c}^{n}$ we have $S=S_{c}^{n}$.

If (X, Σ, μ) were a finite measure space we could make use of a result of Grothendiek [9, 8.3.6] which asserts that for any element f of the $\sigma\left(L^{\infty}, L^{1}\right)$ closure of S_{c}^{n} there is a sequence in S_{c}^{n} which converges in $L^{1}(S, \Sigma, \mu)$ to f. From this sequence we could extract a subsequence convergent μ a.e. to f. Any such subsequence is easily seen to be order convergent. Hence, f would be an order limit of $S_{c}^{n}=S$ so f would be in S. Thus, when (X, Σ, μ) is a finite measure space $S=S_{C}$.

For any $E \in \Sigma$ with $\mu(E)<\infty$ let C_{E} be the complete chain in the extreme points of the unit ball of $L^{\infty}\left(E, \Sigma,\left.\mu\right|_{E}\right)$ consisting of functions of the form $\left.f\right|_{E}$ with $f \in C$. If $h \in S_{C}$ the remarks of the preceding paragraph show that $\chi_{A \cap E} \leqq\left. h\right|_{E} \leqq \chi_{B \cap E}$ and that if $0<\lambda \leqq$ $\left\|\left.h\right|_{E}\right\|_{\infty}$ then $\chi_{\left\{| |_{E} \geq \lambda\right\}} \in C_{E}$. Note that

$$
\left\{\left.h\right|_{E} \geqq \lambda\right\} \cap F=\left\{\left.h\right|_{F} \geqq \lambda\right\} \quad \text { when } \quad F \subset E
$$

and that $\{h \geqq \lambda\}=\sup \left\{\left\{\left.h\right|_{E} \geqq \lambda\right\}: \mu(E)<\infty\right\}$. If $\left\{A_{E}: \mu(E)<\infty\right\}$ is a collection with $\chi_{A_{E}} \in C_{E}$ for all E with $\mu(E)<\infty$ and with $A_{E} \cap F=A_{F}$ whenever $F \subset E$ it may be verified that there is one and only one A with $\chi_{A} \in C$ with $A \cap E=A_{E}$ for all $E \in \Sigma$ with $\mu(E)<\infty$. By applying this to the case where $A_{E}=\left\{\left.h\right|_{E} \geqq \lambda\right\}$ for $E \in \Sigma$ with $\mu(E)<\infty$ and with $\|h\|_{\infty}=\left\|\left.h\right|_{E}\right\|_{\infty}$ we may deduce that $\chi_{[h \geqq k \mid} \in C$ if $0<\lambda \leqq\|h\|_{\infty}$. This suffices to show that $S=S_{C}$ hence completes the proof.

Remark. The fact that \square^{+}was a compact cube only used to show that $S=S_{C}$. Of course the weak* closed convex hull S_{C} of C only makes sense when \square^{+}is a compact cube. If \square^{+}is the positive unit ball of $\mathscr{C}(X)$ with X a Stonian compact Hausdorff space S_{C} could be defined as the closed conxex hull of C for the order topology. Although the order topology on \square^{+}is an affine topology iff X is hyperstonian it is a compact T_{1} topology. Each S_{C} is compact and T_{1} in the order topology. If \square^{+}is the positive unit ball of $\mathscr{C}(X)$ with X only a basically disconnected compact Hausdorff space, [10], a careful perusal of the proof of Proposition 3.1 shows that $S=S_{C}^{n}$. The validity of this identity when X is only totally disconnected is not known.

Definition 3.4.

$$
\Sigma\left(\square^{+}\right)=\left\{S_{c}: C \in M \text {-Chain }\left(\square^{+}\right)\right\} .
$$

Proposition 3.1 shows that $\square^{+}=\bigcup \Sigma\left(\square^{+}\right)$and that $\xi\left(S_{c}\right) \subset \xi\left(\square^{+}\right)$ for all $C \in M$-Chain(\square^{+}). To show that $\Sigma\left(\square^{+}\right)$is a Caratheodory Bauer simplicial subdivision of \square^{+}we need to establish two facts. First, we need to show that S_{C} is a Bauer simplex for each $C \in M$ Chain $\left(\square^{+}\right)$. This may be done just by showing that each S_{C} is affinely isomorphic to some simplex since then S_{C} is itself a simplex which is a Choquet simplex under the topology $\sigma\left(L^{\infty}, L^{1}\right)$ which is a Bauer simplex since $\xi\left(S_{C}\right)=C$ is $\sigma\left(L^{\infty}, L^{1}\right)$ compact. Second, we need to show that $S_{C_{1}} \cap S_{C_{2}}=S_{C_{1}}$ iff $C_{1} \subset C_{2}$ when C_{1} and C_{2} are distinct elements of M-Chain $\left(\square^{+}\right)$.

Proposition 3.2. If $C \in C$-Chain $\left(\square^{+}\right)$then S_{C} is a Bauer simplex.
Proof. We must show that S_{C} is affinely asomorphic to some simplex. If the proposition is valid S_{C} will be affinely isomorphic to $\mathscr{P}(C)$, the Bauer simplex of all probability Radon measures on the compact Hausdorff space C. One affine isomorph of $\mathscr{P}(C)$ is the convex set $\mathscr{D}(C)$ of distribution functions on $C . \quad \mathscr{D}(C)$ consists
of all functions g from C to $[0,1]$ which are decreasing, have $g(\inf (C))=1$ and are left continuous on C so that if $x \in C$ is the supremum of $\{y \in C: y<x\}$ then $g(x)=\inf \{g(y): y \in C, y<x\}$. The affine isomorphism between $\mathscr{P}(C)$ and $\mathscr{D}(C)$ is gotten by assigning to $p \in \mathscr{P}(C)$ its distribution function d_{p} which is defined by $d_{p}(x)=$ $p\{y \in C: y \geqq x\}$. The details of this affine isomorphism is standard knowledge when C is order isomorphic to $[0,1]$ and is folk lore otherwise. We shall establish an affine isomorphism between $\mathscr{O}(C)$ and S_{C} or, more precisely, between $\mathscr{D}(C)$ and S defined in Proposition 3.1. It is helpful to note that $\mathscr{D}(C)$, when given the pointwise ordering as a set of real functions on C, is a lattice with the usual lattice operations and actually is a complete lattice (the supremum of a family is the left continuous regularization of the pointwise supremum and the infimum is the pointwise infimum).

Let $x_{1} \geqq x_{2} \cdots \geqq x_{n}$ be a finite subchain of C and let $\lambda_{1}, \cdots, \lambda_{n}$ be positive reals with $\sum_{i=1}^{n} \lambda_{i}=1$. Set $f=\sum_{i=1}^{n} \lambda_{i} x_{i} \in S_{C}$. Let $g \in \mathscr{D}(C)$ be d_{p} where $p=\sum_{i=1}^{n} \lambda_{i} \hat{o}_{k_{i}}$ so that $g(y)=\sum_{i=1}^{k} \lambda_{i}$ iff $x_{k} \geqq y>x_{k+1}$ for $k=1, \cdots n$ (where $x_{n+1}=\inf (C)$) and $g(y)=0$ if $y>x_{i}$. The correspondence $\Phi: f \rightarrow g$ is $1-1$ and affine between the convex set of f in S_{C} with finitely many values and the convex set of g in $\mathscr{O}(C)$ with finitely many values. Furthermore, $\Phi(f) \geqq \Phi(\widetilde{f})$ iff $f \geqq \widetilde{f}$.

For any $f \in S_{C}$ let $\left\{f_{n}\right\}$ be the sequence of finite valued elements of S_{C} given in the second paragraph of the proof of Proposition 3.1. Define for $g \in \mathscr{O}(C)$ the analogous sequence $\left\{g_{n}\right\}$ of finite valued elements of $\mathscr{O}(C)$. The sequence $\left\{f_{n}\right\}$ increases uniformly to f and the sequence $\left\{g_{n}\right\}$ increases uniformly to g. If $\widetilde{g}_{n}=\Phi\left(f_{n}\right)$ then $\left\{\widetilde{g}_{n}\right\}$ increases uniformly to some $\Phi(f) \in \mathscr{D}(C)$ for which, as is easily verified, $\left\{[\Phi(f)]_{n}\right\}=\left\{\widetilde{g}_{n}\right\}$. The correspondence $f \rightarrow \Phi(f)$ is affine (as the continuous extension of uniformly continuous Φ on the uniformly dense set of finite valued elements of $\left.S_{C}\right)$. If $g \in \mathscr{D}(C)$ the element $f=\lim _{n \rightarrow \infty} \Phi^{-1}\left(g_{n}\right)$ of S_{C} has $\Phi(f)=g$. Thus, Φ is surjective. Since both $f \in S_{C}$ and $g \in \mathscr{D}(C)$ are uniquely determined by the sequences $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}, \Phi$ is seen to be injective. Thus, $\Phi: S_{C} \rightarrow \mathscr{D}(C)$ is an affine isomorphism. This establishes the proposition.

Remarks. 1. The affine isomorphism between S_{C} and $\mathscr{P}(C)$ is still valid even if \square^{+}is just the positive unit ball of $\mathscr{C}(X)$ with X Stonian.
2. If X is only basically disconnected S_{c}^{n} is affinely isomorphic to the (nonChoquet) simplex of all probability Borel measures on the topological space C equipped with the order topology. If S_{C}^{n} is given the norm $\left\|\|_{\infty}\right.$ and $\mathscr{D}(C)$ is given the uniform on C then S_{c}^{n} and $\mathscr{O}(C)$ are isometric under Φ.

Proposition 3.3. Let $C \in C$-Chain $\left(\square^{+}\right)$.
(i) If C^{\prime} is a complete subchain of C then $S_{C^{\prime}}$ is a closed face of S_{c}.
(ii) If F is a closed face of S_{C} then $F=S_{C^{\prime}}$ for the complete subchain $C^{\prime}=F \cap C$ of C.
(iii) $S_{C} \cap S_{C^{\prime}}=S_{C \cap C^{\prime}}$ is a face both of S_{C} and $S_{C^{\prime}}$ when $C^{\prime} \in$ C-Chain (\square^{+}).

Proof. (i) and (ii) The closed faces of a Bauer simplex are the closed convex hulls of closed sets of extreme points. The closed sets of extreme points of S_{c} are the complete subchains of C.
(iii) That $S_{C \cap C^{\prime}} \subset S_{C} \cap S_{C^{\prime}}$ is immediate. When $f \in S_{C} \cap S_{C^{\prime}}$ then $C_{f} \subset C \cap C^{\prime}$ so $f \in S_{C \cap C^{\prime}}$ thus $S_{C \cap C^{\prime}}=S_{\sigma \cap} S_{C^{\prime}}$.

Corollary 3.3.1. $\Sigma\left(\square^{+}\right)$is a Caratheodory Bauer Bauer simplicial subdivision of \square^{+}.

Corollary 3.3.2. If $S \in \Sigma\left(\square^{+}\right)$its $\sigma\left(L^{\infty}, L^{1}\right)$ closed faces and its \| $\|_{\infty}$-closed faces agree and each such face is the $\left\|\|_{\infty}\right.$-closed convex hull of its extreme points.
4. Barycentric subdivisions of cubes. Simplicial tesselations of L^{∞}. If \square^{+}is the positive unit ball of $L^{\infty}(S, \Sigma, \mu)$ it is the order interval $\{x: 0 \leqq x \leqq 1\}$. Given any $e \in \xi(\square)$ we may order $L^{\infty}(S, \Sigma, \mu)$ so that it becomes an M-space with e as order unit and with \square as unit ball. The positive unit ball, \square_{a}^{+}, under this ordering is $(e-\square) \cap \square$ and the positive cone is $\bigcup_{n=1}^{\infty} n \cdot \square_{e}^{+}$. The mapping $R_{e}: f \rightarrow f \cdot e$ is an isometry of $L^{\infty}(S, \Sigma, \mu)$ taking \square^{+}onto \square_{e}^{+}. The map R_{e} is involutory and is a $\sigma\left(L^{\infty}, L^{1}\right)$ isomorphism.

Proposition 4.1.

$$
R_{e}\left(\Sigma\left(\square^{+}\right)\right)=\Sigma\left(\square_{e}^{+}\right) .
$$

Proof. $R_{e}\left(\Sigma\left(\square^{+}\right)\right)$is a simplicial subdivision of \square_{e}^{+}consisting of $\left\|\|_{\infty}\right.$-closed convex hulls of sets of the form $R_{e}(C)$ where $C \in M$-Chain $\left(\square^{+}\right)$. Note that if $\{f, g\} \subset \square$ and \geqq_{e} is the order on $L^{\infty}(S, \Sigma, \mu)$ with e as order unit then $f \geqq{ }_{e} g$ iff $f e \geqq g e$. Since $R_{e}\left(\xi\left(\square^{+}\right)\right)=\xi\left(\square_{e}^{+}\right)$ it follows that $R_{e}\left(C\right.$-Chain $\left.\left(\square^{+}\right)\right)=C$-Chain $\left(\square_{e}^{+}\right)$and that

$$
R_{e}\left(M \text {-Chain }\left(\square^{+}\right)\right)=M \text {-Chain }\left(\square_{e}^{+}\right) .
$$

That $R_{e}\left(\Sigma\left(\square_{e}^{+}\right)\right)=\Sigma\left(\square_{e}^{+}\right)$is now immediate.
Proposition 4.2. 1. $\widetilde{\Sigma}(\square)=\bigcup\left\{\Sigma\left(\square_{e}^{+}\right): e \in \xi(\square)\right\}$ is a simplicial subdivision of \square.
2. The zero skeleton of $\widetilde{\Sigma}(\square)$ is the set of geometric centers of $\sigma\left(L^{\infty}, L^{1}\right)$ closed faces of \square.

Proof. 1. $\widetilde{\Sigma}(\square)$ consists of Bauer simplexes. If $f \in \square$ and $e=\chi_{\{f \geq 0\}}-\chi_{\{f<0\}}$ then $f \in \square_{e}^{+}$hence is in some element of $\Sigma\left(\square_{e}^{+}\right)$. Thus $\widetilde{\Sigma}(\square)$ covers \square.

To show that $\widetilde{\Sigma}(\square)$ is a subdivision it only remains to show that if S_{1} and S_{2} are distinct elements of $\widetilde{\Sigma}(\square)$ then $S_{1} \cap S_{2}$ is a proper face both of S_{1} and S_{2}. If $S_{1} \in \Sigma\left(\square_{e}^{+}\right)$then $S_{1} \cap S_{2}$ is a proper face of S_{1} and of S_{2} iff $R_{e}\left(S_{1}\right) \cap R_{e}\left(S_{2}\right)$ is a proper face of $R_{e}\left(S_{1}\right)$ and of $R_{e}\left(S_{2}\right)$. Consequently we may assume that $S_{1} \in \Sigma\left(\square^{+}\right)$and that $S_{2} \in \Sigma\left(\square_{f}^{+}\right)$where $f=\chi_{A}-\chi_{A} c \in \xi(\square)$. Note that $g \in \square^{+} \cap \square_{f}^{+}$ iff $R_{f} g=g$ iff $0 \leqq g \leqq \chi_{A}$. For any such $g, R_{f}\left(\chi_{B}\right)=\chi_{B}$ if $B \in C_{g}$. Thus $R_{f}\left(C_{g}\right)=C_{g}$. We have $g \in S_{2}$ iff $C_{g}=R_{f}\left(C_{g}\right) \subset \xi\left(S_{2}\right)$ and

$$
\inf \left(R_{f}\left(\xi\left(S_{2}\right)\right)\right) \leqq R_{f}(g)=g \leqq \sup \left(R_{f}\left(\xi\left(S_{2}\right)\right)\right)
$$

Since $R_{f}\left[\xi\left(S_{2}\right)\right]$ is maximal the last condition is vacuous so $g \in S_{2}$ iff $C_{g} \subset \xi\left(S_{2}\right)$. Thus, $g \in S_{1} \cap S_{2}$ iff $C_{g} \subset \xi\left(S_{2}\right) \cap \xi\left(S_{1}\right)=C^{\prime}$. Thus, $S_{1} \cap S_{2}$ is the face $S_{C^{\prime}}$ of S_{1} which is proper since $1 \notin S_{C^{\prime}}$. This establishes 1).
2. In [5] it is shown that the $\sigma\left(L^{\infty}, L^{1}\right)$ closed faces of are the order intervals $\left\{f \in \square: \chi_{A}-\chi_{A} c \leqq f \leqq \chi_{B}-\chi_{B} c\right\}$ where $A \subset B$ are in Σ. The center of this face is $\chi_{B \cap A}-\chi_{A \cap B} c$. If D_{1} and D_{2} are disjoint $\chi_{D_{2}}-\chi_{D_{1}}$ is the center of a unique $\sigma\left(L^{\infty}, L^{1}\right)$ closed face of $\square . \chi_{D_{2}}-\chi_{D_{1}}$ is an element of the 0 -skeleton of $\Sigma\left(\square_{e}^{+}\right)$where $e=\chi_{D_{1}} c-\chi_{D_{1}}$ hence is an element of the 0 -skeleton of $\widetilde{\Sigma}(\square)$. Conversely, any element of 0 -skeleton of $\widetilde{\Sigma}(\square)$ is in the zero skeleton of $\Sigma\left(\square_{e}^{+}\right)$for some $e=\chi_{A}-\chi_{A} c$ hence is of the form $\left(\chi_{A}-\chi_{A} c\right) \chi_{B}=\chi_{D_{2}}-\chi_{D_{1}}$ for some B and some disjoint D_{2} and D_{1}. This suffices to establish (2).

Remarks. 1. This proposition remains valid even if \square is the unit ball of $\mathscr{C}(X)$ basically disconnected.
2. $\left\{\square_{e}^{+}: e \in \xi(\square)\right\}$ is a compact cubical subdivision of \square. It is only a cubical subdivision if \square isn't compact but is the unit ball of $\mathscr{C}(X)$ with X basically disconnected.
3. $\widetilde{\Sigma}(\square)$ isn't a Caratheodory subdivision of \square.

If \square is a compact cube, order the closed faces by inclusion and let the centers of the closed faces be given the induced order so that if c_{j} is the center of face F_{j} for $j=1,2$ then $c_{1} \leqq c_{2}$ iff $F_{1} \subset F_{2}$. Consider maximal chains of centers under this ordering. If C is such a chain it has an infimum e which is easily verified to be the center of a 0 -dimensional face hence $e \in \xi(\square)$. If $e=1$ then $1 \in$ face(c) for any $c \in C$. Consequently face $(c)=\left\{f: \chi_{A}-\chi_{A} c \leqq f \leqq 1\right\}$ for some $A=A(c)$ and $c=\chi_{A(c) \cdot}$. It is easily verified that $c_{1} \leqq c_{2}$ in C iff
$A\left(c_{1}\right) \supset A\left(c_{2}\right)$ thus, the maximal chains C for \leqq with $1 \in C$ are in $1-1$ correspondence with the maximal chains in \square^{+}. The closed convex hulls of such chains are just the element of $\Sigma\left(\square^{+}\right)$. Similarily, the closed convex hulls of the maximal chains C for \leqq containing $e \in \xi(\square)$ are the elements of $\Sigma\left(\square \square_{e}^{+}\right)$. Consequently, we have the following proposition whose terminology in self explanatory.

Proposition 4.3. $\widetilde{\Sigma}(\square)$ is the barycentric subdivision of \square.

We recall that all closed faces of compact cubes are compact cubes.

Corollary 4.3.1. If F is a closed face of the compact cube \square then $\{S \cap F: S \in \widetilde{\Sigma}(\square)\}$ is the barycentric subdivision of F.

Proof. If $S \in \widetilde{\Sigma}(\square)$ then $\xi(S) \cap F$ is a chain of centers of closed faces of F for \leqq. If not maximal it could be enlarged. But this would mean that the maximal chain $\xi(S)$ could be enlarged. Thus, $\xi(S) \cap F$ is maximal hence has as its convex hull an element of the barycentric subdivision of F. Since F is a face of $\square, S \cap F$ is a face of S hence is the closed convex hull of a closed subset of $\xi(S)$ which is contained in $\xi(S) \cap F$. It readily follows that $S \cap F$ is the convex hull of $\xi(S) \cap F$ which establishes the corollary.

Definition 4.1. A convex tessellation of a locally convex space E is a convex subdivision of E.

Remark. The meaning of a simplicial or of a cubical tesselation is immediate.

If X is a compact Hausdorff space those elements of $\mathscr{C}(X)$ whose values are even integers $I_{2}(X)$ forms a subring or sublattice of $\mathscr{C}(X)$. We may define an action of $I_{2}(X)$ in $\mathscr{C}(X)$ by translation so that, if $f \in I_{2}(X), T_{f}: \mathscr{C}(X) \rightarrow \mathscr{C}(X)$ is defined by $T_{f}(g)=f+g$ for $g \in \mathscr{C}(X)$. The set $\left\{T_{f}: f \in I_{2}(X)\right\}$ is a ring of homeomorphisms of $\mathscr{C}(X)$ for any locally convex topology on $\mathscr{C}(X)$.

PROPOSITION 4.5. $\quad\left\{T_{f}(\square): f \in I_{2}(X)\right\}$ is a cubical tesselation of $\mathscr{C}(X)$ if X is a basically disconnected compact Hausdorff space and is the unit ball of $\mathscr{C}(X)$.

Proof. $\quad \Gamma=\left\{T_{f}(\square): f \in I_{2}(X)\right\}$ consists of cubes. To establish the proposition it is necessary to show that Γ covers $\mathscr{C}(X)$ and to show that when f_{1} and f_{2} are distinct elements of $I_{2}(X)$ then $T_{f_{1}}(\square) \cap$
$T_{f_{2}}(\square)$ is a proper face both of $T_{f_{1}}(\square)$ and of $T_{f_{2}}(\square)$. For the latter it suffices to show that $\square \cap T_{f}(\square)$ is a proper face of \square for any nonzero f in $I_{2}(\bar{X})$.

Let $g_{1} \in \mathscr{C}(X)$ with $n+1 \geqq \sup \left(g_{1}\right)>n$ and with $-m>\inf \left(g_{1}\right) \geqq$ $-(m+1)$ for $n, m \in Z$. Let A be the clopen set $\overline{\left\{g_{1}>n\right\}}$ and let B be the clopen set $\left\{\overline{g_{1}<-m}\right\}$. Set g_{2} equal to $g_{1}-\chi_{A}+\chi_{B}$ if $n \geqq 1$ and $m \geqq 1$. Set g_{2} equal to $g_{1}-\chi_{A}$ if $m<1$ and $m \leqq 1$. Set q_{2} equal to $g_{1}+x_{B}$ if $m \geqq 1$ and $n<1$. Repeat this process inductively obtaining a sequence $\left\{g_{j}: j \in N\right\}$. There is a least integer k so that $g_{k}=g_{k+1}(k \leqq n \vee m)$. This occurs iff $g_{k} \in \square$. For this $k, g_{1}=g_{k}+f$ with $f \in I_{2}(X)$ hence $g_{1} \in T_{f}(\square)$. This shows, since g_{1} was arbitrary, that $\mathscr{C}(X)=\bigcup \Gamma$.

Let $f \in I_{2}(X)$ so that $f=\sum_{i=-m}^{n}(2 i) \chi_{A_{i}}$ where $\left\{A_{-m}, \cdots, A_{0}, \cdots A_{n}\right\}$ is a finite partition of X consisting of clopen sets. The set

$$
\square \cap T_{f}(\square)=\{g \in \mathscr{C}(X):-1 \vee(-1+f) \leqq g \leqq 1 \wedge(1+f)\}
$$

This is empty unless $-2 \leqq f \leqq 2$ so that $f=-2 \chi_{A_{-1}}+2 \chi_{A_{1}}$. In this case,

$$
\square \cap T_{f}(\square)=\left\{g \in \mathscr{C}(X): \chi_{A_{1}}-\chi_{A_{1}} c \leqq g \leqq \chi_{A_{-1}}\right\}
$$

which by Lemma 3 of [5],is a face of \square. This completes the proof of this proposition.

Remark. It may be verified that a compact Hausdorff space X is totally disconnected iff $\cup\left\{T_{f}(\square): f \in I_{2}(X)\right\}$ is a dense subset of $\mathscr{C}(X)$ for $\left\|\|_{x}\right.$. It may also be verified that $\left\{T_{f}(\square): f \in I_{2}(X)\right\}$ is a minimal cubical precomplex even if X is not disconnected. We conjecture that this precomplex is a cubical tesselation of $\mathscr{C}(X)$ iff X is basically disconnected.

Definition 4.2. If X is a hyperstonian compact Hausdorff space we let $\Sigma^{\sharp}(X)$ be $\cup\left\{T_{f}(\widetilde{\Sigma}(\square)): f \in I_{2}(X)\right\}$.

Proposition 4.3. If X is a hyperstorian compact Hausdorff space then $\Sigma^{\sharp}(X)$ is a Bauer simplicial tesselation of $\mathscr{C}(X)$.

Proof. $\Sigma^{*}(X)$ covers $\mathscr{C}(X)$ with Bauer simplexes. To establish the proposition it suffices to show that if S_{1} and S_{2} are distinct elements of $\Sigma^{\sharp}(X)$ then $S_{1} \cap S_{2}$ is a proper face of both. We may assume that $S_{1} \in \widetilde{\Sigma}(\square)$ and $S_{2} \in \widetilde{\Sigma}\left(T_{f}(\square)\right.$) for some f in $I_{2}(X)$. If $f=0$ the assertion is immediate. Otherwise, $F=\square \cap T_{f}(\square)$ is a proper face of \square and of $T_{f}(\square) . \quad S_{1} \cap S_{2}$ is equal to ($\left.S_{1} \cap F\right) \cap\left(S_{2} \cap F\right)$. Since $0 \in S_{1} \backslash F, S_{1} \cap S_{2}$ is a proper subset of S_{1} (and also of S_{2}). By Corollary 4.3.1, $S_{1} \cap F$ is an element of the barycentric subdivision
of F as is $S_{2} \cap F$. Consequently, $\left(S_{1} \cap F\right) \cap\left(S_{2} \cap F\right)$ is a face both of $S_{1} \cap F$ and $S_{2} \cap F$. Thus, $S_{1} \cap S_{2}$ is a proper face both of S_{1} and of S_{2}.
5. Non-Coherence. A simplicial subdivision Σ of a convex set S of a t.v.s. E is coherent iff there is a unique topology on S inducing on each simplex in Σ its t.v.s. topology.

Proposition 5.1. Let (S, Σ, μ) be a positive localizable measure space. The Hausdorff locally convex topologies T on $L^{\infty}(S, \Sigma, \mu)$ which induce $\sigma\left(L^{\infty}, L^{1}\right)$ on each simplex in $\Sigma\left(\square^{+}\right)$are precisely those compatible with the duality $\left(L^{\infty}, L^{1}\right)$.

Proof. Let T be such a topology and $A=\left(L^{\infty}, T\right)^{\prime}$. For any $\mathfrak{I} \in A$ and $E \in \Sigma$ set $\nu_{\mathrm{l}}(E)=\mathfrak{l}\left(\chi_{E}\right)$. The set function $\nu_{\mathfrak{l}}$ on Σ is finitely additive and absolutely continuous with respect to μ in that when $\mu(E)=0$ then $\nu_{\mathrm{l}}(E)=0$. If $\left\{E_{n}: n \in N\right\} \subset \Sigma$ is decreasing with empty intersection we choose an $S_{C} \in \Sigma\left(\square^{+}\right)$with $\left\{\chi_{E_{n}}: n \in N\right\} \subset C$. Since $\mathfrak{l} \mid S_{C}$ is $\sigma\left(L^{\infty}, L^{1}\right)$ continuous $\operatorname{lin}_{n \rightarrow \infty} \nu_{\mathfrak{l}}\left(E_{n}\right)=\operatorname{lin}_{n \rightarrow \infty} \mathfrak{l}\left(\chi_{E_{n}}\right)=\mathfrak{l}(0)=0$. Thus ν_{t} is countably additive on Σ. Theorem A, $\S 29$ of [11] shows that there is an $F^{+} \in \Sigma$ such that if $E \subset F^{+}$then $\nu_{1}(E) \geqq 0$ and if $E \subset F^{-}=$ $F \mid F^{+}$then $\nu_{1}(E) \leqq 0$. On F^{+}, ν_{1} has variation $\nu_{1}\left(F^{+}\right)<\infty$ and, on F^{-}, ν_{1} has variation $-\nu_{1}\left(F^{-}\right)<\infty$. Thus, ν_{1} is of bounded variation. The Radon-Nikodym theorem implies the existence of $g \in L^{1}(S, \Sigma, \mu)$ such that $\mathfrak{l}(f)=\int f d \nu_{t}=\int f \cdot g d f$ for all $f \in L^{\infty}(S, \Sigma, \mu)$. Thus, A is a subspace of $L^{1}(S, \Sigma, \mu)$. The topology $\sigma\left(L^{\infty}, A\right)$ is a coarser Hausdorff topology than $\sigma\left(L^{\infty}, L^{1}\right)$ hence equals $\sigma\left(L^{\infty}, L^{1}\right)$. It follows that $A=$ $L^{1}(S, \Sigma, \mu)$ hence that T is compatible with the duality $\left\langle L^{\infty}, L^{1}\right\rangle$.

If we show that the finest topology, $\tau\left(L^{\infty}, L^{1}\right)$, compatible with the duality $\left\langle L^{\infty}, L^{1}\right\rangle$ induces $\sigma\left(L^{\infty}, L^{1}\right)$ on each element of $\Sigma\left(\square^{+}\right)$we will be done. $\tau\left(L^{\infty}, L^{1}\right)$, the Mackey topology, is the topology of convergence uniform on $\sigma\left(L^{\infty}, L^{1}\right)$ compact sets (i.e., uniformly integrable subsets) in $L^{1}(S, \Sigma, \mu)$. Equivalently, since K is uniformly integrable iff $\{|g|: g \in K\}$ is uniformly integrable, $\tau\left(L^{\infty}, L^{1}\right)$ is the topology of convergence uniform on uniformly integrable subsets of $L^{1+}(S, \Sigma, \mu)$.

Let K be a $\sigma\left(L^{2}, L^{\infty}\right)$ compact subset of $L^{1+}(S, \Sigma, \mu)$. Let $S_{C} \in$ $\Sigma\left(\square^{+}\right)$. For $g \in K$ set $h_{g}\left(\chi_{A}\right)=\int_{A} g d \mu$ when $\chi_{A} \in C$. Each function h_{g} is continuous on C for $\sigma\left(L^{\infty}, L^{1}\right)$. The collection $h(K)=\left\{h_{g}: g \in K\right\}$ is a compact subset of $\mathscr{C}(C)$ for the topology of pointwise convergence on C since K is $\sigma\left(L^{1}, L^{\infty}\right)$ compact. The set $h(K)$ is actually compact for the topology of uniform convergence for it is uniformly bounded and equicontinuous. Uniform boundedness is immediate. If $h(K)$ weren't equicontinuous at $\chi_{A} \in C$ we would either be able to find a
net $\left\{\chi_{A_{\alpha}}\right\}$ decreasing to χ_{A} or a net $\left\{\chi_{\Lambda_{\alpha}}\right\}$ increasing to χ_{A} in C, a net $\left\{g_{\alpha}\right\} \subset K$ and an $\varepsilon>0$ such that $\int\left|\chi_{A_{\alpha}}-\chi_{A}\right| g_{\alpha} d \mu \geqq \varepsilon$. Let us assume that $\chi_{A_{\alpha} \downarrow} \downarrow \chi_{A}$. Then $\int \chi_{\alpha_{\beta}} \mid \chi_{A} g_{\alpha} d \mu \geqq \varepsilon$ for any $\alpha \geqq \beta$. Assume that $\left\{g_{\alpha}\right\}$ converges to $g \in K$ for $\sigma\left(L^{1}, L^{\infty}\right)$. We then have $\int \chi_{A_{\beta}} \chi_{A} g d \mu \geqq \varepsilon$ for all β hence $\lim _{\beta} h_{g}\left(\chi_{A_{\beta}}\right) \neq h_{g}\left(\chi_{A}\right)$ which is impossible. Thus, $h(K)$ is compact for the uniform topology. If $\left\{\mu_{\alpha}\right\}$ is any $\sigma(\mathscr{M}(C), \mathscr{C}(C))$ convergent net of probability measures on C it is convergent uniformly on norm compact sets in $\mathscr{C}(C)$ hence it converges uniformly on any $h(K)$. Thus, if $\left\{f_{\alpha}\right\}$ is a $\sigma\left(L^{\infty}, L^{1}\right)$ convergent net in S_{c}, it converges uniformly on $\sigma\left(L^{1}, L^{\infty}\right)$ compact sets in $L^{1}(S, \Sigma, \mu)$ hence is $\tau\left(L^{\infty}, L^{1}\right)$ convergent. Thus, S_{c} is $\tau\left(L^{\infty}, L^{1}\right)$ compact so $\tau\left(L^{\infty}, L^{1}\right)$ and $\sigma\left(L^{\infty}, L^{1}\right)$ agree on S_{σ}. This suffices to establish the proposition.

Remarks. The finest locally convex topology on $L^{\infty}(S, \Sigma, \mu)$ inducing $\sigma\left(L^{\infty}, L^{1}\right)$ on \square^{+}is the Arens topology $\kappa\left(L^{\infty}, L^{2}\right)$ of convergence uniform on norm compact subsets of $L^{\prime}(S, \Sigma, \mu),[21$, p. 150], [9, p. 505].

If Σ^{*} is the tesselation of $L^{\infty}(S, \Sigma, \mu)$ in $\S 4$ all of the topologies compatible with the duality $\left\langle L^{\infty}, L^{1}\right\rangle$ induce the same topology on each tesselation simplex. Since these are all distinct Σ^{*} would be called a noncoherent tesselation of $L^{\infty}(S, \Sigma, \mu)$. If $\sigma\left(L^{\infty}, L^{1}\right) \subset \tau \subset$ $\kappa\left(L^{\infty}, L^{1}\right)$ then τ induces the topology $\sigma\left(L^{\infty}, L^{1}\right)$ on $\square \square^{+}$. It might appear that $\Sigma\left(\square^{+}\right)$has a chance to be coherent. For this we would need to have $\tau\left(L^{\infty}, L^{1}\right)$ induce $\sigma\left(L^{\infty}, L^{1}\right)$ on \square^{+}. However, $\kappa\left(L^{\infty}, L^{1}\right)$ is the finest such topology and is coarser that $\tau\left(L^{\infty}, L^{1}\right)$.
6. Homogenity. If Γ is a Caratheodory simplicial subdivision of an n-dimensional convex compact set all elements of Γ are $n+1$ simplexes hence all are affinely homeomorphic. We say that a convex precomplex is homogeneous iff all elements are affinely homeomorphic. Thus, all Caratheodory simplicial subdivisions of an n-dimensional convex compact set are homogeneous. If \square^{+}is the positive unit ball of an infinite dimensional space $L^{\infty}(S, \Sigma, \mu)$ is $\Sigma\left(\square^{+}\right)$homogeneous? Let C_{1} and C_{2} be in M-Chain $\left(\square^{+}\right)$. Since $S_{C_{1}}$ and $S_{C_{2}}$ are Bauer simplexes they are affinely homeomorphic iff C_{1} and C_{2} are homeomorphic. Our question reduces to examination of elements of M-Chain $\left(\square^{+}\right)$as topological spaces.

We first note the measure space (S, Σ, μ) has an atom iff there is a $C \in M$-Chain (\square^{+}) with a gap, i.e., there are elements $\chi_{A}<\chi_{B}$ in is C such that there is no element of C between them and, if this the case, then $B \backslash A$ is an atom. Actually, (S, Σ, μ) has an atom iff every $C \in M$-Chain $\left(\square^{+}\right)$has gaps. If (S, Σ, μ) has no atoms every $C \in M$-Chain $\left(\square^{+}\right)$has no isolated points and is connected hence C looks like a "long line segment".

Proposition 6.1. If the positive localizable measure space (S, Σ, μ) is neither atomic nor nonatomic the subdivision $\Sigma\left(\square^{+}\right)$of the positive unit ball of $L^{\infty}(S, \Sigma, \mu)$ is not homogeneous.

Proof. Let $S_{a} \neq \varnothing$ be the supremum of the atoms of (S, Σ, μ) and let $S_{n}=S \backslash S_{a} \neq \varnothing$. Consider the following chains C_{1} and C_{2}. Let C_{a} be a maximal chain for the measure space (S_{a}, Σ, μ) and let C_{n} be one for $\left(S_{n}, \Sigma, \mu\right)$. Let $C_{1}=C_{1}^{a} \cap\left\{f+\chi_{S_{a}}: f \in C_{n}\right\}$. To construct C_{2} break S_{n} into two pieces $S_{n_{1}} \neq \varnothing$ and $S_{n_{2}} \neq \varnothing$. Construct maximal chains $C_{n_{1}}$ in $\left(S_{n_{1}}, \Sigma, \mu\right)$ and $C_{n_{2}}$ in ($\left.S_{n_{2}}, \Sigma, \mu\right)$. Let $C_{2}=C_{n_{1}} \cup$ $\left\{f+x_{S_{n_{1}}}: f \in C_{a}\right\} \cup\left\{f+\chi_{S_{n_{2}}}+\chi_{S_{a}}: f \in C_{n_{2}}\right\}$.

Construct the derived sets $C_{1}^{(1)}$ and $C_{2}^{(1)}$ of C_{1} and C_{2} by deleting isolated points and repeat by transfinite induction getting derived sets $C_{1}^{(\alpha)}$ and $C_{2}^{(\alpha)}$ for all ordinals α. When $C_{1}^{(\alpha)}=C_{1}^{(\alpha+1)}$ and $C_{2}^{(\alpha)}=$ $C_{2}^{(\alpha+1)}$ then $C_{1}^{(\alpha)}$ and $C_{2}^{(\alpha)}$ have no isolated points. This occurs at some ordinal α, and at this point $C_{1}^{(\alpha)}$ has one connectivity component homeomorphic to C_{n} and $C_{2}^{(\alpha)}$ has two, one homeomorphic to $C_{n_{1}}$ and one to $C_{n_{2}}$. It is well known that if C_{1} and C_{2} are homeomorphic so are $C_{1}^{(\alpha)}$ and $C_{2}^{(\alpha)}$. Thus, C_{1} isn't homeomorphic to C_{2} which establishes the proposition.

If C is an element of M-Chain (\square^{+}) it is scattered space, [23], iff the chain of derived sets $\left\{C^{(\alpha)}\right.$: α an ordinal\}, as used in the preceding proof, terminates with $C^{(\alpha)}=\varnothing$. This is easily verified to hold iff (S, Σ, μ) is purely atomic. In this case $L^{\infty}(S, \Sigma, \mu)$ is Banach lattice isomorphic to $\ell^{\infty}(m)$ where m is the cardinality of the set of atoms. In this case we may enumerate the set of atoms as $\left\{A_{\lambda}: \lambda \in \Gamma\right\}$ where card $(\Gamma)=m$. It is easy to see that the elements of M Chain $\left(\square^{+}\right)$are in $1-1$ correspondence with the linear orderings of Γ. If $C \in M$-Chain $\left(\square^{+}\right)$set $\lambda \leqq{ }_{C} \gamma$ iff $\chi_{A_{Y}} \leqq f \in C$ implies that $\chi_{A_{\lambda}} \leqq f$ for $\{\lambda, \gamma\} \in \Gamma$. The correspondence $C \leftrightarrow S_{C}$ is the desired bijection between M-Chain(\square^{+}) and linear orderings of Γ.

Proposition 6.2. Let (S, Σ, μ) be a purely atomic positive localizable measure space, with infinitely many atoms. If \square^{+}is the positive unit ball of $L^{\infty}(S, \Sigma, \mu)$ then $\Sigma\left(\square^{+}\right)$isn't homogeneous.

Proof. Let $\left\{A_{\lambda}: \lambda \in \Gamma\right\}$ be an enumeration of the atoms of (S, $\left.\Sigma, \mu\right)$. Let \leqq_{1} and \leqq_{2} be the linear orderings of Γ obtained by putting Γ in $1-1$ correspondence with the sets $D_{1}=\left\{\alpha: 0 \leqq \alpha \leqq \omega_{1}\right\}$ and $D_{2}=$ $\left\{\alpha: 0 \leqq \alpha \leqq \omega_{2}\right\}$ where ω_{1} is the first ordinal of cardinal card (Γ) and $\omega_{2}=\omega_{1}+\omega_{1}$. Let C_{1} and C_{2} be the corresponding elements of M-Chain $\left(\square^{+}\right) C_{i}$ is homeonorphic D_{i} for $i=1,2 . \quad D_{1}$ has only one point q which is not a limit of a net in $D_{1} \backslash\{q\}$ of cardinality less
than card (Γ) whereas there are two such points in D_{2}. Thus D_{1} isn't homeomorphic with D_{2} hence C_{1} isn't homeomorphic to C_{2}.

To find examples of positive localizable measure space (S, Σ, μ) such that the space $L^{\circ}(S, \Sigma, \mu)$ is infinite dimensional and the positive unit ball \square^{+}has $\Sigma\left(\square^{+}\right)$homogeneous we must assume that μ is purely nonatomic. We show that μ must be a σ-finite. The σ-finiteness of μ is equivalent to the countable chain condition or to the assertion that any $C \in \operatorname{Chain}\left(\square^{+}\right)$is separable in the order topology, [19]. In this case any $C \in M$-Chain $\left(\square^{+}\right)$is a compact separable linearly ordered set with no isolated points thus is homeomorphic to [0, 1]. Consequently, if μ is σ-finite, $\Sigma\left(\square^{+}\right)$is homogeneous.

Proposition 6.4. If (S, Σ, μ) is a localizable purely nonatomic positive measure space with \square^{+}the positive unit ball of $L^{\circ}(S, \Sigma, \mu)$ then $\Sigma\left(\square^{+}\right)$is homogeneous iff μ is σ-finite.

Pooof. If μ is σ-finite we have seen that $\Sigma\left(\square^{+}\right)$is homogeneous. If μ isn't σ-finite there exist compacts $\left\{X_{\lambda}: \lambda \in \Gamma\right\}$ and nonatomic probabilities $\left\{\mu_{2}: \lambda \in \Gamma\right\}$ on these compacts such that \square^{+}is affinely homeomorphic with the positive unit ball of $L^{\infty}(X, \widehat{\mu})$ where $\dot{\mu}$ is the Radon measure on the locally compact disjoint union X of $\left\{X_{\lambda}: \lambda \in \Gamma\right\}$ with $\left.\dot{\mu}\right|_{X_{2}}=\mu_{2}$ for $\lambda \in \Gamma$. This is an immediate consequence of Kakutani's Representation Theorem for L-space [23, 26.3.3]. The measure μ is σ-finite iff Γ is countable. To establish the proposition it suffices to find for Γ uncountable a $C \in M$-Chain $\left(\square^{+}\right)$which is separable in the order topology. This is because the uncountability of Γ guarantees the non σ-finiteness of μ, hence, implies that the countable chain condition is violated, hence, implies the existence of a nonseparable $C_{0} \in M$-Chain $\left(\square^{+}\right)$which can't be homeomorphic to C.

To construct C first construct maximal chains C_{λ} in the extreme points of the unit ball of $L^{\infty}\left(X_{2}, \mu_{2}\right)$ for $\lambda \in \Gamma$. Define $f_{2, t} \in C_{\lambda}$ by the requirement that $\int f_{\lambda, t} d \mu_{2}=t$ for $\lambda \in \Gamma$. The map $t \rightarrow f_{\lambda, t}$ is a homeomorphic order isomorphism of $[0,1]$ onto C_{λ} for $\lambda \in \Gamma$. Set f_{t} equal to $f_{\lambda, t}$ on X_{λ} for all $\lambda \in \Gamma$. The map $t \rightarrow f_{t}$ is an order isomorphic homeomorphism of $[0,1]$ onto the chain $C=\left\{f_{t}: 0 \leqq t \leqq 1\right\}$. The maximality of the separable chain C is readily verified.

References

1. E. M. Alfsen, Convex Compact Sets and Boundary Integrals, Springer-Verlag, New York, 1971.
2. On the geometry of Choquet simplexes, Math. Scand., 15 (1964), 97-110.
3. E. M. Alfsen and J. Nordseth, Vertices Choquet simplexes, Math. Scand., 23 (1968), 171-176.
4. T. E. Armstrong, Poisson kernels and compactifications of Brelot harmonic spaces, Dissertation, Princeton U., 1973.
5. -, Polyhedrality of infinite dimensional cubes, Pacific J. Math., 70 (1977), 297-307.
6. T. A. Chapman, Lectures on Hilbert cube manifolds, Amer. Math. Soc., 1976.
7. J. Diximer, Sur certains espaces considers par M. H. Stone, Sum. Bras. Math., 11 (1951), 151-182.
8. N. Dunford and J. T. Schwartz, Linear Operators, I., Wiley, New York, 1958.
9. R. E. Edwards, Functional Analysis, Theory and Application, Holt, Rinehard and Winston, New York, 1965.
10. L. Gilman and M. Jerison, Rings of Continuous Functions, Van Nostrand, Princeton, 1960.
11. P. R. Halmos, Measure Theory, Van Nostrand, Princeton, 1950.
12. H. Kuhn, Some combinatorial lemmas in topology, IBM Journal of Research and Development, 4 (1960), 518-524.
13. A. Ionescu Tulcea and C. Ionescu Tuclea, Topics in the Theory of Lifting, SpringerVerlag, New York, 1969.
14. D. G. Larman, The one skeleton of a compact convex set in a Banach space, Proc. Lond. Math Soc., (3), 34 (1977), 117-144.
15. Ka Sing Lau, Infinite dimensional polytopes, Math. Scand., 32 (1973), 193-213.
16. S. Lefschetz, Introduction to Topology, Princeton University Press, Princeton, 1949.
17. A. J. Lazar, Polyhedral Banach spaces and extensions of compact operators, Israel J. Math., 7 (1969), 357-364.
18. R. R. Phelps, Infinite dimensional compact convex polytopes, Math. Scand., 24 (1969), 5-26.
19. H. P. Rosenthal, On injective Banach spaces and the spaces $L^{\infty}(\mu)$ for finite measures μ.
20. M. Rajagopalan and A. K. Roy, Maximal core representing measures and generalized polytopes, Quart, J. Math. Oxford, (1974), 257-271.
21. H. H. Schaefer, Topological Vector Spaces, Macmillan, New York, 1966.
22. I. Segal, Equivalence of measure spaces, Amer J. Math., 73 (1951), 257-313.
23. Z. Semadeni, Banach spaces of continuous functions, I, Polish Scientific, Warsaw, 1971.
24. W. P. Wake, Ideal boundary for harmonic spaces, Dissertation, Univ. of Illinois, 1972.
25. A. Clausing and G. Mägerl, Generalized Dirichlet problems and continuous selections of representing measure, Math. Ann., 216 (1975), 71-78.
26. H. Höllein, Polytone in lokal konvexen räumen, Math. Ann., 229 (1977), 65-85.
27. -, A geometrical characterization of Choquet simplexes, Math. Zeit., 160 (1978), 249-254.
28. M. J. Todd, Union jack triagulations, fixed points: Algorithms and applications, Proc. First International Conf., Clemson University, Clemson, S.C. (1974), 315-336, Academic Press, New York, 1977.

Received September 15, 1977. Research supported by National Science Foundation Grant No. MCS 74-05796-A02.

University of Minnesota
Minneapolis, MN 55455

