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SIMPLICIAL SUBDIVISION OF INFINITE DIMENSIONAL
COMPACT CUBES

THOMAS E. ARMSTRONG

Finite dimensional polyhedra may be characterized as
those finite dimensional convex sets S admitting a finite a
simplicial subdivision with vertex set equal to the extreme
point set of S. Alfsen has shown the existence of <*-polytope
which doesn't admit even an infinite simplicial subdivision
of this type. It is shown here that any infinite dimensional
compact cube does admit subdivisions of this type.

1* Introduction* In [5] cubes (i.e., affine isomorphs of unit balls
of C^{X) spaces with X compact and Hausdorff) were examined. In
particular the compact cubes (i.e., unit balls of dual ^{X) spaces
and their affine isomorphs) were examined. The unit ball of ^(X)
is a compact cube iff W(X) is Banach lattice isomorphic to L°°(S, Σ, μ)
for some positive localizable measure space (S, Σ, μ). The predual
of such a ^(X) space is a unique subspace of ^ίf{X) which consists
of the signed normal measures ^K(X) on X, [7], [23], [5]. ^V(X)
is Banach lattice isomorphic to L\S, Σ, μ), [7], [23], [5]. X is said
to be hyperstonian, iff it is extremally disconnected and possesses a
collection {μa} of normal probability measures such that Xa — supp (μa)
forms a disjoint collection of clopen subsets of X with dense union.
The measure space (S, Σ, μ) can be taken to be S = \Ja X with μ = μa

on each Xa. L\S, Σ, μ) or ^ViX) is Banach lattice isomorphic with
the: Γ-direct sum [ Σ β ^ W l i , [5]. There is a unique affine toplogy
on any compact cube rendering it compact. This may be considered
as the weak* topology σ{^{X), ^Γ(X)) or σ(L~, L1).

Examples of compact cubes include the Hubert cube {(Zn) e P: |χΛ| g
n~ι when neN}, which is norm compact in the Hubert space I2, and
its affine homeomorph the unit ball of Γ with topology σ(l°°, I1). The
Tychonoff cube over a set T is a more general example and is defined
as the unit ball of Γ(T) with the topology σ(Γ(Γ), P(Γ)) and is
usually thought of as Πte? [ —1, 1] Another, more esoteric, example
is the unit ball of ^f^iβ) of all bounded harmonic functions on an
open subset θ of a harmonic space of Gonstantinescu and Cornea on
which constants are super harmonic, [4]. This compact cube has as
its compact affine topology the topology of locally uniform convergence
on θ. ^f°°{θ) is isomorphic to ^(X) for a hyperstonian compact
Hausdorff space X which is the harmonic part of the Feller boundary
of θ. ^K(X) is generated by the harmonic measures on X, [4], [24].

In [5] the infinite dimensional notions of polyhedrality which
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have been put forth by various authors were examined and it was
determined that for infinite dimensional cubes only the Alf sen-Nordseth
definition of polyhedrality was true. One notion of polyhedrality for
finite dimensional convex sets is the existence of a finite simplicial
subdivision. This forms the basis of much of piecewise linear topology
in finite dimensions. It would be nice if it were possible to carry
out the program of piecewise linear topology in infinite dimensions.
One very important tool in infinite dimensional topology is the Hilbert
cube manifold. We shall exhibit subdivisions of compact cubes by
Bauer simplexes. From this it follows that Hilbert cube manifolds
admit simplicial subdivision. We will also see that L°° spaces admit
tesselation by Bauer simplexes. Hence, it would appear that L°°
manifolds have Bauer simplicial subdivisions.

One reason that the possibility of simplicial subdivision of infinite
dimensional convex sets hasn't been considered is the following. In
[2] Alfsen asked whether there was a characterization of those convex
compact sets K such that Caratheodory's theorem was valid in that
given any keK there was a Choquet simplex Sk containing k with
the extreme points, ξ(Sk) of Sk in those of K. Of course in finite
dimensions this is equivalent to Caratheodory's theorem and is valid
for any compact convex K hence for all compact polyhedra. This
is used by piecewise linear topologists to show that any compact
polyhedron admits a simplicial subdivision (which consists of simplexes
of the same dimension as the polyhedron) whose simplexes have
extreme points contained in the extreme points of the original
polyhedron. Alfsen, [2], gives an example of an α-polytope K, [18],
and keK for which there is no simplex Sk of the type prescribed
by Caratheodory's theorem. We shall see that, in addition to Choquet
simplexes, compact cubes satisfy Caratheodory's theorem. We con-
jecture that any Alf sen-Nordseth polyhedron satisfies Caratheodory's
theorem and in fact admits Caratheodory simplicial subdivisions.

2* Convex complexes and simplicial subdivisions*

DEFINITION 2.1.

1. A convex precomplex is a collection {Ca} of closed convex
subsets of a locally convex Hausdorff space such that Ca Π Cβ is a
face both of Ca and Cβ for all a, β.

2. A convex precomplex is minimal iff when Ca Φ Cβ then Ca

isn't a face of Cβ.
3. A convex complex is a precomplex which contains along with

each Ca all of its closed faces.

REMARKS. 1. Nontopological definitions are obtained if the
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ambient vector space is given the finest locally convex topology. A
precomplex then consists of linearly closed sets. Any face of a line-
arly closed convex set is linearly closed hence (3) of Definition 2-1
is the requirement that if C belongs to a complex so do all of its
faces.

2. If A is a convex precomplex, adding all closed faces of its
members to A yields the smallest convex complex containing the
precomplex. If every element of a complex is in an element of the
complex which is maximal with respect to inclusion the collection of
maximal elements is a minimal precomplex which generates the
complex.

3. By restricting the elements of precomplex to be in a certain
class of convex sets one obtains the notions of Ghoquet simplicial
complex, Bauer simplicial complex, cubical complex, compact cubical
complex, convex compact complex etc. One must make sure that
the class of convex sets one is using is closed upon taking closed
faces. For instance if one considers cubes with their norm topology
(as unit balls of ^(X) spaces) not all norm closed faces are cubes
[5] but compact cubes with their compact affine topology only have
compact cubes as closed faces.

4. Any Hubert cube manifold 34f is homeomorphic to Cx x C2

where Gx is the union of a finite dimensional simplicial complex and
C2 is a Hubert cube [6]. Modulo orientability, there is a convex
complex {Sa x C2} with \Ja {Sa x C2} = Cλ x C2 with each Sa a finite
dimensional simplex.

One may define the skeleton of a closed convex set to be the
complex of all closed faces. For any cardinal number n one may
define ^-complex as all closed faces of topological dimension at most
n and the ^"-complex as all elements of the ^-complex not of dimension
n. The ^V complex is the finite dimensional skeleton. Fon any
cardinal n the ^-skeleton consists of the faces of dimension n. The
0-skeleton is the collection of extreme points. The 1-skeleton consisting
of all edges has been studied in [14] for compact convex sets in
Banach spaces.

DEFINITION 2.2. (a) A Choquet simplicial subdivision of a closed
convex set C is a minimal Choquet simplicial precomplex whose union
is C.

(b) A Caratheodory simplicial subdivision, {Sa}, of a closed convex
set C is a Choquet simplicial subdivision with ξ(Sa) c ξ(C) for all a.

REMARK. It is very easy to give Choquet simplicial subdivisions
of closed convex sets but even α'-polytopes needn't have Caratheodory
simplicial subdivision.
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3* Construction of subdivision of cubes* The construction of
a Caratheodory Bauer simplicial subdivision of a compact cube that
we are about to give is a straight forward generalization of a well
known procedure for subdividing finite dimensional cubes as found
in [16] and algorithmatized in [12].

Since a simplicial subdivision of one cube readily gives corresponding
subdivisions of all affine homeomorphs we shall only consider sub-
divisions of the positive unit ball of L°°(S, Σ, μ) of a positive localizable
measure space (S, Σ, μ) which is denoted by Π + . The cube Π + is
equipped with the topology <J(L°°, Lι) under which all monotone nets
are convergent. It is well known that the bounded linear functions
on Π f which arise as restrictions to Π + oΐ elements of L\S, Σ, μ)
are just the σ(L°°, L1) continuous ones or the order continuous ones.
By abuse of notation we may consider ξ(Π+) as {XA: A e Σ} whereas
it actually consists of equivalence class modulo locally /^-negligible
sets. When ordered by LOD+(Xf Σ, μ), ξ (Π + ) is a Boolean algebra
isomorphic with the hyperstonian measure algebra of μ hence is a
complete Boolean algebra.

DEFINITION 3.1. (a) Chain (Π + ) denotes all chains (i.e., linearly
ordered subsets) of £ θ + ) .

(b) C-Chain (Π + ) denotes all order complete chains in f(Π + )
(c) Λf-Chain (Π + ) denotes all chains of Π + maximal with respect

to inclusion.

REMARKS. 1. If CeChain(Π + ) then C, the σ(L°°, L1) closure of
C, is the smallest element of C-Chain(Π+) containing it. Thus all
element of C-Chain(Q+) are σ(L°°, L1) compact.

2. ilί-Chain(Π+) c C-Chain(Π+).
3. C-Chain(Π+) is closed under arbitrary intersections.
4. The closure of M-Chain(Π+) under arbitrary intersections

is all C 6 C-Ghain(Π+) with {0, 1} c C. The proof of this is analogous
to the proof that every proper filter is the intersection of all ultra-
filters containing it.

5. Both Chain(Π+) and C-Chain(Π+) are increasing families with
respect to inclusion (i.e., they are filtering to the left).

6. On any chain the order topology and σ(L°°, L1) coincide.

DEFINITION 3.2. For / e Q + , Cf e C-Chain(/) denotes the closure
of the chain {X{f^λ): 0 < λ ^ \\f\U.

REMARKS. 1. Cf contains X{f>λ} = sup {X{f^+1/n}: n e N, λ + 1/n <
U} for any 0 ^ λ < II/IU. Cf is the closure of {X{f>λ}0 £X<\\f\\J.
2. 0eCf iff {/ = | | / |U} = 0 andleCf iff {/> 0} = X.
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DEFINITION 3.3. For any C e Chain(Π+), SG denotes the σ(L°°, Lι)
closed convex hull of C.

REMARKS. 1. SG — SG and C — ζ(SG) hence, we need only consider
Sc with C complete.

2. If C , c C 2 are in C-Chain(Π+) then ζ(SGl)cζ(SG2) so SGlczSG2.

PROPOSITION 3.1. Let CeC-Chain (Π+) have infimum XA and
supremum XB in Π + Let S% be the \\ W^-closed convex hull ofC and
let S denote the class offe •+ with XA <* f <>XB and with Cf a C.
It is the case that S = SG = SG.

Proof. Note that any f eSG must satisfy XA ̂  / ^ XB. Next
note that if / is in the convex hull of C so that / = Σ?=i \^Λt where
λ< > 0 for all Σ?= 1 λ, = 1 and {XA.: i = l, ,%}cC then Cf Z) {XA.: i =
1, •••, n}. Thus, S contains the convex hull of C.

If / e S set fn — 1/n Σί=i %\f>k/n} for neN. It is easily verified,
even when | | / | | O O < 1 , that fn is in the convex hull of C. Since
{fn: neN} converges uniformly to / we have / e S G thus, ScS*.

If {/i, Λ ) c S then {/, Λ /2, /, V / J c S . That XA ^ fx A f2 £
ΛV/.^Zβ is immediate. If λ>0 then {/t V/»^λ} = {/ι^λ}U{/,^λ}
a n d {/i Λ /2 ̂  λ} = {/x ^ λ} n {/2 ^ λ}. From these observations the
inclusions C/lΛ/2 c C and C/lV/ c C are apparent.

If {fa} c S is any order convergent net in S with limit / 6 Π +

then f eS. This need only be verified for increasing and decreasing
nets. For instance, if {fa} is increasing then XA <S / <| XB and for
any 0 < λ ^ 11 /1U, X{f^λ] = inf ε>0 supα l{fa^-t} e C.

Since any uniformly convergent net in \Z\+ is order convergent,
S is uniformly closed. Since the convex hull of C lies in S and
S c S ^ w e have S = Sn

c.
If (X, Σ, μ) were a finite measure space we could make use of a

result of Grothendiek [9, 8.3.6] which asserts that for any element
/ of the σ(LΓ, Lι) closure of S* there is a sequence in SG which
converges in LXS, Σ, μ) to /. From this sequence we could extract
a subsequence convergent μ a.e. to /. Any such subsequence is easily
seen to be order convergent. Hence, / would be an order limit of
Sc — S so / would be in S. Thus, when (X, Σ, μ) is a finite measure
space S = SG.

For any E e Σ with μ(E) < oo let CE be the complete chain in
the extreme points of the unit ball of L°°(E, Σ, μ \E) consisting of
functions of the form f\E with feC. If heSG the remarks of the
preceding paragraph show that XAιlE ^ h\E ̂  XBnE and that if 0 < λ :g
\\h\E\U then XίhlE^}eCE. Note that
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^ λ} ΠF = {h\t ^ λ} when FaE

and that {h ^ λ} = sup {{/^ ^ λ}: /ί(ί7) < co}. If {AE: μ(E) < 00} is a
collection with XAβ e CE for all E with μ(E) < 00 and with A^ (Ί F = AF

whenever FaE it may be verified that there is one and only one
A with XAeC with A Γ) # = AE for all ί 7 e l with μ(E) < 00. By
applying this to the case where AE — {h\E^X} for EeΣ with μ{E) < °°
and with HfelU = II^UL we may deduce that Z{fciλ} eC if 0<λ<^ ||/&|L.
This suffices to show that S = Sc hence completes the proof.

REMARK. The fact that Π + was a compact cube only used to
show that S — Sc. Of course the weak* closed convex hull Sc of C
only makes sense when \Z]+ is a compact cube. If •+ is the positive
unit ball of C^{X) with X a Stonian compact Hausdorff space Sc

could be defined as the closed conxex hull of C for the order topology.
Although the order topology on Π + is an affine topology iff X is
hyperstonian it is a compact ϊ\ topology. Each SG is compact and
T1 in the order topology. If Π + is the positive unit ball of ^(X)
with X only a basically disconnected compact Hausdorff space, [10],
a careful perusal of the proof of Proposition 3.1 shows that S = S*.
The validity of this identity when X is only totally disconnected is
not known.

DEFINITION 3.4.

^(D+) - {Sc: CeM-Chain(Π+)} .

Proposition 3.1 shows that Π + = U ^(D+) and that ξ(SG)
for all C6ilί-Chain(Π+). To show that ^(Π4") is a Caratheodory
Bauer simplicial subdivision of Π + we need to establish two facts.
First, we need to show that Sc is a Bauer simplex for each CeM-
Chain(Q+). This may be done just by showing that each Sc is
affinely isomorphic to some simplex since then Sc is itself a simplex
which is a Choquet simplex under the topology σ(L°°, U) which is a
Bauer simplex since ξ(Sc) — C is σ(L°°, U) compact. Second, we need
to show that SCι Π SCi = SCί iff Cλ c C2 when Cx and C2 are distinct
elements of M-Chain(Π+).

PROPOSITION 3.2. If C e C-Chain(Cϊ+) then Sc is a Bauer simplex.

Proof. We must show that Sc is affinely asomorphic to some
simplex. If the proposition is valid Sc will be affinely isomorphic
to ^{C), the Bauer simplex of all probability Radon measures on
the compact Hausdorff space C. One affine isomorph of ^(C) is
the convex set £${G) of distribution functions on C. £&(C) consists
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of all functions g from C to [0, 1] which are decreasing, have
g(inΐ (C)) = 1 and are left continuous on C so that if x e C is the
supremum of {y e C: y < x) then g(x) = inf {g(y): y eC, y < x}. The
affine isomorphism between &{G) and &{C) is gotten by assigning
to p e ^ ( C ) its distribution function c£p which is defined by dp(x) =
p{y eC: y ^ x}. The details of this affine isomorphism is standard
knowledge when C is order isomorphic to [0, 1] and is folk lore
otherwise. We shall establish an affine isomorphism between &(G)
and SG or, more precisely, between £&(C) and S defined in Proposition
3.1. It is helpful to note that £&(β), when given the pointwise
ordering as a set of real functions on C, is a lattice with the usual
lattice operations and actually is a complete lattice (the supremum
of a family is the left continuous regularization of the pointwise
supremum and the infimum is the pointwise infimum).

Let xx ^ x2 ^ xn be a finite subchain of C and let λL, , Xn

be positive reals with Σ?= 1 λi = l. Set f = ΣS=ι \%i e Sc Let g e £2f(G)
be dp where p = Σ?=i λ Λ, so that #(?/) = Σ*=i λ* i f f %k^V > %+i for
A; = 1, n (where xn+1 — inf (C)) and gr(2/) = 0 if y > xt. The cor-
respondence Φ: f —> g is 1 — 1 and affine between the convex set of
/ in Sc with finitely many values and the convex set of g in £^(C)
with finitely many values. Furthermore, Φ(f) ^ Φ{f) iff / ^ /.

For any / e Sc let {/„} be the sequence of finite valued elements
of Sc given in the second paragraph of the proof of Proposition 3.1.
Define for g e Ξ){C) the analogous sequence {gn} of finite valued elements
of £ '̂((7). The sequence {fn} increases uniformly to / and the sequence
{gn} increases uniformly to g. If gn = Φ(fn) then {gn} increases uniformly
to some Φ{f) 6 &(C) for which, as is easily verified, {[#(/)]«} = {gn}.
The correspondence / —> Φ(f) is affine (as the continuous extension
of uniformly continuous Φ on the uniformly dense set of finite valued
elements of Sc). If g e £${C) the element / = lim^^ Φ~\gn) of Sc

has Φ(f) = g. Thus, Φ is surjective. Since both f eSc and # e Sf{G)
are uniquely determined by the sequences {fn} and {<7%}, Φ is seen to
be injective. Thus, Φ: Sc —> &{C) is an affine isomorphism. This
establishes the proposition.

REMARKS. 1. The affine isomorphism between Sc and ^ ( C ) is
still valid even if Π + is just the positive unit ball of r^{X) with
X Stonian.

2. If X is only basically disconnected Sΐ is affinely isomorphic
to the (nonChoquet) simplex of all probability Borel measures on the
topological space C equipped with the order topology. If Sc is given
the norm || IL and &{β) is given the uniform on C then Sc and
&(C) are isometric under Φ.
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PROPOSITION 3.3. Let CeC-Chain(E\+).
( i ) If C is a complete subchain of C then Sc> is a closed face

of Sc.
(ii) If F is a closed face of Sc then F = Sc> for the complete

subchain C" = F Π C of C.
(iii) Sc Π SG> = Sew is a face both of SG and Sc> when C e

C-Chain (Π+)

Proof, (i) and (ii) The closed faces of a Bauer simplex are the
closed convex hulls of closed sets of extreme points. The closed sets
of extreme points of Sc are the complete subchains of C.

(iii) That SC(]G> aScΓi So> is immediate. When / e Sc Π Sc then
C' so / e Scnc thus Sow = SϋnS0>.

COROLLARY 3.3.1. 2 Ό + ) is a Caratheodory Bauer Bauer sim-
plicial subdivision of Q"1".

COROLLARY 3.3.2. If SeΣ(\J+) its σ(L°°,Lι) closed faces and
its || W^-closed faces agree and each such face is the \\ Unclosed
convex hull of its extreme points.

4. Barycentric subdivisions of cubes. Simplicial tesselations
of L°\ If Π + is the positive unit ball of L°°(S, Σ, μ) it is the order
interval {x: 0 <; x ^ 1}. Given any e e £(Π) w ^ may order L°° (S, Σ, μ)
so that it becomes an ikf-space with e as order unit and with • as
unit ball. The positive unit ball, Πί , under this ordering is (e — Π) Π D
and the positive cone is USU^ Π ί The mapping Re: f —>f e is an
isometry of L°°(S, Σ, μ) taking Π + onto Πί The map Re is involutory
and is a σ(L°°, L1) isomorphism.

PROPOSITION 4.1.

Proof. Re(Σ(]~\+)) is a simplicial subdivision of Π ί consisting of
|| H -̂closed convex hulls of sets of the form Re(C) where Ce Jf-Chain
(Π+). Note that if {/, g} c • and ^ e is the order on L°°(S, Σ, μ)
with e as order unit then f^eg iff fe^ge. Since Re(ξ(Π+)) = ξ(Πΐ)
it follows that i2e(C-Chain(Π+)) - C-Chain(Πβ) and that

J?,(ikί-Chain(Π+)) = M-Chain(Πί) .

That Re(Σ(Πt)) = Σ(Πt) is now immediate.

PROPOSITION 4.2. 1. Σ(Π) = U {Σ(Πt) eeξ(\J)} is a simplicial
subdivision of ••
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2. The zero skeleton of Σ(£J) is the set of geometric centers of
σ(L°°, U) closed faces of Π

Proof. 1. -?(•) consists of Bauer simplexes. If / 6 • and
e = X\fm — ̂ {/<oj then / e •+ hence is in some element of Σ(£]ΐ).
Thus Σ(Π) covers Π

To show that -Γ(Π) is a subdivision it only remains to show
that if Sx and S2 are distinct elements of Σ(£J) then Si Π S2 is a
proper face both of SL and Sa. If St e ^(Πί) then Sx Π S2 is a proper
face of S1 and of S2 iff ^ ( S J Π #e(S2) is a proper face of RXS,)
and of Re(S2). Consequently we may assume that St e J?(Π+) and
that S 2e£(Π?) where / - XA - lAceζ(•). Note that ^ Q + n D /
iff #,# = g iff 0 ^ # ^ %4. For any such g, Rf(XB) -=XB if BeCg.
Thus J?/(C,) = Cβ. We have <?eS2 iff Cg = Rf{Cg)aξ{S2) and

inf (i?/(f (S2))) ^ SXflf) = £ <ς sup (i?/(ί(S2))) .

Since JR/[f(Sa)] ^s maximal the last condition is vacuous so geS2 iff
C, a ξ(St). Thus, g e S, Π S2 iff C, c f(Sf) Π f(SJ - C. Thus, SL n S2

is the face Sa> of ^ which is proper since 1 ί S^. This establishes 1).
2. In [5] it is shown that the σ(L°°, L1) closed faces of are the

order intervals { / e Q : ^ — lAc <; / ^ 1B — XBc] where A c B are in
Σ. The center of this face is XBnA — XAΠBC- If Dλ and D2 are disjoint
XD2 — y*DX is the center of a unique σ(LΓ, L1) closed face of Π X>D2 — XDX

is an element of the O-skeleton of 2Ό2") where β = XDle — Z^ hence
is an element of the O-skeleton of ^(Π) Conversely, any element
of O-skeleton of J?([H) is in the zero skeleton of Σ(£]t) for some
e = XA — XAc hence is of the form (XA — XAc)XB = Z^ — Z2?1 for some
5 and some disjoint D2 and Dlβ This suffices to establish (2).

REMARKS. 1. This proposition remains valid even if • is the
unit ball of ^(X) basically disconnected.

2. {Πί : β 6 ί(D)} is a compact cubical subdivision of Π It is
only a cubical subdivision if • isn't compact but is the unit ball of
r^{X) with X basically disconnected.

3. 2XΠ) isn't a Caratheodory subdivision of Π
If Π is a compact cube, order the closed faces by inclusion and

let the centers of the closed faces be given the induced order so that
if a is the center of face Fd for j = 1, 2 then cx ^ c2 iff Fx c F2.
Consider maximal chains of centers under this ordering. If C is
such a chain it has an infimum e which is easily verified to be the
center of a O-dimensional face hence e e £(•)• If e — 1 then 16 face(c)
for any c e C Consequently face(c) = {/: XA — XAc ^ / ^ 1} for some
A = A(e) and c = %4(c). It is easily verified that cx ^ c2 in C iff
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A(cx) Z) A(c2) thus, the maximal chains C for ^ with 1 e C are in
1 — 1 correspondence with the maximal chains in Π + The closed
convex hulls of such chains are just the element of Σ(\Z}+). Similarily,
the closed convex hulls of the maximal chains C for ^ containing
£€f(D) are the elements of Σ(\Z\ΐ) Consequently, we have the
following proposition whose terminology in self explanatory.

PROPOSITION 4.3. IXΠ) is the barycentric subdivision of Π

We recall that all closed faces of compact cubes are compact
cubes.

COROLLARY 4.3.1. If F is a closed face of the compact cube •
then {S Π F: S e i?(Π)} is the barycentric subdivision of F.

Proof. If Se Σ([J) then ξ(S) f lFίs a chain of centers of closed
faces of F for ^ . If not maximal it could be enlarged. But this
would mean that the maximal chain ξ(S) could be enlarged. Thus,
ξ(S) Π F is maximal hence has as its convex hull an element of the
barycentric subdivision of F. Since F is a face of Π> S Π F is a
face of S hence is the closed convex hull of a closed subset of ξ(S)
which is contained in ξ(S) Π F. It readily follows that S Π F is
the convex hull of ζ(S) Π F which establishes the corollary.

DEFINITION 4.1. A convex tessellation of a locally convex space
E is a convex subdivision of E.

REMARK. The meaning of a simplicial or of a cubical tesselation
is immediate.

If X is a compact Hausdorff space those elements of C^(X) whose
values are even integers I2(X) forms a subring or sublattice of ^ ( X ) .
We may define an action of I2(X) in ^(X) by translation so that,
if fe I2{X\ Tf: if(X)-> i f (X) is defined by Tf(g)=f+g for ge^(X).
The set {Tf: f e I2(X)} is a ring of homeomorphisms of <^(X) for
any locally convex topology on

PROPOSITION 4.5. {Tf([Z\): f e I2(X)} is a cubical tesselation of
X) if X is a basically disconnected compact Hausdorff space and

• is the unit ball of ^(X)

Proof. Γ = {Γ/(Π):/eJ1(X)} consists of cubes. To establish
the proposition it is necessary to show that Γ covers r^{X) and to
show that when fx and f2 are distinct elements of I2(X) then Tfl([J) Π
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is a proper face both of Tfί(Π) and of Γ/2(Π) For the latter
it suffices to show that Π Π 2V(Π) is a proper face of • for any non-
zero / in I2(X)

Let gt 6 ^(X) with n + 1 ^ sup (&) > n and with — ra > inf (gλ) ^
— (m + 1) for n, me Z. Let A be the clopen set {gx > n) and let
B be the clopen set {gt < — m}. Set #2 equal to gx — XA + XB if w ̂  1
and m ^ 1. Set g2 equal to gλ — XA if w < 1 and m <; 1. Set q2

equal to gt + xB if m ^ 1 and w < 1. Repeat this process inductively
obtaining a sequence {g3-: j e N}. There is a least integer k so that
gk — gk+1(k ^ n V m). This occurs iff gh 6 Π For this k, gx — gk + /
with feI2(X) hence #x e T/(Π) This shows, since gx was arbitrary,
that <^(X) = [JΓ.

Let / e I2(X) so that / - Σ?=-» ( 2 % , where {A_m, , AQ, .. - AJ
is a finite partition of X consisting of clopen sets. The set

D Π Γ/(Π) = {Q e ^ ( X ) : - 1 V (-1 + /) ^ g ^ 1 Λ (1 + /)} .

This is empty unless - 2 ^ / ^ 2 so that / = -2Z i l_1 + 2XAl. In this
case,

D n T/(D) - t o e <^(X): Z^ - XAιc £ g £ XAJ

which by Lemma 3 of [5],is a face of Π This completes the proof
of this proposition.

REMARK. It may be verified that a compact Hausdorff space X
is totally disconnected iff U {JΓ/(Π) /^/2(X)} is a dense subset of
<ίf(X) for I! \\x. It may also be verified that {T/(D):/e/,(-£)} is
a minimal cubical precomplex even if X is not disconnected. We
conjecture that this precomplex is a cubical tesselation of r^{X) iff X
is basically disconnected.

DEFINITION 4.2. If X is a hyperstonian compact Hausdorff space
we let Σ\X) be U {Tf(Σ(Π)Y f e i,(X)}.

PROPOSITION 4.3. If X is a hyperstorian compact Hausdorff
space then Σ\X) is a Bauer simplicial tesselation of

Proof. Σ%X) covers ^(X) with Bauer simplexes. To establish
the proposition it suffices to show that if Sx and S2 are distinct
elements of Σ\X) then St Π S2 is a proper face of both. We may
assume that S ^ ί O ) and S2eΣ(Tf(Π)) for some / in I2(X). If
/ = 0 the assertion is immediate. Otherwise, jP = Q n Γ/(D) i s a
proper face of • and of Γ/(Π) & Π S2 is equal to (S, Π F) Π (S2 Π ί7).
Since 0 e S^F, Si Π S2 is a proper subset of Sx (and also of S2). By
Corollary 4.3.1, Si (Ί F is an element of the barycentric subdivision
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of F as is S2f]F. Consequently, (SίΠF)Π(S2nF) is a face both of
S, Π F and S2 Π F. Thus, Sx Π S2 is a proper face both of Sx and of Sa.

5* Non-Coherence* A simplicial subdivision 2* of a convex set
S of a t.v.s. E is coherent iff there is a unique topology on S inducing
on each simplex in Σ its t.v.s. topology.

PROPOSITION 5.1. Let (S, Σ, μ) be a positive localizable measure
space. The Hausdorff locally convex topologies T on L°°(S, Σ, μ) which
induce σ(L°°, L1) on each simplex in 2 Ό + ) are precisely those compatible
with the duality (L°°, &).

Proof. Let T be such a topology and A = (L°°, T)'. For any
ίe A and ί / e ί set vt(E) == I(Z )̂. The set function vt on I7 is finitely
additive and absolutely continuous with respect to μ in that when
μ{E) = 0 then vt(E) = 0. If {2£n: % e N} c Σ is decreasing with empty
intersection we choose an ScGΣ(£y) with {XEn: n e N] c C. Since
11 So is σ(L°°, L1) continuous l i n ^ vt(En) = l i n ^ I(Z^) = 1(0) = 0. Thus
vt is countably additive on Σ. Theorem A, §29 of [11] shows that
there is an F+ e Σ such that if E c F+ then vt(E) ^ 0 and if E c F~ =
F\F+ then vί(E)^0. On F+, vt has variation ^ ( F + X oo and, on
JP~, VJ has variation —v{(F~) < oo. Thus, vt is of bounded variation.
The Radon-Nikodym theorem implies the existence of g e L\S, Σ, μ)
such that I(/) - [fdvt = ί/ flr^ for all / e L°°(S, Σ, μ). Thus, A is a

subspace of L\S9 Σ, μ). The topology σ(L°°, A) is a coarser Hausdorff
topology than σ(L°°, L1) hence equals σ(L°°, L1). It follows that A =
L\S, Σ, μ) hence that T is compatible with the duality <L°°, L1).

If we show that the finest topology, τ(L°°, L1), compatible with
the duality <L°°, L1) induces (τ(L°°, L1) on each element of 2 Ό + ) we
will be done. τ(L°°, Lι), the Mackey topology, is the topology of
convergence uniform on σ(L°°, L1) compact sets (i.e., uniformly in-
tegrable subsets) in L\S, Σ, μ). Equivalently, since K is uniformly
integrable iff {\g\: g eK} is uniformly integrable, τ(L°°, L1) is the
topology of convergence uniform on uniformly integrable subsets of
Lί+(S, Σ, μ).

Let K be a σ(L\ L00) compact subset of Lι+(S, Σ, μ). Let S c e

^(D+) For g e K set hg(χA) = \ gdμ when 1A e C. Each function h9
JA

is continuous on C for σ(L°°, Lι). The collection h(K) = {/̂ ff: g £ K} is
a compact subset of ^(C) for the topology of pointwise convergence
on C since K is σ(Lx, L°°) compact. The set h{K) is actually compact
for the topology of uniform convergence for it is uniformly bounded
and equicontinuous. Uniform boundedness is immediate. If h(K)
weren't equicontinuous at XAeC we would either be able to find a
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net {XAJ decreasing to XA or a net {XA } increasing to XA in C, a net

I %Aa — %A I ffadμ ̂  ε. Let us assume

that XAa I XA, Then \XAβ\XAgadμ ̂  ε for any a ^ β. Assume that {ga}

converges to g e K for σ(L\ LΓ). We then have \XAβ\XAgdμ ̂  ε for
all β hence lim^ hg(XAβ) Φ hg(XA) which is impossible. Thus, h{K) is
compact for the uniform topology. If {μa} is any σ(^€(G), C^(C))
convergent net of probability measures on C it is convergent uniformly
on norm compact sets in ^(C) hence it converges uniformly on any
h(K). Thus, if {fa} is a σ(L°°, L1) convergent net in Sc, it converges
uniformly on σ(L\ L°°) compact sets in L\S, Σ, μ) hence is r(L°°, L1)
convergent. Thus, Sc is τ(L°°, L1) compact so τ(L°°, L1) and σ(L°°, Lι)
agree on SG. This suffices to establish the proposition.

REMARKS. The finest locally convex topology on L°°(S, Σ, μ) inducing
σ(L°°, L1) on Π + is the Arens topology fc(L°°, L1) of convergence uniform
on norm compact subsets of L\S, Σf μ), [21, p. 150], [9, p. 505].

If Σ* is the tesselation of L°°(S, Σ, μ) in §4 all of the topologies
compatible with the duality <L°°, L1) induce the same topology on
each tesselation simplex. Since these are all distinct 21* would be
called a noncoherent tesselation of L°°(S, Σ, μ). If er(L°°, L1) c τ c
κ(L°°, L1) then τ induces the topology σ(L°°, L1) on Π + . It might
appear that Σ(\Z\+) has a chance to be coherent. For this we would
need to have r(L°°, L1) induce σ(I/°, L1) on Π + However, ιc{L°°, Lι)
is the finest such topology and is coarser that τ(L°°, L1).

6* Homogenity* If Γ is a Caratheodory simplicial subdivision
of an ^-dimensional convex compact set all elements of Γ are n + 1 -
simplexes hence all are affinely homeomorphic. We say that a convex
precomplex is homogeneous iff all elements are affinely homeomorphic.
Thus, all Caratheodory simplicial subdivisions of an ^-dimensional
convex compact set are homogeneous. If Π + is the positive unit
ball of an infinite dimensional space L°°(S, Σ, μ) is Σ([2+) homogeneous?
Let Cί and C2 be in M-Chain(Π+) Since SCι and SC2 are Bauer sim-
plexes they are affinely homeomorphic iff Cx and C2 are homeomorphic.
Our question reduces to examination of elements of M-Chain(Π+) as
topological spaces.

We first note the measure space (S, Σ9 μ) has an atom iff there
is a CeM-Chain(Π+) with a gap, i.e., there are elements XA < XB in
is C such that there is no element of C between them and, if this
the case, then B\A is an atom. Actually, (S, Σ, μ) has an atom iff
every CeM-Chain(Π+) has gaps. If (S, Σ, μ) has no atoms every
CeM-Chain(Π+) has n o isolated points and is connected hence C
looks like a "long line segment".
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PROPOSITION 6.1. If the positive localizable measure space {S, Σ, μ)
is neither atomic nor nonatomic the subdivision 2XΠ+) of the positive
unit ball of L°°(S, Σ, μ) is not homogeneous.

Proof. Let Sa Φ 0 be the supremum of the atoms of (S, Σ, μ)
and let Sn = S\Sa Φ 0 . Consider the following chains d and C2.
Let Ca be a maximal chain for the measure space (Sa, Σ, μ) and let
Cn be one for (Sn, Σ, μ). Let d = dα ΓΊ {/ + XSa: f e CJ. To construct
C2 break Sn into two pieces Snι Φ 0 and Sn2 Φ 0 . Construct maxi-
mal chains C%1 in (SΛl, I

7, μ) and C%2 in (SΛ2, J , μ). Let C2 = CΛl U
{/ + xSnχ: feCa)ϋ{f + lSn2 + X8a: f e Cn2}.

Construct the derived sets C[ι) and C{

2

1) of d and C2 by deleting
isolated points and repeat by transfinite induction getting derived
sets Qa) and Qa) for all ordinals a. When Qa) = Qa+1) and Qα ) -
Cf+1) then Cία) and C{

2

a) have no isolated points. This occurs at some
ordinal a, and at this point C[a) has one connectivity component
homeomorphic to Cn and C[

2

a) has two, one homeomorphic to C%1 and
one to Cn2. I t is well known that if Cλ and C2 are homeomorphic
so are C[a) and Qa). Thus, d isn't homeomorphic to C2 which
establishes the proposition.

If C is an element of M-Chain (Π + ) it is scattered space, [23],
iff the chain of derived sets {C{a): a. an ordinal}, as used in the pre-
ceding proof, terminates with C(α) = 0 . This is easily verified to
hold iff (S, Σ, μ) is purely atomic. In this case L°°(S, Σy μ) is Banach
lattice isomorphic to I°°(m) where m is the cardinality of the set of
atoms. In this case we may enumerate the set of atoms as {Aλ: X e Γ)
where card (Γ) — m. I t is easy to see that the elements of M-
Chain([J+) are in 1 — 1 correspondence with the linear orderings of
Γ. If C e M-Chain(Π+) set λ ^ ^ 7 iff XAγ ^ feC implies that lAχ ^ /
for {λ, 7} e Γ. The correspondence C «-> Sc is the desired bijection
between M-Chain(Π+) and linear orderings of Γ.

PROPOSITION 6.2. Let (S, Σ, μ) be a purely atomic positive locali-
zable measure space, with infinitely many atoms. If Q + is the
positive unit ball of L°°(S, Σ, μ) then 2 Ό + ) isn't homogeneous.

Proof. Let {Aλ: X e Γ} be an enumeration of the atoms of (S, Σ9 μ).
Let ^ ! and ^ 2 be the linear orderings of Γ obtained by putting Γ
in 1 — 1 correspondence with the sets D1 — {a: 0 ^ a <̂  ωx) and D2 —
{a: 0 ^ a <; ω2) where ω1 is the first ordinal of cardinal card (Γ)
and ω2 = ω1 + (ox. Let d a n d d be the corresponding elements of
ilf-Chain(Π+)d is homeonorphic Dt for i = 1, 2. A has only one
point q which is not a limit of a net in A\{#} of cardinality less
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than card (Γ) whereas there are two such points in D2. Thus Dt

isn't homeomorphic with D2 hence CL isn't homeomorphic to C2.

To find examples of positive localizable measure space (S, Σ, μ)
such that the space L°°(S, Σ, μ) is infinite dimensional and the positive
unit ball Π + has 2 Ό + ) homogeneous we must assume that μ is purely
nonatomic. We show that μ must be a cr-finite. The tf-finiteness of
μ is equivalent to the countable chain condition or to the assertion
that any CeChain(Π+) is separable in the order topology, [19]. In
this case any Ceilf-ChainO+) is a compact separable linearly ordered
set with no isolated points thus is homeomorphic to [0,1]. Conse-
quently, if μ is σ-finite, Σ([J+) is homogeneous.

PROPOSITION 6.4. If (S, Σ, μ) is a localizable purely nonatomic
positive measure space with Π + the positive unit ball o/L°°(S, Σ, μ)
then 2 Ό + ) is homogeneous iff μ is σ-finite.

Pooof. If μ is 6r-finite we have seen that 1 Ό + ) is homogeneous.
If μ isn't σ-finite there exist compacts {Xλ: λ e Γ} and nonatomic
probabilities {^ λ 6 JΓ} on these compacts such that •* is affinely
homeomorphic with the positive unit ball of Π°(X, μ) where μ is the
Radon measure on the locally compact disjoint union X of {Xλ: λeΓ}
with μ\Xχ —μλ for λ e Γ . This is an immediate consequence of
Kakutani's Representation Theorem for L-space [23, 26.3.3]. The
measure μ is <j-finite iff Γ is countable. To establish the proposition
it suffices to find for JΓ uncountable a Ceikf-Chain(Π+) which is
separable in the order topology. This is because the uncountability
of Γ guarantees the nonσ-finiteness of μ, hence, implies that the
countable chain condition is violated, hence, implies the existence of
a nonseparable Co 6 ilί-Chain(Π+) which can't be homeomorphic to C.

To construct C first construct maximal chains Cλ in the extreme
points of the unit ball of U°(Xλ9 μλ) for λ e Γ . Define fx,teCλ by the
requirement that \fχitdμχ = t for λ e Γ . The mapί -+fχtt is a homeo-
morphic order isomorphism of [0,1] onto Cλ for λ e Γ . Set ft equal
to fλ)t on Xx for all λ e Γ . The map t—>ft is an order isomorphic
homeomorphism of [0, 1] onto the chain C = {ft: 0 ̂  t ^ 1} The
maximality of the separable chain C is readily verified.
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