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OPERATORS OVER REGULAR MAPS

STEPHEN E. WILSON

In this paper, we define certain operators, each of which
transforms one regular map into another. These operator
are based on the notions of Petrie path and jth order
"hole" introduced by Coxeter. Together with the usual
dual operator, they are a powerful tool for the analysis and
taxonomy of regular maps. We produce, as an example, 18
distinct maps from the icosahedron, including six of Brahana
and Coble's eight pentagonal dodecahedra.

DEFINITIONS. A map is a division of a compact 2-manifold into
simply connected regions called the faces of the map by an embedded
graph or multigraph. A flag in a map M is a mutual incidence of
a face, an edge and a vertex. A symmetry or automorphism of M
is a permutation of its parts which preserves kind and incidence.
The map M is to be called regular provided that its group of sym-
metries, G(M), acts transitively on its flags. Consider Fig. 1: a
regular map M must possess a symmetry a which interchanges the
flags (A 1V) and (A 1 U), another, β, which interchanges (A 1 V) and
(B1V), and a third, X, which interchanges (A 1V) and (A 2 V). These
three symmetries generate G(M), and we may think of them as
reflections about the appropriate axes. The map also has rotational
symmetries: R = aX (meaning first apply a and then X) is rotation
one step counterclockwise about face A. S = βX is rotation one step
clockwise about V, and 7 = aβ is rotation 180° around edge 1.

A

B

FIGURE 1. Flags in a regular map
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Other forms of regularity:
This definition of regularity is a little stronger than is standard

and it will be worth our while to look at others.
A few authors have only required that the vertices all have the

same valence and that all the faces have the same co-valence. This
is the weakest form of regularity, and we will call such a map
uniform. Many authors have required that the map only need
possess rotational symmetries like R, S, and 7. Such a map we will
call rotary. Every regular map is rotary, and a map which is rotary
but not regular we will call chiral (lit. "handed")- There are no
chiral nonorientable maps [4]

Much of the literature deals with rotary maps. We prefer the
present definition because it is in some sense more natural to re-
quire that the map have all its possible symmetries than just half,
because it is easier to generalize to higher-dimensional complexes,
and, primarily, because it is more powerful — one of our most impor-
tant tools, the operator P, will be seen to be closed over regular
maps, but not over rotary ones.

Holes and Petrie paths:
A jth order hole is a cyclic sequence of edges, each two con-

secutive sharing a vertex, so that at each vertex, the adjacent edges
subtend j faces on one side, either the right or the left but consis-
tently throughout.

A jth order Petrie path is a similar sequence of edges, but at
each vertex, j faces are enclosed on the right and on the left alter-
nately. A first-order Petrie path will be called simply a Petrie path
and a first-order hole is just a face.

FIGURE. 2 The icosahedron
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FIGURE 3. The octahedron FIGURE 4. ε3 = {3, 2}

Consider Fig. 2, the icosahedron. Here, AHDIC is a second- and
third-order hole; AHBIDJEKFG is a Petrie path and DEFGHI is a
second-order Petrie path.

In these definitions we intend enclosing on the right to be distinct
from enclosing on the left. To clarify that distinction and its
consequences, consider Pig. 3, the octahedron. Edge 3 in this figure
belongs to two different second-order holes, both consisting of the
edges 12, 6, 9, 3 in that order, but in one, the angle 9C3 contains the
faces CDF and CDA (on the right) and in the other, 9C3 contains
CFB and CAB (on the left). Also examine the map of Fig. 4, s3 ==
{3, 2}. A Petrie path in this map has length 6: For instance, starting
at 1B2 enclosing the upper hemisphere, face U, the one and only Petrie
path in this map is 1B2(?7), 2C3(L), 3A1(Z7), 1B2(L), 2C3(I7), 3C1(L).

The symmetry T = jX is easily seen to move the map in a glide
reflection one step along the Petrie path TUVW in Fig. 1. Motion
one step along a ith order hole is RS3"1 = yS*. For instance in Fig.
1, RS = ΎS2 is one step along the second-order hole SUVX.

The Operators D, P, opp and Hj.
As is well-known, for any map M on a surface, a new map, called

the dual of M, D(M), can be formed on the same surface in the
following way: take for vertices all the face-centers of M, and for
each edge of M9 draw a new edge across it joining the centers of
the adjacent faces. The new edges are in one-to-one correspondence
with the old edges they cross, and, in fact, we would like to think
of D{M) as being made up of the edges of M differently arranged.
Thus a set of edges which forms a face in M forms a vertex in D(M)
and vice versa; further, a set of edges which forms a Petrie path
in M also forms a Petrie path in D(M). Indeed, one possible definition
for a Petrie path is to require that it be a set of edges which is a
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cycle both in M and in D(M). D is defined over all maps, and D(M)
is regular (rotary, uniform) iff M is regular (rotary, uniform).

We can also form from M a new map called the Petrie of M,
P(M), as follows: dissolve the faces of M and span by a membrane
each cycle of edges which forms a Petrie path in M. The resulting
figure is a map on a surface, in general a different surface than that
of M. A set of edges which forms a face in M forms a Petrie path
in P(ikf), while vertices in M are also vertices of P(M). P(M) is regu-
lar iff M is regular; however, if M is chiral, PM must be uniform
but not necessarily even rotary.

Since D transposes faces and vertices, leaving Petrie paths fixed,
and P transposes faces and Petrie paths, leaving vertices alone, we
can see that the operators P and D satisfy I = P2 = D2 = (PD)\
Thus, P and D generate a copy of S8, the group of permutations on
three objects. The third involution of the group, POP — DPD, we
call the opposite operator; opp (M) = PDP(M) = DPD(M) can be
formed directly from M in the following interesting way: Label
each edge with a number and an arrow running along it on both
sides. Cut the map apart along the edges and then glue it back
together again so that all the numbers match but none of the arrows
do. The resulting map is opp (M). Its faces are the faces of M,
but all of the joinings have been reversed.

Let us prove that with a picture. Fig. 5a shows the neighborhood
of an edge in M (the edge numbered 2 here); if we apply the operator
P to M, the neighborhood of edge 2 in PM will be as in Fig. 5b:

FIGURE 5a. M FIGURE 5b. P(M)

If we now apply D to P(M) and P to that, the neighborhood of 2
will be as in Figs. 5c and 5d, respectively:

FIGURE 5C. DP(M) FIGURE 5d. opp (M) = PDP(M)
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As predicted, the faces (..125..) and (..324..), which meet at 2
in M, exist and meet at 2 in opp (M) = PDP(M), .but are oppositely
matched.

We would like to construct another operator, Hjf using ith order
holes as the operator P used Petrie paths. However, some care must
be used. Consider the object we get by dissolving the faces of M
and spanning by a membrane each cycle of edges which is a jth

C = the cube = {4, 3}6
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FIGURE 6. The direct derivater of the cube
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order hole in M. If j is relatively prime to the valence q of a vertex,
this will be a map on a manifold which we can call Hό(M). If
however, d = (i, q) is not 1, the jth order holes meeting at a given
vertex will resolve themselves into d cycles of q/d holes apiece, none
from one cycle meeting one from any other (at that vertex). Thus
our putative Hά(M) will look like a manifold except that at each
vertex, d sheets will be pinched together. In this case, we separate
each vertex into (j, q) vertices, one on each sheet. The result of this
surgery is a manifold which is either one connected map or the union
of a number of identical connected components. Hά(M) is one con-
nected component of this manifold. Clearly HiH3 = Hiίf and

Derivates and Direct Derίvates:
The maps derivable from M under D, P, Hό and their products

we call the derivates of M; under D, P and their products only, the
direct derivates of M, numbering at most six. Consider, for example,
the cube; its direct derivates are shown in Fig. 6. In Fig. 6, the
edges are numbered consistently throughout, so that the edges of a
Petrie path in C form a face of P(G), & vertex in opp (C), etc. Follow,
for instance, the fate of the cycle 1234, which is a face in C and
opp C, a vertex in DC and PDC, and a Petrie path in PC and DPC.
Note that PDC and opp C are nonorientable.

Considering the action of the operators Hό on these maps, first
let us realize that in any map M, Hό(M) — Hq^ό{M), so that we only
need consider values [of j between 2 and q/2, inclusive, Thus we
need only consider H2 on DC and PDC, H2 and Hz on DPC and opp C,
and none at all on C and PC. H2DC is a map on the sphere consisting
of two 4-gonal faces sharing four vertices and edges along the equator,
ε* = {4, 2}. Since PH3 = HjP, it follows that H2PDC is Pε4, which
is ε4 itself. It is clear that H2(DPC) consists of 6-gons meeting three
at a vertex (i.e., it is of type {6, 3}), and tracing out all the second-
order holes, we get Fig. 7, which is identical to PC. Thus H2PDP(C) =
PH2DP(C) = PP(C) = C\ This demonstrates that while H3 of an

12

FIGURE 7. Hι(DP(G))
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orientable map must be orientable, H3 of nonorientable map may be
orientable or not. Finally, HSDPC is ε2, and so is H3 opp C.

The various operators may degenerate slightly in their action on
a given map. There would seem to be four cases possible:

L M has six different direct derivates.
II. M is self-dual (or self-Petrie or self-opposite) but no other

degeneracies occur, so that M has three direct derivates, M =* DM,
PM « PDM, DPM = opp M.

IIL M = PDM = DPM Φ DM ^ PM ^ opp M, so that M has two
direct derivates.

IV. M = PM = DM, so M is self-everything and has only one
direct derivate.

Glancing through the catalogue of maps produced in [7], we see
that there are about equal occurences of cases I and II, very few
cases IV, and absolutely no examples of case III. This is curious.
There seems to be no obvious reason that no case III map should
exist, and yet they seem reluctant to appear. The author, in fact,
conjectured for a period of two years before he found one that
no such map existed. Let M be the regular map {3, 7}9. This map
has 126 edges ([4], p. 139), and opp If = {3, 9}7. Then N = iΓ2opp.M
is a regular map of type {9, 9}9. Working from a diagram of the
map or from a representation of its generators as permutations of
edges, it is ersy to check that N satisfies the following relations:

- R9 = (TR*y = (SRJ ,

and is defined by them. From these, it is clear that the operator
PD, which permutes Rf S, T cyclically, sends the map to itself, while
D, which interchanges R and S, does not.

History of the Operators:
The notion of duality, of course, is as ancient as Greek mathe-

matics, as is the idea of using some standard collection of operations
(duality, truncation, stellation, etc.) to get a new polyhedron from
an old one.

Petrie paths were first noticed as being useful by J. F. Petrie
and were first mentioned in print by Coxeter in [2]. Coxeter there-
after used Petrie paths repeatedly and successfully to illuminate
many geometric and group-theoretic ideas. He introduced the notation
{p, q}r for the (possibly infinite, possibly collapsing) map formed from
the spherical, Euclidean or hyperbolic tessellation {p, q} by identifying
points at distance r steps along a Petrie path. In [4], he and Moser
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list the known finite {p, q}r's. In article 8.6 of [4], they explicitly
formulate a process equivalent to the operator P, and so construct
the six direct derivates of {p, q}r, but curiously, they do not apply
these operators to any other regular map.

In [3], Coxeter introduced ith order holes and enumerated regular
maps {p, q\h2) determined by p, q, and h2 and {p, q\, h3} determined by
p, q, and hz. No one seems previously to have constructed an operation
like the £Γ/s, but this idea also is not new: the Great Dodecahedron
is formed precisely by making H2 of the icosahedron. Further, the
Great Icosahedron may be seen to be H2 of the Small Stellated
Dodecahedron.

In [1], Brahana and Coble produce eight pentagonal dodecahedra
in pairs. In each case, they have the group expressed as permutations
on the faces and they have two involutions, one of which can be
interpreted as a turn around an edge and the other a turn over the
same edge (p. 5), the choice being arbitrary. Making one choice
gives them a map M, and making the other gives oppikf; i.e., the
opposite operator interchanges the roles of β and 7 in the group of
the map. (There is a small flaw in Figure VII of [1]: the edge
joining face β with face ε should have one of its arrows reversed.)

An Example:
As an example of the operators, we list in Table 1 the derivates

of the icosahedron with 30 edges, and the effect of the operators
A P> opp, H29 and H9 on each. Only items 1, 3, and 7 are orientable.
Notation for Table 1 is as follows:

F — the number of faces

V = the number of vertices

— X = 30 — F — F, the negative of the Euler characteristic

q — the valence of a vertex = the order of S in the group

p — the co-valence of a face = the order of R

r — the length of a Petrie path = the order of T.

Under opp, D, P, H2, Hs for each map is listed the number of the
item in this list that is produced by applying the operator to the
map. Under Hjt if j > q/2, only a dash is shown. The symbol *
there means that H3 (M) is ε2 = {2, 2} the regular map on a sphere
with two edges, two faces and two vertices.

Among the items on this list are six of Brahana and Coble's
eight dodecahedra, which neatly demonstrates their contention that
these six maps have identical groups, though it does not show that
the other two (formed from {5, 4}6 and {5, 6}4 by identifying antipodal
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points) do not have this group. For each of these the table shows
the number of the corresponding figure in [1] under BC.

TABLE 1. The derivates of the icosahedron

opp D P H2 Hz Item -χ F V q BC

6

4

5

2

3

1

9

8

7

12

11

10

18

16

17

14

15

13

3

5

1

6

2

4

7

9

8

11

10

12

15

17

13

18

14

16

2

1

4

3

6

5

8

7

9

10

12

11

14

13

16

15

18

17

7

8

3

4

14

13

1

2

10

10

2

1

14

13

8

7

4

3

—

—

—

—

6

5

—

_

—

15

16

—

—

11

12

*

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Icosahedron

P(D
Dodecahedron

PD(Ϊ)
DP(1)
opp (1)

Great Dodecahedron

P(7)
DP(Ί)

#
2
(9)

£(10)

PD(10)

H
2
(6)

P(13)

#(13)

PD(13)

DP(13)

opp (13)

-2

12

-2

4

12

4

6

8

8

4

4

18

12

8

12

14

8

14

20

6

12

6

12

20

12

20

12

6

20

6

6

10

12

10

12

6

12

12

20

20

6

6

12

12

20

20

6

6

12

12

6

6

10

10

5

5

3

3

10

10

5

5

6

3

10

10

5

5

10

10

6

6

3

10

5

10

5

3

5

6

5

10

3

10

10

6

5

6

5

10

10

3

10

5

3

5

6

5

5

10

10

3

6

10

6

5

10

5

VI

VIII

VII

IX

IV

V

Other Uses of the Operators:
Besides their use in constructing new regular maps from old ones,

the operators can be used as a compact language for describing the
properties of a given map or for talking about the relationship of
one map to another. For instance, if M is a large 6-valent regular
map, it helps one to understand the structure of M to notice that
H2(M) is the cube (if that is the case). We close by stating, without
proof, three theorems that employ the operators in this way.

Let M!C}i for i2 = l(mod k) be the map with two faces shown in
Fig. 8.

3L--'

FIGURE 8.

THEOREM 1. M'kΛ is self-Petrie iff
( 1 ) k is even and i = — l(mod&)

or (2) k — %h and i = Ah — 1 for some positive integer h.
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THEOREM 2. / / M is an orientable regular map, then its under-
lying graph is bipartite iff P(M) is also orientable.

Note that in a regular map, if some pair of vertices share exactly
k edges, then [so does every pair of adjacent vertices, and that in
general, k could be any positive integer. However, we can prove
this:

THEOREM 3. If the regular map M is self-Petrie, then each pair
of adjacent vertices in M share at most two edges.
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