AN IMPLICIT FUNCTION THEOREM IN BANACH SPACES

IAIN RAEBURN

We prove the following theorem:

THEOREM: Suppose X, Y, and Z are complex Banach spaces, U and V are open sets in X and Y respectively, and $x \in U$, $y \in V$. Suppose $f: U \to V$ and $k: V \to Z$ are holomorphic maps with f(x) = y, $k \circ f$ constant and range $f'(x) = \ker k'(y)$ $\neq \{0\}$. Let D be a domain in C^n , $z \in D$ and $g: D \to Y$ be a holomorphic map with g(z) = y and $k \circ g$ constant. Then there is an open neighborhood W of z and a holomorphic map $h: W \to X$ such that h(z) = x and $g \mid_W = f \circ h$.

We use this result to prove an Oka principle for sections of a class of holomorphic fibre bundles on Stein manifolds whose fibres are orbits of actions of a Banach Lie group on a Banach space.

Introduction. Suppose U is an open set in C^n , $x \in U$, and f: $U \to C^m$ is a holomorphic map such that f'(x) is surjective. Then a form of the implicit function theorem tells us that there is a neighborhood V of f(x) and a holomorphic map $\rho: V \to U$ such that $\rho(f(x)) = x$ and $f \circ \rho$ is the identity on V. This theorem remains true if f is a holomorphic map of an open set U in a Banach space X into a Banach space Y, provided that ker f'(x) is a complemented subspace of X. That this is also a necessary condition follows from the fact that $f'(x) \circ \rho'(f(x))$ is the identity operator on Y, so that $\rho'(f(x)) \circ f'(x)$ is a projection of X onto ker f'(x).

In general, implicit function theorems work well in a Banach space setting, provided that we impose suitable complementation conditions (see, for example [4]). In practice it can be very hard to find out whether a given subspace of a Banach space is complemented; our main theorem is an implicit function theorem which has no complementation hypothesis. Before we state our theorem, we shall reword the result mentioned above. Let X and Y be complex Banach spaces, U be open in X, $x \in U$, and $f: U \to Y$ be a holomorphic map such that f'(x) is surjective and ker f'(x) is a complemented subspace of X. Then if V is an open set in a Banach space W, $w \in V$, and g is a holomorphic map of V into Y such that g(w) = f(x), there is a neighborhood N of w and a holomorphic map $h(= \rho \circ g)$ of N into X such that $f \circ h = g$ on N. Our main theorem asserts that provided W is finite-dimensional, this theorem is still true without the hypothesis that ker f'(x) be complemented. More generally, suppose there is a third Banach space Z and a holomorphic map $k: Y \rightarrow Z$ such that $k \circ f$ is constant and range $f'(x) = \ker k'(f(x))$. Let D be

an open set in C^* , and let $z \in D$. Then our main theorem says that if g is a holomorphic map of D into $k^{-1}(k(f(x)))$ with g(z) = f(x), then there is a holomorphic map h of a neighborhood N of z into X such that $f \circ h = g|_N$. We shall prove this theorem in §2.

Grauert [2] has proved an Oka principle for sections of a holomorphic fibre bundle over a Stein manifold with fibre a complex Lie group. Ramspott [10] has generalized this result to allow homogeneous spaces as fibres, and Bungart [1] has extended it to the case where the fibres are infinite-dimensional Lie groups. In §3, as an application of our implicit function theorem, we shall extend the theorems of Ramspott and Bungart to allow for infinite-dimensional fibres which are the orbits of suitable actions $(g, x) \rightarrow g \cdot x$ of an infinite-dimensional Lie group G on a Banach space X; more specifically, we demand that such an orbit M also be the level set of a holomorphic map k in such a way that the derivatives of the orbit map $g \rightarrow g \cdot x_0$ and k form an exact sequence at $x_0 \in M$.

1. Preliminaries. Let X and Y be complex Banach spaces, let U be an open set in X and let f be a continuous map of U into Y. We say f is holomorphic in U if at each point of U f has a Fréchet derivative which is a complex linear map of X into Y. Equivalently, f is holomorphic in U if for each $x \in U$ and $h \in X$ the function $z \to f(x + zh)$ is holomorphic in a neighborhood of 0 in C. If $f: U \to Y$ is holomorphic in U, then f has complex Fréchet derivatives of all orders; that is, for $x \in U$ and all n the nth derivative $f^{(n)}(x)$ exists as a complex multilinear map of X^n to Y. We give X^n the norm $||(x_1, \dots, x_n)|| = \sup\{||x_i||\}$ and put the corresponding operator norm on $L^n(X^n, Y)$, the space of complex n-linear maps of X^n into Y. If $f: U \subset X \to Y$ is holomorphic, it is well-known that $\limsup(||f^{(n)}(x)||/n!)^{1/n}$ is finite for each $x \in U$. For further details of this material, we refer to [7].

We shall use many times two differentiation techniques which are well-known in one variable; namely, the chain rule and Liebnitz' formula. Let U be open in X, V be open in Y, and let $f: U \to V$ and $g: V \to Z$ be differentiable. Then the chain rule [5, p. 99] says that $g \circ f$ is differentiable, and, for $x_0 \in U$, the derivative $(g \circ f)'(x_0) \in$ L(X, Z) is given by

$$(g \circ f)'(x_{\scriptscriptstyle 0})x = g'(f(x_{\scriptscriptstyle 0}))[f'(x_{\scriptscriptstyle 0})x] \quad {
m for} \quad x \in X \;.$$

Let U be an open set in C, and let $f: U \to L(Y, Z)$ and $g: U \to L(X, Y)$ be *n* times continuously differentiable maps. Then we can define $fg: U \to L(X, Z)$ by $fg(u) = f(u) \circ g(u)$ for $u \in U$, and a special case of the product formula [5, p. 97] gives that fg is differentiable and

$$(fg)'(u) = f(u) \circ g'(u) + f'(u) \circ g(u)$$
.

Proceeding exactly as in the scalar case, an induction argument gives us our version of Liebnitz' formula: the function fg is n times continuously differentiable and

$$(fg)^{(n)}(u) = \sum_{r=0}^{n} \left[egin{array}{c} n \ r \end{array}
ight] f^{(r)}(u) \circ g^{(n-r)}(u) \quad {
m for} \quad u \in U \; .$$

2. The implicit function theorem.

THEOREM 2.1. Suppose X, Y, and Z are complex Banach spaces, U and V are open sets in X and Y respectively, and $x \in U$, $y \in V$. Suppose f: $U \to V$ and k: $V \to Z$ are holomorphic maps with f(x) = y, $k \circ f$ constant and range $f'(x) = \ker k'(y) \neq \{0\}$. Let D be a domain in C^n , $z \in D$, and g: $D \to Y$ be a holomorphic map with g(z) = y and $k \circ g$ constant. Then there is an open neighborhood W of z and a holomorphic map h: $W \to X$ such that h(z) = x and $g|_W = f \circ h$.

Proof. We shall assume for simplicity that x, y, and z are all 0. By shrinking D if necessary, we may assume that g has a power series representation

$$g(z) = \sum_{|I|=0}^{\infty} rac{g^{(I)}(0)}{I!} z^I$$
 for $z \in D$,

where I denotes the multiindex (i_1, \dots, i_n) , $z^I = z_1^{i_1} \dots z_n^{i_n}$, $I! = i_1! i_2! \dots i_n!$, and

$$g^{\scriptscriptstyle (I)}(0)=rac{\partial^{i_1}}{\partial z_1^{i_1}}rac{\partial^{i_2}}{\partial z_2^{i_2}}\cdots rac{\partial^{i_n}}{\partial z_n^{i_n}}g(0)\;.$$

We shall suppose first that such an h exists; then $f \circ h$ is a holomorphic map of D into Y. Let I be a nonzero multiindex, and assume without loss of generality that $i_1 > 0$. If $I' = (i_1 - 1, i_2, \dots, i_n)$, then by the chain rule applied to the function $z_1 \rightarrow f \circ h(z_1, 0, \dots, 0)$ we have

$$g^{{}^{(I)}}(0) = (f \circ h)^{{}^{(I)}}(0) = \left((f' \circ h) rac{\partial h}{\partial z_1}
ight)^{{}^{(I')}}(0) \, .$$

Now $f' \circ h$ is a holomorphic map of D into L(X, Y) and we can regard $\partial h/\partial z_1$ as a holomorphic map of D into $L(C, X) \cong X$, so our Liebnitz formula applies; we obtain

$$g^{(I)}(0) = \sum_{r=0}^{i_1-1} \begin{bmatrix} i_1 - 1 \\ r \end{bmatrix} \begin{bmatrix} \frac{\partial^r}{\partial z_1^r} (f' \circ h) \frac{\partial^{i_1-r}}{\partial z_1^{i_1-r}} h \end{bmatrix}^{(I-(i_1,0,\cdots,0))}(0) .$$

IAIN RAEBURN

By successively applying the Liebnitz formula to the different variables, we obtain

$$g^{(I)}(0) = \sum_{J \leq I'} \begin{bmatrix} I' \\ J \end{bmatrix} (f' \circ h)^{(J)}(0) \circ h^{(I-J)}(0)$$

where

$$\begin{bmatrix} I'\\ J \end{bmatrix} = \begin{bmatrix} i_1 - 1\\ j_1 \end{bmatrix} \begin{bmatrix} i_2\\ j_2 \end{bmatrix} \cdots \begin{bmatrix} i_n\\ j_n \end{bmatrix}.$$

Hence if such an h exists, for all multiindices I its derivatives satisfy

$$(1) \quad (f' \circ h)(0)h^{(I)}(0) = g^{(I)}(0) - \sum_{0 < J \leq I'} egin{bmatrix} I' \ J \end{bmatrix} (f' \circ h)^{(J)}(0) [h^{(I-J)}(0)] \ .$$

We observe that by repeating this process on the term $(f' \circ h)^{(J)}(0)$, we find that each $(f' \circ h)^{(J)}(0)h^{(I-J)}(0)$ can be written as a linear combination of points of Y of the form

$$(f^{(j)} \circ h)(0)[h^{(L_1)}(0), \cdots, h^{(L_j)}(0)]$$

for some $j \ge 2$ and multiindices L_1, \dots, L_j with $L_i > 0$ for all i and $\sum_{i=1}^{j} L_i = I$.

We first define h(0) = 0. Then $(f' \circ h)(0) = f'(0): X \to Y$, and range $f'(0) = \ker k'(0)$, a closed linear subspace of Y. Then by the open mapping theorem there is a constant C such that for each $y \in$ range f'(0) there exists $x \in X$ with f'(0)x = y and $||x|| \leq C ||y||$. We shall assume that $C ||f'(0)|| \geq 1$. We shall define $h^{(I)}(0)$ inductively so that (1) holds and

$$(2) \qquad || h^{(I)}(0) || \leq C \left\| g^{(I)}(0) - \sum_{0 < J \leq I'} \left[\begin{matrix} I' \\ J \end{matrix} \right] (f' \circ h)^{(J)}(0) [h^{(I-J)}(0)] \right\|$$

where by $(f' \circ h)^{(I)}(0)h^{(I-J)}(0)$ we mean the linear combination described above. We observe that for |I| = 1, $(k \circ g)^{(I)}(0) = k'(0)g^{(I)}(0)$, and since $k \circ g$ is constant we have $g^{(I)}(0) \in \ker k'(0) = \operatorname{range} f'(0)$, so that we can choose $h^{(I)}(0)$ as required. Suppose now that for all J with |J| < |I| the right hand side of (1) is in the range of f'(0) and we have chosen $h^{(J)}(0)$ satisfying (1) and (2). For notational convenience we shall regard h as the polynomial

$$h(z) = \sum_{0 \leq J < I} rac{h^{(J)}(0)}{J!} z^J$$
 for $z \in D$,

so that for J < I the terms $(f' \circ h)^{(J)}(0)$, $(k' \circ f \circ h)^{(J)}(0)$ and so on all make sense, and all such terms agree with those given by expanding and using (1). To show that we can define $h^{(I)}(0)$ as required it is enough to show that

528

(3)
$$k'(0)\left[g^{(I)}(0) - \sum_{0 < J \leq I'} \begin{bmatrix} I' \\ J \end{bmatrix} (f' \circ h)^{(J)}(0)[h^{(I-J)}(0)]\right] = 0.$$

Since $k \circ g = 0$, $(k \circ g)^{(I)}(0) = 0$, and so as before

$$k'(0)g^{(I)}(0) = -\sum_{0 < K \leq I'} igg I' K igg] (k' \circ g)^{(K)}(0) [g^{(I-K)}(0)] \; .$$

By the inductive hypothesis

$$g^{\scriptscriptstyle (I-K)}(0) = \sum_{0 \leq L \leq \langle I'-K
vert} igg[egin{array}{c} I' & -K \ L \end{array} igg] (f' \circ h)^{\scriptscriptstyle (L)}(0) [h^{\scriptscriptstyle (I-K-\widecheck{arphi})}0)]$$

for all $K \leq I'$. Hence

$$(4) \qquad k'(0)g^{(I)}(0) = -\sum_{0 < K \le I'} \sum_{0 \le L \le (I'-K)} \begin{bmatrix} I' \\ K \end{bmatrix} \begin{bmatrix} I' - K \\ L \end{bmatrix} \ imes (k' \circ f \circ h)^{(K)}(0) \circ (f' \circ h)^{(L)}(0)[h^{(I-K-L)}(0)]$$

since all derivatives of $f \circ h$ of less than Ith order are those of g. Now $(k \circ f)' = 0$, and so

$$0 = (k \circ f)' \circ h = (k' \circ f \circ h)(f' \circ h) .$$

Thus for every J < I

$$\begin{aligned} 0 &= ((k' \circ f \circ h)(f' \circ h))^{(J)}(0) \\ &= \sum_{0 < M \leq J} \begin{bmatrix} J \\ M \end{bmatrix} (k' \circ f \circ h)^{(M)}(0)(f' \circ h)^{(J-M)}(0) , \end{aligned}$$

and so as elements of L(X, Z),

$$k'(0)(f'\circ h)^{(J)}(0) = -\sum_{0 < M \leq J} \begin{bmatrix} J \\ M \end{bmatrix} (k'\circ f\circ h)^{(M)}(0)/(f'\circ h)^{(J-M)}(0) \; .$$

Thus

$$-\sum_{0 < J \leq I'} \begin{bmatrix} I' \\ J \end{bmatrix} k'(0) \circ (f' \circ h)^{(J)}(0) [h^{(I-J)}(0)]$$

$$= \sum_{0 < J \leq I'} \sum_{0 \leq M \leq J} \begin{bmatrix} I' \\ J \end{bmatrix} \begin{bmatrix} J \\ M \end{bmatrix} (k' \circ f \circ h)^{(M)}(0) \circ (f' \circ h)^{(J-M)}(0) [h^{(I-J)}(0)]$$

$$= \sum_{0 < M \leq I'} \sum_{M \leq J \leq I'} \begin{bmatrix} I' \\ M \end{bmatrix} \begin{bmatrix} I' - M \\ J - M \end{bmatrix} (k' \circ f \circ h)^{(M)}(0) \circ (f' \circ h)^{(J-M)}(0) [h^{(I-J)}(0)]$$

$$= -k'(0)g^{(I)}(0) \quad \text{by (4).}$$

Thus we have proved (3) and we can define $h^{(I)}(0)$ to satisfy (1) and (2).

529

Now define

(5)
$$h(z) = \sum_{|I|=0}^{\infty} \frac{h^{(I)}(0)}{I!} z^{I} \text{ for } z \in C^{n}.$$

If we can show that this series converges absolutely in some neighborhood of 0, then we shall be done. Now, by (2), if I is a multiindex

$$\|\|h^{\scriptscriptstyle (I)}(0)\| \leq k iggl\{\|g^{\scriptscriptstyle (I)}(0)\| + \sum\limits_{\scriptscriptstyle 0 < J \leq I'} iggl[rac{I'}{J} iggr] \chi^{\scriptscriptstyle I'}_J iggr\}$$
 ,

where $\chi_J^{I'}$ is a linear combination of terms of the form

$$\chi = \| f^{_{(j)}}(0) \, \| \, \| \, h^{_{(L_1)}}(0) \, \| \, \cdots \, \| \, h^{_{(L_j)}}(0) \, \|$$
 ,

for some $j \ge 2$, $L_1, \dots, L_j > 0$ with $\sum_{i=1}^j L_i = I$. Define F(0) = ||f(0)|| = 0, $F^{(1)}(0) = ||f'(0)||$, and $F^{(n)}(0) = -||f^{(n)}(0)||$ for n > 1. Since $f: U \to Y$ is holomorphic, we have that $\limsup (||f^{(n)}(0)||/n!)^{1/n}$ is finite, and so there is an open neighborhood V of 0 such that

$$F(t)=\sum\limits_{n=0}^{\infty}rac{F^{(n)}(0)}{n\,!}\,t^n\qquad ext{for }t\in V$$
 ,

defines a holomorphic function of V into C. Similarly we define a holomorphic map G of D into C by $G^{(I)}(0) = ||g^{(I)}(0)||$ for all multiindices I and

$$G(z) = \sum_{|I|=0}^{\infty} \frac{G^{(I)}(0)}{I!} z^{I} \quad \text{for } z \in D$$
.

Since $F'(0) = ||f'(0)|| \neq 0$, by the inverse function theorem for one variable there is a neighborhood W of 0 in D, and a holomorphic map H of W into C with $F \circ H = G|_W$ and H(0) = 0. By differentiating $F \circ H$ using the chain rule and Liebnitz' formula, we obtain

$$F'(0)H^{(I)}(0) = G^{(I)}(0) - \sum_{0 < J \leq I'} igg[I' \ J igg] (F' \circ H)^{(J)}(0)H^{(I-J)}(0) \; .$$

Again, we expand each $(F' \circ H)^{(J)}(0)$ in the same way and obtain

where $\xi_J^{I'}$ is identical to $\chi_J^{I'}$ with each $||h^{(L_i)}(0)||$ replaced by $H^{(L_i)}(0)$. We shall now prove that there is a constant M such that for all multiindices I

$$||h^{(I)}(0)|| \leq M^{2|I|-1}H^{(I)}(0).$$

530

In fact, take M = C ||f'(0)|| which was chosen to be ≥ 1 . The inequality is trivially true for I = 0. Suppose (6) holds for all J with |J| < |I|. Then for each term χ of $\chi_J^{I'}$

(7)
$$\chi \leq ||f^{(j)}(0)|| M_{i=1}^{\frac{j}{2}(2|L_j|-1)} H^{(L_1)}(0) \cdots H^{(L_j)}(0) \\ \leq M^{2|I|-2} ||f^{(j)}(0)|| H^{(L_1)}(0) \cdots H^{(L_j)}(0) ,$$

since $j \ge 2$ and $\sum L_i = I$. The right hand side of (7) is $M^{2|I|-2}$ times the term of $\xi_J^{I'}$ corresponding to χ , and so we have

as required. Since H is holomorphic in a polydisc, from (6) it follows that the power series (5) converges in a polydisc about 0, and the proof is complete.

3. Sections of holomorphic fibre bundles. We shall start this section with a couple of technical results which we shall need later. The first is an application of the mean value theorem [5, p. 103].

LEMMA 3.1. Let X and Y be Banach spaces, let U be open in X, and let f: $U \to Y$ be continuously differentiable. Let K be a compact Hausdorff space and define $\tilde{f}: C(K, U) \to C(K, Y)$ by $(\tilde{f}\phi)(k)$ $= f(\phi(k))$ for $\phi \in C(K, U)$ and $k \in K$. Then \tilde{f} is continuously differentiable and for $\phi \in C(K, U)$

$$(f'(\phi)\psi)(k) = [f'(\phi(k))]\psi(k) \quad for \ all \quad \psi \in C(K, X), \ k \in K$$
.

Let X and Y be Banach spaces, $T \in L(X, Y)$ and suppose T has closed range. Then by the open mapping theorem $T: X \to \text{range } T$ has a bounded inverse T^{-1} . Call $||T^{-1}||$ the inversion constant of T. Let K be a compact Hausdorff space, and let $T: K \to L(X, Y)$ be a continuous map. Then T induces a bounded linear map $\widetilde{T}: C(K, X) \to C(K, Y)$, where

$$(\widetilde{T}f)(k) = T(k)f(k)$$
 for $f \in C(K, X)$, $k \in K$.

LEMMA 3.2. Suppose that T(k) has closed range for each $k \in K$ and suppose that the inversion constant of T(k) is less than M for each $k \in K$. Then

(1) If $g \in C(K, Y)$ satisfies $g(k) \in \text{range } T(k)$ for all $k \in K$, then for each $\varepsilon > 0$ there is $f \in C(K, X)$ with $||f|| \leq M ||g||$ and $||\widetilde{T}f - g|| < \varepsilon$.

IAIN RAEBURN

(2) \tilde{T} has closed range and the inversion constant of \tilde{T} is less than 2M.

Proof. Part (1) follows by a standard partition of unity argument. To prove part (2) it is enough to show that for each $g \in C(K, Y)$ with $g(k) \in \text{range } T(k)$ for all $k \in K$, there is some $f \in C(K, X)$ with $\widetilde{T}f = g$ and $||f|| \leq 2M ||g||$. Let such a g be given. Then by (1) we can choose f_1 such that $||f_1|| \leq M ||g||$ and $||Tf_1 - g|| \leq 1/2 ||g||$. Then $(g - \widetilde{T}f_1)(k) \in \text{range } T(k)$ for each $k \in K$, and so by (1) we can find $f_2 \in C(K, X)$ such that $||f_2|| \leq M ||g - \widetilde{T}f_1|| \leq M(1/2) ||g||$ and $||\widetilde{T}f_2 + \widetilde{T}f_1 - g|| \leq 1/4 ||g||$. In this way we can find a sequence $\{f_n\} \subset C(K, X)$ such that $||f_n|| \leq M ||g||/2^{n-1}$ and $||\widetilde{T}(\sum_{i=1}^n f_i) - g|| \leq ||g|| \leq ||g||/2^n$. Then $f = \sum_{i=1}^{\infty} f_i$ is the required function.

Let G be a Banach Lie group, and suppose that G is acting holomorphically on a Banach space X. Let $x_0 \in X$, write $\pi(g) = g \cdot x_0$ for $g \in G$, and set $F = \pi(G)$. We shall say F is a homogeneous space under the action of G if there is a Banach space Y and a holomorphic map $k: X \to Y$ satisfying

(1) $k(x) = y_0$ for all $x \in F$ and some $y_0 \in Y$;

(2) range $\pi'(1) = \ker k'(x_0);$

(3) there is a neighborhood N of 1 in G such that $k'(g \cdot x_0)$ has closed range for $g \in N$ and inversion constant uniformly bounded over N;

(4) $H = \{g \in G : g \cdot x_0 = x_0\}$ is a Banach Lie group.

EXAMPLES. (1) Let A and B be Banach algebras with identity, and let Hom (A, B) be set of continuous homomorphisms of A into B. If $\phi \in \text{Hom } (A, B)$ we set

 $F_{\phi} = \{\psi \in \operatorname{Hom} (A, B) \colon \exists b \in B^{-1} \text{ with } \psi(a) = b\phi(a)b^{-1} \text{ for } a \in A\}$.

Denote by B the two sided Banach A-module consisting of B with the products

$$a \cdot b = \phi(a)b$$
, $b \cdot a = b\phi(a)$ for $a \in A$, $b \in B$.

Then if the Hochschild cohomology groups $H^{1}(A, B_{\phi})$ and $H^{2}(A, B_{\phi})$ vanish (for the definitions, see [3]), F_{ϕ} is a homogeneous space under the action of B^{-1} . That conditions (1), (2), and (3) hold is checked in [9, §3]; (4) follows from the observation that $\{b \in B^{-1}: b\phi(a)b^{-1} = \phi(a) \text{ for } a \in A\}$ is the set of invertible elements in $\phi(A)'$, the commutant of $\phi(A)$, which is a closed subalgebra of B.

(2) Let F_1 be the set of continuous algebra multiplications on A which give algebras isomorphic to A. Then if the Hochschild groups

 $H^{2}(A, A)$ and $H^{3}(A, A)$ vanish, F_{1} is a homogeneous space under the action of $L(A)^{-1}$ given by

$$\phi \cdot m(a, b) = \phi^{-1}(m(\phi(a)\phi(b)))$$
 for $a \in A, b \in B$,

where $\phi \in L(A)^{-1}$ and *m* is a multiplication on *A*. Again, (1), (2), and (3) are checked in [9, §4]; (4) follows since the isotropy group of the usual multiplication is the set of algebra automorphisms of *A*, which is a Banach Lie group with Lie algebra the set of bounded derivations of *A*.

THEOREM 3.3. Let F be a homogeneous space under the action of a Banach Lie group G. Let M be a Stein manifold, N be a closed submanifold of M and suppose E is a holomorphic fibre bundle over M with fibre F and structure group G. Then

(I) If s: $M \to E$ is a continuous section such that $s|_N$ is holomorphic, then s is homotopic in the space of sections which extend $s|_N$ to a holomorphic section $\tilde{s}: M \to E$.

(II) If two holomorphic sections f_1 and f_0 of E over M are homotopic in the space of continuous sections, then they are homotopic in the space of holomorphic sections.

Proof. Let $s: M \to E$ be a continuous section whose restriction to N is holomorphic, and let $p: E \to M$ denote the bundle projection. We shall show that there is an open cover $\{U_j\}_{j \in J}$ of M by holomorphically convex sets such that $E|_{U_i}$ is trivial for each j, and satisfying:

(*) Let $\Phi_j: U_j \times F \to p^{-1}(U_j)$ be a trivialization of $E|_{U_j}$, and for $m \in U_j$ define $\Phi_{j,m}: F \to p^{-1}(m)$ by $\Phi_{j,m}(e) = \Phi_j(m, e)$ for $e \in F$. Then $p_j(e) = \Phi_{j,p(e)}^{-1}(e)$ for $e \in p^{-1}(U_j)$ defines a holomorphic map p_j of $p^{-1}(U_j)$ into F. There exist continuous maps $s_j: U_j \to G$ such that $\pi \circ s_j = p_j \circ s|_{u_j}$ for all j and such that $s_j|_{U_j \cap N}$ is holomorphic.

Let $m \in M$; it is enough to show that m has a neighborhood U satisfying (*). Choose a neighborhood V of m such that

- (a) V is relatively compact;
- (b) $E|_V$ is trivial via $\Phi: V \times F \to p^{-1}(V);$

(c) $V \cap N$ is a co-ordinate neighborhood in N.

Since G acts transitively on the fibre F, there is some $g \in G$ with $\pi(g) = \Phi_m^{-1}(s(m))$. Define a continuous map $t: V \to F$ by

$$t(m')=g^{-1}ullet(arPsi_m^{-1}s(m')) \quad ext{for} \quad m'\in V\,.$$

Then $t|_{V\cap N}$ is a holomorphic map of $V\cap N$ into $F\subset X$. By Theorem 2.1, there is a neighborhood $W\subset V$ of m in M and a holomorphic map f of $W\cap N$ into G such that $\pi\circ f=t|_{W\cap N}$.

Let $K = \overline{W}$. Then if G has Lie algebra \mathfrak{G} , C(K, G) is a Banach Lie group with Lie algebra $C(K, \mathfrak{G})$. As in Lemma 3.1, the sequence $G \xrightarrow{\pi} X \xrightarrow{k} Y$ induces a sequence

(1)
$$C(K, G) \xrightarrow{\tilde{\pi}} C(K, X) \xrightarrow{\tilde{k}} C(K, Y)$$

of holomorphic maps. Since $(\tilde{k} \circ \tilde{\pi})(g) = \underline{y}_0$ for $g \in C(K, G)$, where \underline{y}_0 denotes the constant function value y_0 , the derivatives form a complex

$$(2) C(K, \mathfrak{G}) \xrightarrow{\widetilde{\pi}'(1)} C(K, X) \xrightarrow{\widetilde{k}'(x_0)} C(K, Y) .$$

Now, since, near 1, C(K, G) can be identified with $C(K, \mathbb{S})$, we can apply Lemma 3.1 to deduce that

$$(\widetilde{\pi}'(1)\psi)(k) = \pi'(1)\psi(k) \quad \text{for} \quad \psi \in C(K, \mathfrak{G}), \ k \in K$$

 $(\widetilde{k}(\underline{x}_0)lpha)(k) = k'(x_0)lpha(k) \quad \text{for} \quad lpha \in C(K, X), \ k \in K.$

Now range $\pi'(1) = \ker k'(x_0)$, and so in particular range $\pi'(1)$ is closed. Thus (see, for example, [6]) there is a continuous map η : range $\pi'(1) \rightarrow X$ such that $\pi'(1) \circ \eta$ is the identity on range $\pi'(1)$. Now let $\alpha \in \ker \tilde{k}'(\underline{x}_0)$. Then $\alpha(k) \in \ker k'(x_0)$ for every k in K, and so $\eta \circ \alpha$ is a continuous map of K into X such that $\tilde{\pi}'(1)(\eta \circ \alpha) = \alpha$, proving that the complex (2) is exact. For $\alpha \in C(K, X)$ close to \underline{x}_0 , Lemma 3.1 gives

$$(\widetilde{k}'(lpha)eta)k=k'(lpha(k))eta(k) \quad ext{for} \quad eta\in C(K,\,X), \,\, k\in K \;.$$

Thus, by Lemma 3.2, for α sufficiently close to $\underline{x}_0, k'(\alpha)$ has closed range and bounded inversion constant. Hence we can apply [9, Theorem 1] to the complex (1) and deduce that there is $\varepsilon > 0$ such that if $\psi \in C(K, X)$ satisfies $\widetilde{k}(\psi) = \underline{y}_0$ and $||\psi - \underline{x}_0|| < \varepsilon, \psi$ has a preimage in C(K, G).

Now choose a neighborhood $W' \subset W$ of m such that $||t(m') - t(m)|| < \varepsilon$ for $m' \in W'$, and choose a neighborhood U of m such that $\overline{U} \subset \operatorname{int} W'$ and U is holomorphically convex. Since K is a compact Hausdorff space, by Urysohn's lemma there is a continuous function $\phi: K \to [0, 1]$ with $\phi = 0$ off \overline{W}' and $\phi = 1$ on \overline{U} . Then $\phi t + (1 - \phi)\underline{x}_0$ is within ε of \underline{x}_0 on K, and so there is a continuous map $\widetilde{t}: K \to G$ such that $\pi \circ \widetilde{t} \mid_{\overline{U}} = t \mid_{\overline{U}}$. Now $\widetilde{t}^{-1}f$ is a continuous map of $\overline{U} \cap N$ into H, and so by shrinking U if necessary, we can assume $\widetilde{t}^{-1}f$ is a continuous map of $\overline{U} \cap N$ into H. Then $v = \widetilde{t}u$ is a continuous map of $U \cap N$ into H. Then $v = \widetilde{t}u$ is a continuous map of $U \cap N$ into M into G with $\pi \circ v = t$ and $v \mid_{U \cap N} = f$ holomorphic. The map \widetilde{s} defined by $\widetilde{s}(m') = gv(m')$ for $m' \in U$ is the required lift of s.

We are now in the situation that Ramspott is in after the first paragraph of §4 of [10]. We can use the rest of his proof, using Theorem 8.4 of [1] and Theorems A and B of [8, §3] in place of the corresponding finite-dimensional theorems of Grauert. We note that the hypothesis—which has not been used so far—that the isotropy group of x_0 is a Banach Lie group is required to apply the lemma in [10, §5].

Note. The results of Grauert, Ramspott, and Bungart apply to bundles over Stein spaces; since our basic technique involves lifting of power series it does not immediately apply in this more general setting.

References

1. L. Bungart, On analytic fibre bundles—I, holomorphic fibre bundles with infinite dimensional fibres, Topology, 7 (1968), 55-68.

2. H. Grauert, Analytische Faserungen uber holomorphvollstandigen Raumen, Math. Ann., 135 (1958), 263-276.

3. B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc., 127 (1972).

4. S. Lang, Differential Manifolds, Addison-Wesley, Reading, Mass., 1972.

5. ____, Analysis II, Addison-Wesley, Reading, Mass., 1969.

6. E. Michael, Continuous selections I, Ann. Math., 63 (1956), 361-382.

7. L. Nachbin, Topology on spaces of holomorphic mappings, Springer-Verlag, Berlin, 1969.

8. I. Raeburn, The relationship between a commutative Banach algebra and its maximal ideal space, J. Functional Analysis, **25** (1977), 366-390.

9. I. Raeburn and J. L. Taylor, Hochschild cohomology and perturbations of Banach algebras, J. Functional Analysis, 25 (1977), 258-266.

10. K. J. Ramspott, Stetige und holomorphe Schnitte in Bündeln mit homogener Faser, Math. Zeit., **89** (1965), 234-246.

Received January 10, 1977.

UNIVERSITY OF NEW SOUTH WALES, KENSINGTON NEW SOUTH WALES, AUSTRALIA 2033