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AN IMPLICIT FUNCTION THEOREM IN BANACH SPACES

IAIN RAEBURN

We prove the following theorem:

THEOREM: Suppose X, Y, and Z are complex Banach
spaces, U and V are open sets in X and Y respectively, and
x e U, y e V. Suppose f: U->V and k: V -» Z are holomorphic
maps with f(x) = y9 k°f constant and range f{x) — kerk'iy)
=£{0}. Let D b e a domain in Cn, zeD and g\D->Y be a
holomorphic map with g(z) = # and A; o # constant. Then there
is an open neighborhood W of z and a holomorphic map
h: W'—»X such that &(z) — α? and # |^ =zfoh.

We use this result to prove an Oka principle for sections
of a class of holomorphic fibre bundles on Stein manifolds
whose fibres are orbits of actions of a Banach Lie group on
a Banach space.

Introduction* Suppose U is an open set in Cn, x e U, and /:
U —> Cm is a holomorphic map such that fix) is surjective. Then a
form of the implicit function theorem tells us that there is a neigh-
borhood V of f(x) and a holomorphic map ρ:V->U such that
P(f(χ)) — χ a n d f°P is the identity on V. This theorem remains true
if / is a holomorphic map of an open set U in a Banach space X into
a Banach space F, provided that ker/'(x) is a complemented subspace
of X. That this is also a necessary condition follows from the fact
that f(x)op\f(x)) is the identity operator on Y, so that ρ\f{x))°f{x)
is a projection of X onto ker/'($).

In general, implicit function theorems work well in a Banach
space setting, provided that we impose suitable complementation
conditions (see, for example [4]). In practice it can be very hard to
find out whether a given subspace of a Banach space is complemented;
our main theorem is an implicit function theorem which has no com-
plementation hypothesis. Before we state our theorem, we shall
reword the result mentioned above. Let X and Y be complex Banach
spaces, U be open in I , a e U, and /: U—> Y be a holomorphic map
such that fix) is surjective and ker/'(a?) is a complemented subspace
of X. Then if V is an open set in a Banach space W, w e V, and g
is a holomorphic map of V into Y such that g(w) = f(x), there is a
neighborhood N of w and a holomorphic map h(= ρ°g) of N into
X such that f°h = g on N. Our main theorem asserts that provided
W is finite-dimensional, this theorem is still true without the hy-
pothesis that ker/'(ce) be complemented. More generally, suppose
there is a third Banach space Z and a holomorphic map k: Y—>Z
such that k°f is constant and range fix) ~ kerk'(fix)). Let D be
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an open set in Cn, and let z e D. Then our main theorem says that
if g is a holomorphic map of D into k~\k(f(x))) with g(z) = /(#), then
there is a holomorphic map ft of a neighborhood N oί z into X such
that foh = g\N. We shall prove this theorem in §2.

Grauert [2] has proved an Oka principle for sections of a holo-
morphic fibre bundle over a Stein manifold with fibre a complex Lie
group. Ramspott [10] has generalized this result to allow homogene-
ous spaces as fibres, and Bungart [1] has extended it to the case
where the fibres are infinite-dimensional Lie groups. In § 3, as an
application of our implicit function theorem, we shall extend the
theorems of Ramspott and Bungart to allow for infinite-dimensional
fibres which are the orbits of suitable actions (g, x) —> g x of an
infinite-dimensional Lie group G on a Banach space X; more spe-
cifically, we demand that such an orbit M also be the level set of a
holomorphic map k in such a way that the derivatives of the orbit
map g —» g x0 and k form an exact sequence at x0 e M.

1* Preliminaries. Let X and Y be complex Banach spaces, let
U be an open set in X and let / be a continuous map of U into Y.
We say / is holomorphic in U if at each point of U f has a Frechet
derivative which is a complex linear map of X into Y. Equivalently,
/ is holomorphic in U if for each xe U and heX the function z —»
f(x + zh) is holomorphic in a neighborhood of 0 in C If /: U —> Y
is holomorphic in U, then / has complex Frechet derivatives of all
orders; that is, for xe U and all n the nth. derivative f{n)(x) exists
as a complex multilinear map of X* to Y. We give Xn the norm
II (xl9 , xn) || = sup {|| #i||} and put the corresponding operator norm on
Ln(Xn, Y), the space of complex ^-linear maps of Xn into Y. If/: Ua
X—> F is holomorphic, it is well-known that lim sup Q\f(n)(x) \\/n\)1/n

is finite for each xe U. For further details of this material, we refer
to [7].

We shall use many times two differentiation techniques which are
well-known in one variable; namely, the chain rule and Liebnitz'
formula. Let U be open in X, V be open in Y, and let f: U—>V
and g: V-+Z be differentiate. Then the chain rule [5, p. 99] says
that gof is differentiate, and, for xQe U, the derivative (gof)'(x0)e
L(X, Z) is given by

0)x] for xeX.

Let U be an open set in C, and let /: Z7 -> L( Y9 Z) and g: U -> L{X, Y)
be n times continuously differentiate maps. Then we can define
fg: U~^L(X, Z) by fg(u) — f(u)og(u) for ueU, and a special case
of the product formula [5, p. 97] gives that fg is differentiate and
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(fgϊ(u) = f(u) o g\u) + f(u) o g(u) .

Proceeding exactly as in the scalar case, an induction argument gives
us our version of Liebnitz' formula: the function fg is n times con-
tinuously differentiate and

(fg){n)(u) - for ueU.

2. The implicit function theorem*

THEOREM 2.1. Suppose X, Y, and Z are complex Banach spaces,
U and V are open sets in X and Y respectively, and xe U, y e V.
Suppose f: U —» F and k: V —> Z are holomorphic maps with f(x) = y,
k°f constant and range fix) — kerk\y) Φ {0}. Let D be a domain
in Cn, zeD, and g: D -+Y be a holomorphic map with g{z) = y and
k°g constant. Then there is an open neighborhood W of z and a
holomorphic map h: W'—> X such that h{z) — x and g \w = foh.

Proof. We shall assume for simplicity that x, y, and z are all 0.
By shrinking D if necessary, we may assume that g has a power
series representation

0(s) = Σ - 2 ^ 9 1 s 1 f o r zeD,
\iι=o I\

where I denotes the multiindex (ilf , in), z1 = z[ι z£, I\ —

We shall suppose first that such an h exists; then/o h is a holomorphic
map of D into Y. Let / be a nonzero multiindex, and assume
without loss of generality that ix > 0. If /' = {iλ — 1, i2, , in),
then by the chain rule applied to the function z1-^foh{z1, 0, •••,0)
we have

Now f oh is a holomorphic map of D into L(X, Y) and we can regard
dh/dzj. as a holomorphic map of D into L(C, X) = X, so our Liebnitz
formula applies; we obtain

0(7)(θ) = Σ
r

[ fir fih-r (I-(ί i ,0,. . ,0))

(



528 IAIN RAEBURN

By successively applying the Liebnitz formula to the different varia-
bles, we obtain

*">«>) = Σ Γ '
where

Hence if such an h exists, for all multiindices / its derivatives satisfy

( 1 )

We observe that by repeating this process on the term (/'°A)(t/)(0),
we find that each (fΌhyj)(0)h{I~J)(0) can be written as a linear com-
bination of points of Y of the form

for some j ^ 2 and multiindices L19 , Lά with Lt> 0 for all i and

We first define fc(0) = 0. Then (/' o h)(0) = /'(0): X -> Γ, and range
/'(0) = ker Λ '(O), a closed linear subspace of Y. Then by the open
mapping theorem there is a constant C such that for each y 6
range /'(0) there exists xeX with /'(0)α = 1/ and || x \\ ^ C \\ y ||. We
shall assume that C||/'(0)| | ^ 1. We shall define h{I}(0) inductively
so that (1) holds and

( 2 )

where by (/'ofoy7)(0)/*,(7~~J)(0) we mean the linear combination described
above. We observe that for 11\ = 1, (&°#)(/)(0) = k'(Q)gσ\0), and since
hog is constant we have #(/)(0) 6ker &'(0) = range/'(0), so that we
can choose h{I)(0) as required. Suppose now that for all / with
I JI < 111 the right hand side of (1) is in the range of /'(0) and we
have chosen h{J)(0) satisfying (1) and (2). For notational convenience
we shall regard h as the polynomial

—— zJ for zeD,

so that for J <I the terms (/'°/*,)(J)(0), (kΌfoh){J)(0) and so on all
make sense, and all such terms agree with those given by expanding
and using (1). To show that we can define h{I)(0) as required it is
enough to show that
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( 3 ) A/(0) 2-Λ

US
rohyJ)(0)[h{'-J\o)] = o

Since k°g = 0, (Λ;°0)(/)(O) = 0, and so as before

fcW"(0)=-

By the inductive hypothesis

for all K ^ Γ. Hence

( 4 ) = - Σ v

x

Ί'fΓ - K
Kl L

Λ)(»(0) o (/' o h)tL\0)[hil-κ-L\0)]

since all derivatives of f°h of less than 7th order are those of g.
Now (&o/)' = 0, and so

0 = (kof)Όh = (k'of

Thus for every J < I

0<M£J

J

M

and so as elements of L(X, Z),

0<M£j\_M_

Thus

v0<JSI'

—

-Jt~
If? ( Γ\\

Σ

( "ff

~Γ~

o h V1^

ΓJΊ

„
/' ΊΓ/' — M

hym(O)

ΛίJL J —

= - A/(0)fir<"(0) by (4).

Thus we have proved (3) and we can define &U)(0) to satisfy (1) and
(2).
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Now define

( 5 ) fc(z)=|go^p«z for zeC*.

If we can show that this series converges absolutely in some neigh-
borhood of 0, then we shall be done. Now, by (2), if / is a multi-
index

where VJ is a linear combination of terms of the form

for some j ^ 2, Lίf , Lά > 0 with Σ*=i L, = I. Define F(0) =
| | /(0) | | - 0, F(1)(0) = | | / ' (0) | | , a n d i ^ ( O ) = - | |/ ( % ) (0) | | fo rn > 1. Since
/: Ϊ 7 ^ Γ is holomorphic, we have that limsup (||/(%)(0) \\/n\Y/n is
finite, and so there is an open neighborhood V of 0 such that

^^-^-tn f o r teV,

defines a holomorphic function of V into C. Similarly we define a
holomorphic map G of D into C by <?(/)(0) = | |# ( / ) (0) | | for all multi-
indices I and

G(z) = Σ g ( / ) ( 0 ) z1 for zeD .
\i\=o I\

Since F'(0) = | | / ' (0) | | Φ 0, by the inverse function theorem for one
variable there is a neighborhood W of 0 in D, and a holomorphic
map H of W into C with F<>H= G\w and fl"(0) = 0. By differen-
tiating FoH using the chain rule and Liebnitz' formula, we obtain

F'(0)JΪ(/)(0) = G(/)(0) - Σ_ J 1

Again, we expand each (FΌHYJ)(Q) in the same way and obtain

j

where ^ ' is identical to VJ with each ||fc(L<)(0)|| replaced by JEί̂ ^CO).
We shall now prove that there is a constant M such that for all
multiindices I

( 6 ) P ( I ) ( 0 ) | |
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In fact, take M = C| |/'(0)| | which was chosen to be ^ 1. The in-
equality is trivially true for I = 0. Suppose (6) holds for all J with
I J\ < \I\. Then for each term X of VJ

(7) 1 £ Wf^mWMii^^H^XO) . . . H^\0)

^ M21/ |-2 ||/( i)(0) || H{L'\0) WLi\Q) ,

since j ^ 2 and X Lt = /. The right hand side of (7) is M2|/ |~2 times
the term of ξj corresponding to X, and so we have

S ft

as required. Since H is holomorphic in a polydisc, from (6) it follows
that the power series (5) converges in a polydisc about 0, and the
proof is complete.

3, Sections of holomorphic fibre bundles. We shall start this
section with a couple of technical results which we shall need later.
The first is an application of the mean value theorem [5, p. 103].

LEMMA 3.1. Let X and Y be Banach spaces, let U be open in
X, and let f: U—>Y be continuously differ entiable. Let K be a
compact Hausdorff space and define f: C(K, U) —>C(K, Y) by (fφ)(k)
= f(Φ(k)) for φ e C(K, U) and ke K. Then f is continuously differ-
entiate and for φ e C(K, U)

(f'(Φ)ψ)(k) = [f'(Φ(k))]ψ(k) for all ψe C(K, X), keK.

Let X and Y be Banach spaces, T e L(X, Y) and suppose T has
closed range. Then by the open mapping theorem T: X —• range T
has a bounded inverse T~\ Call || T"1!! the inversion constant of T.
Let K be a compact Hausdorff space, and let T: K —> L(X, Y) be a
continuous map. Then T induces a bounded linear map T: C(K, X)
-• C(K, Y), where

(Tf)(k) = T(k)f(k) for feC(K, X), keK.

LEMMA 3.2. Suppose that T(k) has closed range for each keK
and suppose that the inversion constant of T(k) is less than M for
each keK. Then

( 1 ) If g e C(K, Y) satisfies g(k) e range T(k) for all keK, then
for each e > 0 there is feC(K, X) with \\f\\ ^ Λf ||flr|| and \\ Tf-g\\
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(2) T has closed range and the inversion constant of T is less
than 2M.

Proof. Part (1) follows by a standard partition of unity argu-
ment. To prove part (2) it is enough to show that for each g e C(K, Y)
with g(k) e range T(k) for all keK, there is some feC(K,X) with
ff=g and | | / | | ^2M\\g\\. Let such a g be given. Then by (1)
we can choose fx such that \\fx || ^ M \\ g || and || Tfx - g || ^ 1/2 || g ||.
Then (g - Tf^)(k) e range T(k) for each keK, and so by (1) we can
find f2 e C(K, X) such that \\f2\\ ^ M\\ g - Tfx\\ ^ AΓ(l/2) || <7 || and
II Tf2 + ff — g || ^ 1/4 || g ||. In this way we can find a sequence
{fn}aC(K, X) such that | | / J | <, Λf HflrH/2-1 and || Γ ( Σ ^ Λ ) - flMI ̂
|| ^ ||/2%. Then / = ΣΓ=i/t is the required function.

Let G be a Banach Lie group, and suppose that G is acting
holomorphically on a Banach space X. Let xQeX, write τr(#) = g-x0

for #eG, and set F — π(G). We shall say JP7 is a homogeneous
space under the action of G if there is a Banach space Y and a
holomorphic map &: X —> F satisfying

(1) &(ίc) = i/o f° r a ^ ^ s f and some τ/0 e Y;
( 2 ) range π'(l) = ker fc'(α;0);
( 3 ) there is a neighborhood iV of 1 in G such that &'(g x0) has

closed range for g e N and inversion constant uniformly bounded over
N;

(4) H = {g e G: g - xQ = xQ} is & Banach Lie group.

EXAMPLES. (1) Let A and B be Banach algebras with identity,
and let Horn (A, B) be set of continuous homomorphisms of A into
B. If φ e Horn (A, JB) we set

Fφ = {ψe Horn (A, £): 3δ e B~ι with ψ<α) = bφia)^1 for α 6 A} .

Denote by 5 the two sided Banach A-module consisting of B with
the products

a-b — φ(a)b , b α = 6 (̂α) for α e i , δ 6 J3.

Then if the Hochschild cohomology groups H\A, Bφ) and H\A, Bφ)
vanish (for the definitions, see [3]), Fφ is a homogeneous space under
the action of B~\ That conditions (1), (2), and (3) hold is checked
in [9, §3]; (4) follows from the observation that {b e B~u. bφ{a)b~ι =
φia) for a e A} is the set of invertible elements in φ(A)'f the commutant
of φ(A), which is a closed subalgebra of B.

(2) Let Fx be the set of continuous algebra multiplications on A
which give algebras isomorphic to A. Then if the Hochschild groups
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H2(A, A) and HZ(A, A) vanish, Fλ is a homogeneous space under the
action of L(A)~ι given by

Φ m{a, b) = Φ~\m(φ(a)φ(b))) for aeA, beB,

where φeL(A)~ι and mis a multiplication on A. Again, (1), (2), and
(3) are checked in [9, §4]; (4) follows since the isotropy group of
the usual multiplication is the set of algebra automorphisms of A,
which is a Banach Lie group with Lie algebra the set of bounded
derivations of A.

THEOREM 3.3. Let F be a homogeneous space under the action
of a Banach Lie group G. Let M be a Stein manifold, N be a closed
submanifold of M and suppose E is a holomorphic fibre bundle over
M with fibre F and structure group G. Then

(I) If s: M—>E is a continuous section such that s\N is
holomorphic, then s is homotopic in the space of sections which extend
s\N to a holomorphic section s: M—>E.

(II) // two holomorphic sections fx and f0 of E over M are
homotopic in the space of continuous sections, then they are homotopic
in the space of holomorphic sections.

Proof. Let s: M—>E be a continuous section whose restriction
to N is holomorphic, and let p: E —» M denote the bundle projection.
We shall show that there is an open cover {Uj}jeJ of M by holomor-
phically convex sets such that E\v. is trivial for each j, and satisfying:

(*) Let Φ5\ Uj x ί7— >p~\Uj) be a trivialization of E\Ujf and for
rneUj define Φ i ι m: F'-> p~\m) by Φiίm(e) = Φά(m, e) for eeF.
Then p5(e) = Φj^ie) for eep~\U5) defines a holomorphic map p3-
of p~\Uj) into F. There exist continuous maps ŝ : U3- —> G such
that πos3- = Pj°s\Uj for all j and such that S/Î njy is holomorphic.

Let m e M; it is enough to show that m has a neighborhood U
satisfying (*). Choose a neighborhood V of m such that

(a) V is relatively compact;
(b) E\v is trivial via Φ: VxF-^p~\V);
(c) V Π N is a co-ordinate neighborhood in N.

Since G acts transitively on the fibre F, there is some geG with
π(#) =i φ~\s(m)). Define a continuous map t: V—>F by

t{mf) = g-1 (Φ^s(m')) for m'eV.

Then t \VC]N is a holomorphic map oί V Π N into f c l . By Theorem
2.1, there is a neighborhood WczV of m in M and a holomorphic
map / o f TFn iV into G such that ττo/ == t \Wf]N.
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Let K = W. Then if G has Lie algebra ©, C(K, G) is a Banach
Lie group with Lie algebra C(K, ©). As in Lemma 3.1, the sequence

(? —» X —> Y induces a sequence

( 1 ) C(K, G) - ^ C(K9 X) — C{K, Y)

of holomorphic maps. Since (ϊc°π)(g) = y0 for geC(K,G), where yQ

denotes the constant function value y0, the derivatives form a complex

( 2 ) C(K, ©) S C(UΓ, X) ^ C(UΓ, Y) .

Now, since, near 1, C(K, G) can be identified with C(K, ©), we can
apply Lemma 3.1 to deduce that

f OΓ α/r 6 C(X, ©), fc € JSΓ

(k(x,)a)(k) = k\xo)a(k) for α 6 CCSΓ, X), & e iΓ

Now range ττ'(l) — ker A;'(ί»0), and so in particular range π'(l) is closed.
Thus (see, for example, [6]) there is a continuous map η: range π'(l)
—> X such that 7r'(l)o^ is the identity on range ττ'(l). Now let α e
kerfc'(5c0). Then a(k) e ker k'(x0) for every & in K, and so ^ α is a
continuous map of K into X such that π\l)(r]oa) = α, proving that
the complex (2) is exact. For a e C(K, X) close to x0, Lemma 3.1
gives

( k \ a ) β ) k - k \ a { k ) ) β ( k ) f o r β e C{K, X ) , k e K .

Thus, by Lemma 3.2, for a sufficiently close to xQ, k'(a) has closed
range and bounded inversion constant. Hence we can apply [9,
Theorem 1] to the complex (1) and deduce that there is ε > 0 such
t h a t if ψeC(K,X) sat is f ies k{f) = y0 a n d \\ψ — xo\\ < e, ψ h a s a
preimage in C{K, G).

Now choose a neighborhood W'a W of m such that || ί(m') — t(m) \\
< ε for m' e W, and choose a neighborhood 17 of m such that
ί / c i n t TF' and U is holomorphically convex. Since K is a compact
Hausdorff space, by Urysohn's lemma there is a continuous function
φ: K-> [0, 1] with 0 - 0 off PF' and φ - 1 on t7. Then φt +(1 - ^)^ 0

is within ε of x0 on K, and so there is a continuous map t: K-~> G
such that 7Γ o ? |^ — £ |^. Now Γ"1/ is a continuous map of ϋ Π N into
iJ, and so by shrinking U if necessary, we can assume t~λf is a
continuous map of U f] N into a Banach space. Thus by Dugundji's
extension theorem t~xf extends to a continuous map u of U Π N into
i ί . Then v — tu is a continuous map of ?7 into G with TΓ © v = t and
v \UΓιN — f holomorphic. The map s defined by s(mf) = gv(mr) for
mr G U is the required lift of s.
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We are now in the situation that Ramspott is in after the first
paragraph of §4 of [10]. We can use the rest of his proof, using
Theorem 8.4 of [1] and Theorems A and B of [8, §3] in place of the
corresponding finite-dimensional theorems of Grauert. We note that
the hypothesis—which has not been used so far—that the isotropy
group of x0 is a Banach Lie group is required to apply the lemma
in [10, § 5].

Note. The results of Grauert, Ramspott, and Bungart apply to
bundles over Stein spaces; since our basic technique involves lifting
of power series it does not immediately apply in this more general
setting.
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