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A CLASS OF FUNDAMENTAL UNITS AND SOME
CLASSES OF JACOBI-PERRON ALGORITHMS

IN PURE CUBIC FIELDS

CLAUDE LEVESQUE

ϊn this paper, we consider some pure cubic fields of the
form K = Q((D3 ± d)1/3) where D,deN* and d 13D2. Under
certain conditions, we obtain the fundamental unit η of K
by ruling out the case where η is the square of a unit. We
also give three new classes of vectors, whose Jacobi-Perron
Algorithms are periodic. The first ten vectors of a genera-
lized Jacobi-Perron Algorithm are then written down. A
generalization of the Bernstein formula is also achieved.

0* Introduction and preliminaries* Consider a pure cubic
field of the form K = Q(ώ), where

(0.1) ω* = M^D*±d>2, with D, deN* = {1, 2, •••} and d\W2 .

H. J. Stender [9] showed that, when d is cube-free,

(0.2) ε = ±(a> - Dfd~l

is either the fundamental unit of K, its square or its cube, except
for the fields Q(191/3), Q(201/3), Q(281/3). For a certain class of integers
M, he described explicitly the fundamental unit of K; see Theorem
1.1. In Chapter 1, we give other restrictions on M, under which
the unit s in (0.2) is the fundamental unit of K.

The rest of the work deals with the Jacobi-Perron Algorithm
(JPA). The JPA is one of the generalizations of the ordinary con-
tinued fraction algorithm to higher dimensions [1], Its definition
and properties are recalled at the end of this introduction.

L. Bernstein [1] showed that the JPA of α(0) = (ω, co2) is periodic
when

(0.3a)

(0.3b)

(0.3c)

(0.3d)

(D,d)

(D, d) =

D^d

= (V,2V),

(2F,12F),

D ^ 4c

:, M

M =

M =

i, M

= Ds

F 3 +

8F 3 -

= D3

+ d ,

ZV, VeN* ,

M2F, VeN*

-d .

In Chapter 2, we add to (0.3) the case

(0.4) (A d) = (2V, 3 V) , M = 8V3 - 3 V, VeiV* .

Suppose now that a cube V3 divides ωs = M = D3 ± d and let
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(0.5) Θ3 = m = M/V3 .

When

(0.6) M=(tV* + iy-l , θ3 = M/V3 = tfV6 + 3fF 3 + 3ί; ί, FeiV* ,

L. Bernstein [6] proved that the JPA of (θ, Θ2) = (ω/V, ω2/V2) is periodic.
Similarly, when

(0.7a) M = (87 - I)3 + 1, θ3 = ikf/23 = 64 F 3 - 24 F 2 + 3F, FeiV* ,

(0.7b) M =(9ίF 8 + l ) 8 - l , 03=M/(3F)3=27£3F6 + 9 fF 3 +ί; ί, FeiV* ,

we prove in Chapters 3 and 4 that the JPA of (0, 02) = (α>/2, ω2/4),
resp. (0, 02) = (ω/3F, ά)2/9F2), is periodic.

In Chapter 5, when

(0.8) M=(tV3 + iγ-(tV3 + l), θ3 = M/Vd= t3V6+3?Vs +2t;

we write the first ten vectors of a generalized JPA of (0, θ2) =
(ωjV, co2/V2); the case where ί is a square was considered by L.
Bernstein in [5], and we are using the same ideas.

Finally, in the concluding remarks, a generalization of the
Bernstein formula is easily achieved.

Let α(0) = (α{0), aί°\ •••, αΓO be a vector of the real Euclidean
vector space Rn~\ n ^ 2. A sequence <α(v)> of vectors of Rn~ι is
called the JPA of α(0) if for all v e N,

(0.10) a[v) Φ bίv\ bϊv) = [αΠ (i - 1, , n - 1) ,

where [ ] is the greatest integer function.
The JPA of α(0) is called periodic, if there exist two integers

ϊ, m with I ̂  0, m ^ 1 such that

(0.11) α ( v + m ) = a{v) (v = I, I + 1, •) .

The sequences

α(0), α(1), , α ( Z-υ and αα ),

are called respectively the preperiod and the period of the periodic
JPA, and I and m are their respective lengths. When I and m are
minimal, the preperiod and the period are said to be primitive. If
1 = 0, the JPA of a{0) is said to be purely periodic.

The following formula holds for any veN*:
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\.QV+1) Aov+n 1}

I (»+l) . . . A (v+n-l)

\(v+l) # , # A (v+n-l\

f γ\v{n-ί)

AW _1_ Λ(v+l)n{v) \ j _ /I (v+w-D^Cv)
jΓα o I -*J» 0 WΊ ~ ~ -tJ O ^n—1

where

(0.13) A]'* = δ,, (i, i - 0, 1, , n - 1) ,

δtj being the Kronecker delta,

(0.14) A?+n) = AΓ + Aiv+1)6ίv) + + ili + - 1 * ? ! ^ - 0, 1, , n - 1) .

Let Kn = Q(aί°\ « ,αΓi). If the JPA of α(0) becomes periodic
with primitive preperiod of length I and primitive period of length
m, then H. Hasse and L. Bernstein [6] proved that

l + m-l

(0.15) Π aSU

is a unit in Kn. If the components of α(0) and aw for some v ̂  1
are algebraic integers of j8Γn, then L. Bernstein [2] proved that

(0.16) A{

o

v) + Aίv+1)aίυ) + + A r + % - 1 ) ^ l 1

is a unit in i^ . Formulas (0.15) and (0.16) will be referred to as
the Hasse-Bernstein and the Bernstein formula respectively. In this
work, the units obtained with these formulas are fundamental, but
it must be stressed that there is no known connection between the
JPA and the fundamentality of units.

1* Fundamental units in some pure cubic fields* Let (0s = f2g
be a rational integer with fg square-free. Following Dedekind, we
say that the pure cubic field Q(α>) is of the first or second kind,
according to whether / 2 # ^ ± l ( m o d 9 ) or f*g == ±l(mod9). The
numbers 1, Vf*g, Vfg* form an integral basis for Q(ώ) if it is of
the first kind. The numbers (1 + g Vfg + / VfϊftlZ, ¥pg, Vftf
form an integral basis for Q(ω) if it is of the second kind, and each
integer of Q{ω) is representable in the form (x + yco + zf^aή/Z with
x, y, ze Z. By Dirichlet's theorem, there is only one fundamental
unit η«l) in this field, and any unit can be expressed as ±ψ(neZ).
The following theorem of H. J. Stender [9] describes the fundamental
unit of K for a certain class of integers M.

THEOREM 1.1. Let
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f e = 1 or 3; D, d e JV* with

\(c, D) — 1, d cube-free and d\D2 .

Assume

M - D3 ± ed > 1, ω = M1/d , K = Q(ω) .

( i ) Let G = 1 αm£ further let d = 1 or M/d δe α

?7 = ±(α> ~

is ίfeβ fundamental unit of K, except when (D, d) — (8, 1), (19, 1), (3, 1)
in the plus case and (D, d) = (57, 192), (70, 2 52), (14, 2 72) in the minus
case, where rj is the square of the fundamental unit.

(ii) Let c — 1 or 3; if c = 1, assume d Φ 1 α%ώ M/cZ different
from a cube. If M or D*d~ι is cube-free, then

ε = ±(α> - i ) ) 3 /^

is ί/̂ β fundamental unit of K, except when (D, cd) = (2, 2), (1, 3) in
the plus case and (D, cd) = (5, 25), (2, 6) in the minus case, where ε
is the square of the fundamental unit.

COROLLARY 1.2. Let K be a pure cubic field. If there exists
DeN* such that

then

η - -D + \/DB + 1 , resp. η = D - VDZ - 1 ,

is the fundamental unit of K, except when D = 8, 19, 3 in the plus
case.

In Corollary 1.2, Dz + 1, resp. Dz — 1, need not be cube-free.

The purpose of this chapter is to prove the following theorem.

THEOREM 1.3. Let D, d, Ve{2, 3, •} be such that (D, d) =
(Dodβz, djdf) with Do, dlf d2 congruent to + 1 or — l(modF3). Suppose
that

θ* = m - ω'/V3 = M/Vd = (D* ± d)/V*

is a cube-free integer >2. Then

V==\±(ω-Dγ/d if (D,d)Φ(V*TlΛV* + iY),
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is the fundamental unit of Q(θ) = Q{ώ).

REMARK 1.4. Let ί = 1 or - 1 ; a, b, c e N; Ve {2, 3, •}. The

integer M = D3 ± d = DJdJdJ ± cZfcZj. in Theorem 1.3 has one of the
forms

(1.1) (c73 + 1 ) W 3 + 1)W 3 + i)3 ± ( α F 3 + 1 ) W 3 + i) ,

(1.2) (cV3 - l)\aV3 ± 1 )W 3 + if ± ( α F ± 1 ) W 3 + ϊ) ,

with the following restrictions: a and δ are not both 0; if b = 0, i = 1;
c ^ 0 in (1.2); α ^ 0 in the upper case of (1.1) and in the lower case
of (1.2).

Note that (F3, d) = 1 and d\m, so that d is cube-free. Let

(1.3) d — u2s with us square-free .

A s m = fg with (/, 0) = 1, then u\f; let / = ut with t e N*.
When (A d) - (V3 =F 1, (F 3 + I)2), which happens if and only if

M/d = V3, the conclusion follows from the first part of Theorem 1.1.
In what follows, let M/d ΦVZ. According to H. J. Stender [9,

Chapter 3],

(1.4) ε = ±{ω - D)3/d = 1 ± W2d~ιVθ + ZDd~ιV2θ2

is the fundamental unit of Q(θ) or its square. The latter case will
be ruled out by contradiction exactly as in [7] and [8].

(1) Fields of the first kind. Suppose ε is the square of a unit
x + yθ + zf^θ\x, y, ze Z) of Q(β). Then comparing coefficients and
noting that f = ut, we obtain

(1.5) x2 + 2utgyz = 1 ,

(1.6) 2xy + gz2 = ±ZD2d~ιV ,

(1.7) uty2 + 2xz = +3t(D/us)V2.

When d\D, we conclude from (1.5) and (1.7) that (x, f) — 1 and
f\2z, so f2 ^ 4z2. Similarly, when d\D2, we have t2 ^ Az2.

(A) Plus case. Let us consider the case where θs = (D3 + (ί)/F3.
From (1.7), xz < 0 (in particular, 2 ^ 0). From (1.5), yz ^ 0; but
?/ = 0 implies

x2 = l and m = f2g = 4ώ/3F3 ,

and this cannot happen. Therefore 2/2 < 0, so that xy > 0. Finally,
from (1.6) we obtain these crucial inequalities:
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(1.8) Dd < 12F 4 when d\D , and Ds < 12 F 4 when d\D2 .

We want to show there is no pair (D, d) satisfying (1.8).
( i ) Suppose d D. Consider first the case d2 = 1, where d = d\dx*

By Remark 1.4, we have

i); 6, c, FeiV*, W l , i = l or - 1 ,

so Dd ^ (F 3 - I)3 > 12 F4 for F ^ 2. Similarly, when d2 Φ 1, Dd >
12 F 4 for F ^ 2 . In brief, when d\D, there is no pair (D, d) for
which Dd< 12 F4.

(ii) Suppose d\D? and c£|D, so that a Φ 0 in (1.1) and (1.2).
Now the integer s defined in (1.3) is either equal to or is greater
than 1.

Suppose first s > 1, so that 6 Φ 0. If c Φ 0, then

(1.9) Ds ^ D ^ (F 3 - I)3 > 12F4 for F ^ 2 .

Let c = 0. Then

(1.10) Ds ^ D ^ (F 3 - I)2 > 12F4 for F ^ 4 .

When F = 3

(1.11) Ds ^ D ^ 675αδ > 972 = 12 F4 for α& ̂  2 ,

and the only case where a = 1 = 6 and where m is cube-free is
(A eZ) - (26-28, 262 28), but Ds - 26.28-7 > 972. When F - 2,

(1.12) Ds^D^ 48α6 ^ 192 - 12F4 for ab ^ 4 ,

and for all cases where αδ <£ 3, it is directly checked that Ds > 192 =
12 F4.

Consider now the case s = l. Hence 6F 3 + i is a square > 1 or
6 = 0. First, let 6F 3 + i be a square > 1. If c Φ 0, we obtain (1.9).
If c = 0, then we get (1.10). When F = 3, (1.11) holds, and the case
a — 1 = h is ruled out because 27 + i is not a square. When F = 2,
(1.12) holds, so that when ab <̂  3, we need only take care of the
cases (A <Z) = (7-9, 72 9), (7-25, 72 25); in each case, a contradiction
is obtained from (1.6). Finally, suppose 6 = 0. If c = 0, then D3^"1 =
aV3 — 1 is cube-free, and we can apply Theorem 1.1 (ii). Therefore
suppose c Φ 0. Then (1.10) holds. Proceeding as above, we can show
that for F = 3 or 2, the only cases permitted by (1.8) are (D, d, V) —
(26-28, 262, 3), (9-7, 72, 2), (17-7, 72, 2), (15-9, 152, 2), but, in each case,
a contradiction is again obtained from (1.6).

(B) Minus case. Let us consider the case θ3 = (D3 — d)/V3.
Similarly, xy < 0 and yz <£ 0. But if z = 0, then
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x2 = 1 and 3D3 = 4dE ,

which cannot occur. Hence yz < 0, so that #2 > 0. From (1.6), we
obtain

[m + 12D%d'ιV if d\D ,
( 1 1 8 ) " " " f c L ^ + lίWΓ-ir H ]

We can proceed as in Chapter 4 of [8] to show

(1.14) \xy\ < (1 + 24D'd~1V0 + 4Dl/6ώ

Combining (1.13) and (1.14), we obtain

(1 15) (P - ϊ)h < Sd + 28 F + 32
3 9 ^ D2Θ

< _§_ + MZ + j ^ /w

where h = d it d\D and λ = s if d|D2. It is easy to show that
θ > F 2 — 1, so that we obtain from (1.15) these crucial inequalities:

(1.16) (.D-l)cZ<13F4 when d\D , and ( .D-l) s<13F 4 when.dID 1.

( i ) Suppose d\D. As D and e£ are integers ^ 2 congruent to
+ 1 or -l(modF 3), then (D - l)rf ^ ( F 3 - 2)(F3 - 1) > 13F4 for F ^ 4.
As is easily seen, the only cases to consider are (D, d, V) — (28, 28, 3),
(26, 26, 3), (9, 9, 2), (7, 7, 2). For example, if m = 22 7 29, then, from
(1.6), (1.5), (1.7) and the fact that xz > 0, we obtain

T\xy,7\y and y2 < 27 ,

which is absurd. We have a similar contradiction when m = 32 2 5.
Because Όzd~γ is cube-free, one takes care of the two other cases
with the help of Theorem 1.1 (ii).

(ii) Suppose d\D2 and d\D, so that a Φ 0 in (1.1) and (1.2).
Suppose first s > 1 so that 6 Φ 0. Corresponding to inequalities (1.9),
(1.10), (1.11), and (1.12), we obtain

(1.17) (D - 1)8 ^ D - 1 ^ ( F 3 - I)3 - 1 > 13F4 for F ^ 2 ,

(1.18) (D - 1)8 ^ D - 1 ^ ( F 3 - I)2 - 1 > 13F4 for F ^ 4 ,

(1.19) ( D ~ l ) s ^ D - 1 ^ 6 7 5 α & - 1 > 1053 = 13F4 for ab ^ 2 ,

(1.20) (D - 1)8 ^ D - 1 ^ 48α& - 1 > 208 = 13 F 4 for ab ^ 5 ,

respectively. Finally, it is easy to check that (1.16) excludes all
possible cases.
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Suppose s = l. First, let bVz + i be a square > 1 . If c Φ 0, we
obtain (1.17). Suppose then c = 0 so that we get (1.18). When
V — 3, (1.19) holds and the case a = 1 = b is ruled out because F 3 + i
is not a square. When V = 2, (1.20) holds, so that when α& <g 4, we
need only take care of (2?, d) = (17-9, 172 9). Finally, suppose 6 = 0.
When c = 0, D*d~ι is cube-free and one can apply Theorem 1.1 (ii).
Therefore suppose c Φ 0. Then (1.18) holds. Proceeding as above,
we show that the only cases permitted by (1.16) (when Q(β) is a
field of the first kind and when d \ D2 but d\ D) are (D, d, V) =
(7-15, 72, 2), (7-23, 72, 2), (7-15, 152, 2); for each case, a contradiction
is again obtained from (1.5), (1.6), and (1.7).

(2) Fields of the second kind. When Q(θ) is a field of the
second kind, the proof is about the same and we shall omit many
details. Suppose ε is the square of a unit (x + yθ + zf~Ψ)/Z of
Q(β), where x, y, ze Z. Then comparing coefficients, we obtain

(1.21) x2 + 2utgyz = 9 ,

(1.22) 2xy + gz2 - ±21D2d~lV ,

(1.23) uty* + 2xz - +27t(D/us)V2 .

As f2g is congruent to + 1 or — l(mod 9), then (1.21) implies (a?, /) — 1;
therefore, when d\D, (1.23) implies f\2z, so / 2 ^ iz2. Similarly,
when d\D2, we have t2 ^ Az2.

(A) Plus case. Again xy > 0 and we have

(1.24) Dd < 108F4 when d\D, and Ds < 108F4 when d\D2 .

( i ) Let c£|-D. The only cases allowed by (1.24) when m is
cube-free and when Q(θ) is of the second kind are (D, d, V) = (7-7, 7, 2),
(31 7, 7, 2); a contradiction is obtained as usual.

(ii) Suppose d\D2 and d\Ό. When s > 1 and c Φ 0, one verifies
that (1.24) excludes all cases. Let β > 1 and c = 0. We have Ds >
£ ^ (V2 - 1)? > 108 F 4 for V ^ 11. When V = 10, 9, 8, 7, 6, 5, 4, 3, 2,
then Ds > D ^ ( F 3 - 1)(&F3 - 1 ) ^ 108F4 for b ̂  2, 2, 2, 3, 4, 5, 7,13, 31
respectively. Let us explain the case F = 2. For each 6,1 <; 6 <; 30,
the value of s related with the value of 8b + i can be used in order
to obtain a better bound for Ds, so that only a few possibilities for
the integer a remain to investigate by hand. After having done this
forF =2, 3, , 10, we conclude that (1.24) excludes all possible cases.

When s = l and when 6F 3 + i is a square > 1 , we easily get a
contradiction for (D, d, V) = (7-121, 72 121, 2), the only case permitted
by (1.24).
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Finally, suppose s = 1 and 6 = 0. We can assume c Φ 0 by
Theorem l.l(ii). We then have to take care of the following cases:

(D, d, V)
(215-433, 4332, 6)
(217-431, 43Γ, 6)
(249-251, 25Γ, 5)
(65-383, 3832, 4)
(129-127, 1272, 4)
(127-193, 1932, 4)
(28-53, 532, 3)
(26-55, 552, 3)
(26-109, 1092, 3)
(28-107, 1072, 3)
(26-298, 2982, 3)
(55-134, 1342, 3)
(82-26, 262, 3)
(109-53, 532, 3)
(107-55, 552, 3)
(163-26, 262, 3)
(244-26, 262, 3)
(325-26, 26% 3)

4332 23 37 41 571
43Γ-20389319
25Γ 22-7 683 1621
3832 29-56671
1272-22-7-167-911
1932-5-1235431
532 41-1051
52 1Γ 35803
1092 5 23 617
1072 5 127-137
22-1492 17 -11411
22 672 7 117959
22 132 530947
532 -2-1271047
52 1Γ 2 7-178247
22-132 4170349
22 132 5 11 167 1523
22-132 19-1739827

(A d, V)
(9-55, 552, 2)
(9-71, 7Γ, 2)
(9-127,1272, 2)
(9-143,1432, 2)
(7-193,1932, 2)
(17-15,172, 2)
(15-73, 732, 2)
(15-89, 892, 2)
(17-95, 952, 2)
(25-31, 3Γ, 2)
(23-41, 4Γ, 2)
(39-17,172, 2)
(41-23, 232, 2)
(49-31, 3Γ, 2)
(63-17,172, 2)
(65-23, 232, 2)
(87-17,172, 2)

22 52 1Γ 7 179
7Γ-2-5-647
1272 71 163
1Γ-132-83 157
1932 52 331
22 172 11-163
732 13 23 103
892 37547
52 192 2-31 941
3Γ-191-317
22 4Γ 7 17-131
172 233 541
22 232 49537
3Γ-2-5-45589
52 172 2 10627
232 11-71777
172-1399319

For example, when m = 25Γ 22 7 683 1621, we have from (1.22)

z2 = l,xy = 311-997

and any choice for x and y contradicts (1.21). For the other cases,
a contradiction is more easily obtained.

(B) Minus case. Again xz > 0 and we have

(CD -l)d < 113 F 4 when d\D ,
( 1 ' 2 5 ) (and (D - l)s < 113 F 4 when d\I? .

( i ) When d | D, the only case to take care of is (D, d, V) =
(17-7,7,2).

(ii) Suppose d\D* and d\Ό. When s > 1, there is no case
permitted by (1.25). The same conclusion holds when s = 1 and bV3+ i
is a square > 1 .

Finally, if s = 1 and 6 = 0, the only individual cases to consider
are the following ones:
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(D, d, V)
(342-685, 6852, 7)
(649-217, 2172, 6)
(647-215, 2152, 6)
(126-251, 25Γ, 5)
(124-374, 3742, 5)
(63-127, 1272, 4)
(65-193,1932, 4)
(26-134,1342, 3)
(28-190,1902, 3)
(55-109,1092, 3)
(53-107,1072, 3)
(80-26, 262, 3)
(134-53, 532, 3)
(161-26, 262, 3)
(242-26, 262, 3)
(323-26, 262, 3)

m( =
52 1372 83 193 4987
72-3Γ 2-277-495713
52 432-2-113-137- 8707
25Γ-5-79-10169
22-II2-172-29-229-859
1272-496187
1932-2-414083
22-672-19-4591
22 52-192 179-863
1092 2 41 8191
1072-2-294997
22-132 229-2153
532 17-277829
22 13' 5-17-47279
22-132 181 -75401
262-32450183

(A d, V)
(9-17,172, 2)
(7-23, 232, 2)
(9-73, 732, 2)
(9-89, 892, 2)
(7-95, 952, 2)
(9-145, 1452, 2)
(9-161, 16Γ, 2)
(7-239, 2392, 2)
(15-55, 552, 2)
(15-71, 7Γ, 2)
(23-31, SI1, 2)
(25-41, 4Γ, 2)
(33-17,172, 2)
(31-23, 232, 2)
(47-31, 3Γ, 2)
(57-17, 172, 2)
(105-17, 172,2)

172 1549
232 2 17 29
722 22-1663
892 2-5 811
52 192 4073
52 292 73 181
72 232 17 863
2392 10247
52-II2-23203
7Γ-7-11-389
31*. 47147
412-2 40039
172 2-38183
232 41 2089
3Γ-2-11-18287
172 5-78707
172 2459953

For example, when m = 22 112 172 29 229 859, we have from (1.21),
(1.22) and (1.23)

2\z,4\2xy,2\y;A)fz,4J(y, \y\£U.

Therefore y2 = 4, 36,100 or 196; corresponding to each case, we obtain
the value of xz from (1.23), and each possible value of x contradicts
(1.21). We have similar contradictions for the other cases. This
terminates the proof of Theorem 1.3.

Theorem 1.3 provides us with another class of integers TO for
which as in [3] the Delaunay-Nagell Diophantine equation x3 + my3 = 1
is not solvable.

2. The case M = 8F 3 - 3F. We want to show that the JPA
of α(0) = (ft), ft)2), when

(2.1) ft)3 = M = 8F 3 - 3 F , VeN* ,

yields the following vectors:

α ( 0 ) = (ft), ft)2)

δ(01 = ( 2 F - 1 , 4 F 2 - 2 ) .

(1) = / ( - 4 F + 3)a)2 + (4F2 + V - 2)α) + (8VS - 2V* - 5F + 2)
V 1 2 F 2 - 9 F + 1

ft)2 + (2F - 1)Q) + (4F2 - 4F + 1) \ .
1 2 F 2 - 9 F + 1 / '

bw - (1,1) .
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α<« = /(F - l)ft)2 + (2F2 + V - l)α> + (4F3 - 4F2 + 27)
\ 1 2 F 3 - 9 F 2 + 1

( 4 F 2 - 3F+ l)ft)2 + (8F 3 - 6 F 2 - 2F+ 2)ft> + (16F 4 -12F 8 -
1 2 F 8 - 9 F 2 + 1

(3) _ ((!>+V + ( 1 2 F 3 - 7 F 2 - 4 F + 2)
a _ ^ 3 F 2 - 1 '

Vω* + (2F2 - l)α) + (4F3 - 3F2 - V + 1) \ .
3F2 - 1

= ( 4 F - 4 , 4 F - 2 ) .

•) =

= v . , _,.. -K10F2 + F-4)ά) + (-16F3 + l l F 2 + 6 F - 4 )
V 2 1 F 2 - 8

2ft)2 + Vω + (11F 2 -4Λ .
21F2 - 8

21F2 - 8

\ .
F / '

δ(4) - (0,1) .

(5, _ ( - 4 F + 2)α>2 + (4F 2 - F - 1)0) + (8F 8 - 2 F 2 - 3 F + 1)
48F4 - 32F8 - 15F2 + 12F - 1

/(4F2 + 3 F - 3)α)2 + (8F8 - 6F 2 - 2 F + 2)β)\

(5) = V + ( 1 6 F 4 - 2 4 F 3 - F 2 + 9 F - 2 ) J .
48F4 - 32F3 - 15F4 + 12F - 1

δ(5) - (0,1) .

α(β> = (ft) - 1, ft)2 + (2F - 1)0) + (4F2 - 1))

6(6) = (2F - 2, 12F2 - 2 F - 3) .

tτ> = / ( - 6 F + 4)ώ2 + (5F - 3)0) + (24F3 - 20F2 + 2)
\ 1 2 F 2 - 9 F + 1

ft)2 + (2F - l)o) + (4F2 - 4 F + 1) \ .
1 2 F 2 - 9 F + 1 / '

bm = (0, 1) .

(8) = (3F - 2)a>2 + (12F2 - F - 4)o> + ( - 8 F 2 + 5F)
7 2 F 4 - 6 3 F 2 + 9F + 8

/(12F2 - 9F + l)ft>2 + (24F8 - 24F2 - 4 F + 6)β>\

(8) = V + ( 4 8 F 4 - 2 4 F 8 - 1 4 F 2 + 4) )_ .
72F 4 -63F 2

δ(8) = (0,1) .

<w2 + Fa) + ( 8 F 2 - 6 F )

3 F



458 CLAUDE LEVESQUE

bw = ( 2 7 - 2 , 2 F ) .

Λ(10, _ / (F - l)α>2 + (2F2 + V - l)a> + (4F3 - 7F 2 - F + 2)

Fft>2 + (2F2 - l)ω + (4F3 -- F) \ .
/ '3F 2 - 1

δ<"> = ( 4 7 - 4 , 4 F - 1 ) .

(ID =

4 8 F 4 - 5 6 F 3 - 3 F 2 + 2 1 F - 8

/(4F2 - 3 F + l)ft>2 + (8F3 - 6F 2 - 2 7 + 2)α>\
V + ( 1 6 F 4 - 2 4 F 3 + 5F 2 + 9 F - 4 ) )

=

48F4 - 56F3 + 3F 2 + 21F - 8
11> = (1,1) .

α<l2> = (a) + 1, ft)2 + (2F - 1 > + (4F2 - 2))

_ (27,12F2 - 2 7 - 4 ) .

Because the α's are obtained from the recursion formulas defined
in [6], we simply have to prove that the δ's are correctly stated.

It is easy to show that the inequalities

(2.2) 2V - 1/4 F - 1/8F3 < ω < 2V ,

(2.3) 4F 2 - 1 - 1/2F2 < ω2 < 4F 2 - 1

hold, so that we have

1 < 12F2 - 6F - 5/4 - 1/8V2 + 1/4Vs

 < ^ υ

12F2 - 5F - 1 + 2/7 - 3/2F2

 2

1 2 F 2 - 9 F + 1 "

This implies 6ίυ = 1. The other 6's are similarly obtained. However,
we need for δ{3) the more refined inequality ω < 2 F — 1/4 F, and
sometimes we have to check directly the case V = 1.

The components of α(6) are algebraic integers so that the Bernstein
formula will produce in Q(ώ) the unit

= (64F4 - 24F2 + 1) + (32F3 - SV)ω + (16F2 - 2)ω2

= -3F(ω - 2 F Γ 3 .

The unit obtained from the Hasse-Bernstein formula is

12

e2 = Π a? .
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The time needed to calculate the above expression is reduced if we
note that the JPA of c(0) = (α{12), ai12)) is purely periodic with primitive
length 6; the A's in relation with the JPA of c(0) can be calculated
and the last equality of formula (0.12) is used to get

e2 = Π αίi} - Π cίi] - (4F - 1) + (16F2 - 4 F - 2)(α> + 1)
i-7 i=i

+ (16 F 2 - 2)(ft)2 + (2F - l)α) + (4F 2 - 2))

= -ZV{ω

In conclusion, we obtain the same unit. By Theorem 1.1, this
is the inverse of the fundamental unit of Q( ΨΉ) when M is cube-
free.

3. The case m = 64 F 3 - 24 F 2 + 3F. When

= m = 64Vs - 24F 2 + 3V = M/2S ,

{ with M = ( 8 F - I)3 + 1, Ve N* ,

the JPA of (θ, θ2) yields the following vectors.

α ( 0 ) = (θ, β2)

δ<°> = ( 4 F - 1 , 1 6 F 2 - 4 F ) .

α ( 1, = / ( - 4 F + l)^2 + (8F2 - V)β + (32F3 - 12F2 + F)

2 4 F 2 - 9 F

+ (4F - 1)0 + (16F2 - 8F + 1) \ .
2 4 F 2 - 9 F + 1 / '

δ(1> = (0, 1) .

α«> = (8F2 - 3F)fl2 + (32F3 - 4F2)fl + (128F4 - 80F3 + 12F2)
192F 4 -80F 3

a ) = (8F2-F)fl2 +
192F4 - 8 0 F 3 + 9F 2

&<2> = (1, 1) .

no = ( - 2 F + l)θ2 + (16F2 - SV)Θ + (192F4 - 96FS+15F2)
192F4 - 64F3 + 15F2 - 3F

,„ = (8F2 + Vψ + (32F3 - 12F2 + 3F)fl + (-64F 4 + 48F3 - 3F2).
192F 4 -64F 3 + 1 5 F 2 - 3 F

bm = (1, 1) .

α'4> = {θ + 4F, θ* + (4F - 1)0 + (16F2 - 6F))

bw = ( 8 F - 1 , 48F2 - 1 6 F ) .



460 CLAUDE LEVESQUE

,» = (

V
= (K-6V + 2)θ* + (5F - l)θ + (96F3 - 40 F2 + 4F)

2 4 F 2 - 9 F + 1

02 + ( 4 F - 1)0 + (16F 2 - 8 F + 1)
2 4 F 2 - 9 F + 1

δ<5) = (1,1) .

/(24F2 - 15 F + 2)02 + (96 F 3 - 60 F 2 + 14 F - 1)0\
,« = V + (384 F 4 - 384 F 3 + 122 F 2 - 11F) )

5 7 6 F 4 - 4 3 2 F 3 + 9 3 F 2 - 1

/(24F2 - 15 F + 3)02 + (96 F 3 - 84 F 2 + 21F - 1)0'
„> = V +(384F4 - 288F3 + 78F2 - 11V + 1)

576F 4 -432F 3 + 9 3 F 2 - 1

6(6) = (1,1) .

m = (24 F 2 - 9 F + 1)0 + (576 F 4 - 528F 3+189F 2-31F+2)
576F4 - 432F3 + 129F2 - 18F + 1

/(24F2 - 9 F + 1)02 + (96F3 - 60F2 + 13F - 1)0\

m = \ +(-192F 4 + 240F3 - 95F2 + 16F - 1) ) .
576F4 - 432F3 + 129F2 - 18F + 1

¥n = (1,1) .

α<8) = (0 + (8F - 2), 02 + (4F - 1)0 + (16F2 - 8 F + 1))

δ(8) = (12F - 3, 48F2 - 18F + 1) .

α(9) = αίδ) .

Here again the a's are obtained from the recursion formulas
defined in [6]. The above-mentioned 6's are obtained from the ine-
qualities

(3.2) 4 F - K 0 < 4 F and 16 F 2 - 4 F < 02 < 16F2 - 4F + 1 ,

though we need for bl3), bi4), and δf1 the inequalities

(3.3) 4 F - 1/2 < 0 < 4F - 1/2 + 1/64F2 ,

(3.4) 16F2 - 4F + 1/4 < 02 < 16F2 - 4F + 1/4 + 1/8F.

The components of α(4) are algebraic integers, so that the Berns-
tein formula produces in Q(θ) the unit

Finally, the Hasse-Bernstein formula provides us with the unit

(5) Λ. (6)«. (7) Λ. (8) // Q T7" I 1 \ l OΛ\~1 Λ

e2 = a\ a2 al ^2 = ( l - * o κ + 1; + Δσ) = ex
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which is by Corollary 1.2 the inverse of the fundamental unit of Q(θ).

4. The case m=27ί 3 F β +9ΐ 2 F 3 +ί. The purpose of this chapter
is to carry out the JPA of α(0) = (θ, θ2) where

ίm = θ3 = 27ί3Fβ + 9ί 2F 3 + t = Af/(3F)3 ,

I with M = (9ίVs + I)3 - 1; t, VeN* .

Proceeding as in Chapters 3 and 4, and using the inequalities

(4.2) 3ί F 2 + 1/3 V - l/81ί F 4 < θ < 3ί F 2 + 1/3 F ,

(4.3) 9ί2F4 + 2tV + 1/27 F 2 < θ2 < 9ί2F4 + 2 ί F + 1/9 F 2 ,

we obtain the following vectors:

α(0) = {θ, θ*)

6"» =(3ίF 2 ,9 ί 2 F 4

V
» F 3 + t)θ + (9^3 F° + 3ί2 F2)

9 ί 2 F 3

6(1) = (0, 3F) .

V
- Vθ% + (UV3 + l)θ + (-9PF° -

27ί 3F β + 10ί 2F 3 + ί

(3<F3 + l ^ 2 + (9t2Vs + *F2)fl + (27t3F7 + 15ί2F4 + 2tV)\ .
27ί 3Fβ + 10ί 2 F 3 + t I '

6(2) = (0, 3 F ) .

α<3» = (θ + 3ΐF 2 , ^2 + 3ίF2<? + (9ί 2F 4 + tV))

&<« = (6ίF 2, 27ί 2F 4

,4) = /

V 9ί2F3 + ί ' 9ί2F8

= (0, 3F) .

l)θ + (-27t 2F 5 -
V 81ί3Fβ + 18ί2F3 + t

(9tV3 + l)fl2 + (27f Vs + ZtV2)θ + (81t3F7 + 36t2F4 + 3tF)\ .
81ί3F6 + 18ί2F3 + t I '

δ(δ) = (0, 3F) .

α<β) = (θ + 6tV2, θ2 + 3 ίF 2 ^ + 9ί2F4)

δ'6» = ( 9 ί F 2 , 2 7 ί 2 F 4 -
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α(7) = α(4).

As the components of α(3) are algebraic integers, the Bernstein
formula gives the unit

e, = Aί3) + A™a™ + A<5)α<3) = (9ίF3 + 1 - ZVΘ)~ι .

From the Hasse-Bernstein formula, we obtain the same unit; by
Corollary 1.2, this is the inverse of the fundamental unit of Q(θ).

When t = 3s, seiV*, then

m = s*U6 + 3s2C/3 + 3s , with U = 3F .

This shows that if 3|ί, the JPA of (θ, θ2) is a particular case consi-
dered by L. Bernstein. (See (0.6) in the introduction.)

5. The case m = tfV6 + 3£2F3 + 2U The notion of a generalized
JPA was introduced by L. Bernstein [5], the only difference from
a JPA being in the fact that the δ's are defined arbitrarily.

In this chapter, we show that a generalization of the JPA of
(β, θ2) where

(m = θs = tfV6 + WV* + 2ί = M/V3 ,
( 5 # 1 ) } with M = (ίVs + I) 3 - (ίV5 + 1) ί, F e iV* ,

yields the following vectors:

α<0) = (θ, θ2)

6(0) = ( ί V r 2 , ί a 7 4 + 2ίVr) .

(f F 3 + 2t)θ + (^8F5 + 2f F2) ^2 + ίF2fl + t2

( l ) = /

= (0, F) .

( ί 2 F 4

•f 2ί ' ί 2 F 3 + 2ί

= (0,3F-l).

,» = /(-2F
ί F 3 + l ' ί F 3 + l / '

/(2tV - 2ί + 1)(?2 + (3ί 2F 4 - ί 2 F 3 + ί 2 F 2 + 5ίF)^ + ( - 3 ί 3 F β

+ 8ί 3 F 5 - 8ί 3 F 4 - ί 2 F 4 + 3ί 3 F 3 - 5 ί 2 F 3 + 12ί2F2 - 12ί 2F
,« = V - t V + U2-2t)

/9ί3 V
V - 30 18ί3 F β + 21ί3 F δ + 3ί2 F 5 - 12ί8 F 4 + 18ί2 F 4 + 3ί3 F 3 \ '

30ί 2F 3 + ί F 3
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/(3fF3 -StV2 + tV + 2V)Θ2 + ( 3 ί 2 F 8 - 3 ί 2 F 4 + ί 2 F 3 - ί
+ it F 2 - 7ί V + 2ί - 1)0 + (3ί3F7 - 3ί 3F 6 + ί 3 F 5 + 2ί 2 F 5

\ + 5ί 2F 4 - 5ί 2 F 3 + ί F 3 + * 2 F 2 + 2 ίF 2 + 2 ΐ F - 2t + 1)
U/2

δ<4>

Π ^

a{δ)

6 ( 5 )

- (0, 1)

- 2 0 2

_ ( + («

= ( F - :

+ tV2θ + (4ί2F4 -
3ί2F3 +

(F + 2)02 + (ίF 3

2 F 5 - 4 ί 2 F 4 + 3ί2F
3ί2F3 4

2, F 2 - F + 1) .

/ ( - t 7 l + 2t7 + 2t + i;

3ί3 F 6 + 3ί3F4 + 3ί 3 F

(ίF + 2ί)02 + (ί21

F5 + 2ί3F4 + 3ί sF3

3ί2F3 +
4ί

- ί F 2 +
'3 + ί F 2 -
-4ί

)02 + (2ί 2 '

> _ ^ 7 3 .

Vs -?V'
+ 2ί2F2

6ίF-4ί)

2)0
6ί7 + 4ί)

- 7fF2 -
+-6ί2F2 +
1 + 2ί)0
+ 4fF +

>

) .
f

-2
6ί2

4?

fV
: F +

• ) ) .

f

|-3ίF+4ί)0\
+ 2ίF+4ί)/
• 4ί2 - 2ί

° 2 M β

bw = (0,1) .

m = (- F-1)02 + (ίF 3 + 1)0 + (ί2F5 + 2ί2F4 + ί 2 F 3 + 2ίF2 + 4 ί F + 2t)

/( ίF 3 + ί F ? + tV+ V + 2)02 + ( ί 2 F 5 + f F 4 + ί 2 F 3 - ί F 3 \
+ 2ίF 2 + 3 ί F + 2ί - 1)0 + (ί 3 F 7 + ί 3 F 6 + ί 3 F 5 - ί 2 F 6

- ί 2 F 4 + 2ί 2F 2 - 2 ίF 2 - 5 ί F - 4ί) /
α2 ,

6(7) = (0, 3ίF/2 - t) .

/ ( - ί F + 2ί)02 + (2ί2F3 + 4ί)0 + ( - ί 3 F 5 - ί 3 F 4 + 2 ί 3 F 3 - 2ί 2 F 8

(8) = V - 2 f F 2 - 2 ί 2 F + 4 ί 2 -4 ί )

2ί2F3 + 4ί

2Θ2 + (2ί2F4 + 2fF 3 + 4ίF + At) .

6ί8) = (ίF/2 + ί - 1 , 2 7 + 1) .

- 8)02 + (12ίF3 - 8 ίF 2 + 16)0
F,„ = I + (16f2F4 + 2tV* + 24ίF

lSfV + 24ί3F4 + 51fF 3 + 6ί 2F 2 + 36fF + 8ί2 + 32ί '

/(6t7 + 8 ί F + 16)02 + (6ί2F5 + 8ί 2F 3 + 10ίF2 + 8 ί F + 8ΐ)0\
„, _ V + (6f F 7 + 8ί 3 F 6 + 16t2F4 - Sf F 3 + 16ί2F2 + 8ί F - 16ί) ) .

bw = (0, F ) .

α(1M = (β + (tV2/2 - tV), 02 + ίF 2 0 + ( f F 4 + 3ίF/2 + ί)) •
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Here Mt denotes the denominator of a{f)(i = 4, 6, 7, 9).
When t is a square, this is L. Bernstein's result [5]; however

there are calculation mistakes which are consequences of his wrong
value of α£5). For arbitrary t, the technique is exactly the same.
We replace θ and θ2 in a{v) by [θ] and [θ2] respectively so that we
obtain approximations for the components aίv), a{

2

v), and then we find
the greatest integer contained in these approximations. If we suppose
that 2\tV, then the value we gave for b{j] is correct for t = 1 or 2,
and the values of the other &'s are correct for any t, as easily
verified. This leads us to choose the above-mentioned &'s for any
value of t of V.

Using formula (0.14), we obtain for the A's the following values:

A Γ = 9ί2F6/2 - U2Vb + 15ίF3/2 - UV2 + 1

Al™ = 9fV8 + 18tVδ + 6 V2

A[ί2) = 9ί 3 F 1 0 + 27ί 2F 7 + 21ίF 4 + 3 F

We can now apply the following theorem for n = 3.

THEOREM 5.1. Assume Kn = Q(α{0), •• ,αl°i1). Lei <α(v)> &e
generalized JPA o/ α(0) where the components of α(0) are algebraic
integers, and let the vectors ¥v) have any rational components. If,
for some v ^ 1,

(5.2) A{

o

v) + i4ί + 1 )aί ) + + Ar+ %~1 )ai vl1

is an algebraic integer of Kn and if

(5.3) A\v+ι\ A?+2), , Aiv+«-1] (i = 0, 1, , n - 1)

are rational integers, then (5.2) is a

Proof. By (0.12), the proof is immediate.
As

et = Ai10) + ^ n ) α{ 1 0 ) + A Γ α Γ

= (9ί4F1 2 + 36ί 3F 9 + 45f V6

+ 27£2F6 + 21ίF 3 + Z)VΘ

is an algebraic integer, as and A{

o

n), Aίn), Aίn), A{

0

ι2), Aί12), A{

2

m a re in-

tegers, then et is a unit. It turns out that, when 03 is cube-free,
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ez1 = -(Vθ - tVz - lf/(tVd + 1)

is the fundamental unit of Q(θ); this result follows from Theorem
1.1, when V = 1, and from Theorem 1.3, when V ^ 2.

6* Concluding remarks* L. Bernstein proved in [2] that the
JPA of α(0) = (ft), ft)2), where

(6.1) ft)3 - 8iP + 12K, KeN* ,

is periodic with primitive lengths Z = 4 and m = 8; here

α(4) = ((2ft) + AK - 4)/4 , (ft)2 + 2JΓα> + 4ίf2 + 2)/4) ,

Aί4) = JSΓ = Aί5) Aί6) = 2 i ί 2 + 1 A{

2

6) = 8JΓ1 + 12iί 2 + 2

A{

2

5) = AKZ + AX .

Because the components of α(8) are algebraic integers, L. Bernstein
obtained the unit

(6.2) eι = (12K)\ω - 2K)~Q ,

which is the square of the inverse of the fundamental unit of Q(α>),
when ft)3 is cube-free.

If we calculate Π ϊ U ^ by proceeding in Chapter 2, we obtain
the same unit (6.2). Nonetheless, a unit which turns out to be the
fundamental unit of Q(α>), can be obtained from the JPA of (ft), ft)2),
from the following theorem.

THEOREM 6.1. Let <α(v>> be the JPA ofa{0), where the components
of α(0) are algebraic integers of Kn = θ(α{0), •••, a^U). Suppose that
for a v ^ 1, i/tere exists a rational integer Nv ^ 1 siecfe ίΛαί ίfee
components of Nυa

{v) are algebraic integers of Kn9 and such that one
of the following conditions holds:

( i ) either there exists k, where 1 <i k <̂  n — 1,

(i i) or there exists i, where 1 ^ i <; ^ — 1,

stecfe that af)jNυ is an algebraic integer of Kn.
Then

(6.3) NV(A{

O

V) + Ai9+1)aiv) + + A r + % - υ α r θ

is a unit in Kn.

Proof. If we multiply both members of identity (0.12) by N~\



466 CLAUDE LEVESQUE

it follows immediately that (6.3) and its inverse are algebraic integers.
To apply the last theorem, take iV4 = 2. Then 2α|4) and 2aiA) are

algebraic integers; for a proof that ω2/2 is an algebraic integer, see
[2]; moreover 2\A?) and 2|AJβ>. Therefore

e3 = 2(A<4) + A{

0

5)aίi] + A<6)α<4)) = (12iΓ)(α> - 2ίQ-3

is a unit in Q(ω).
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