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SPACES IN WHICH COMPACTA ARE
UNIFORMLY REGULAR Gs

KYUuNG BAI LEE

A space in which compacta are uniformly regular G; is
said to be c-stratifiable. This concept turns out to be
important in many reasons: c-stratifiability is a necessary
and sufficient condition for regular wN-spaces to be Nagata,
for regular wy-spaces to be 7 and for semimetrizable spaces
to be K-semimetrizable. As applications, it is shown that
a completely regular pseudocompact space is metrizable and
that K-semimetrizable spaces are characterized by having
semi-developments with the 3-link property.

The most important generalized metric spaces are Moore spaces,
Nagata spaces and 7v-spaces. Hodel and Kodake proved that being
an a-space is a necessary and sufficient condition for regular w4-
spaces to be Moore, for regular wN-spaces to be Nagata. We will
show that c-stratifiability plays the same role as a for wN and
wY. Spaces with regular G,-diagonal are c-stratifiable is proved
using Zenor’s characterization. Completely regular pseudocompact
c-stratifiable spaces are v. If a space has a semi-refined sequence
or semi-development with the 3-link property, we can define a
symmetric or semimetric in the usual way to show that such a
symmetric or semimetric is characterized by d(K,, K;) > 0 for dis-
joint compacta K, and K,. Since the 3-link property concerns with
convergence of sequences, it is not surprising that the property is
characterized by a concept of compactness. Going up to develop-
ment with the 3-link property, we get a K-semimetric under which
each point has arbitrarily small neighborhoods. The main method
in this paper is another characterization of c-Nagataness (=first
countable c¢-stratifiable) by a countable open covering mapg: If
gln, ) N g(n, x,) # @ for each m, then x is a cluster point of the
sequence {r,} if there are any.

For a subset S of a space, we will denote the closure of S by
S-. For a point x and a sequence {z,}, <{x,> will denote the point
set {x, x, @i ++-} and <z, x,> will denote the set {x, x,, x,, @, ---}.
Cp{x,} denotes the set of all cluster points of {x,}.

The author wants to express his thanks to refree for many
helpful suggestions to revise this article.

1. c-Nagata spaces. Let X be a space and ¢ a function from
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N x X into the topology of X such that xz¢ N {g(n, 2): we N} for
each x ¢ X and the g(n + 1, x) C g(n, «) for each n and x. Note that
if we let v, = {g(n, x): ne N}, then {v, 7, 7; ---} I8 a sequence of
open covers of X such that v,,, refines v,. Thus we call such a
function a COC-map (=countable open covering map). For any subset
S of X, we denote g(n, S) = U{g(n, x): x € S}.

Let % and B be some families of subsets of X. ¢ is said to
separate (separate regularly) B from A if, for each Ae U and Be
B disjoint, there exists » € N such that Ang(n, B =2ANg(n, B =
@). Consider the following conditions on g.

g separates closed compact sets from points,

g separates closed sets from points,

g separates points from closed sets,

g separates compact sets from closed sets,

g separates closed sets from compact sets, and
g separates regularly closed sets from points.

In [16] Martin defined c-semistratifiable spaces by A; Semi-
stratifiable spaces [5] is characterized by B; C is the definition of
first countadble spaces; In [13] T,, v-spaces are characterized by D,
which is precisely coconvergent spaces [20]; It is easily verified that
k-semistratifiable spaces [14] can be characterized by E and that
stratifiable spaces [2] by F.

We now introduce a new class of spaces which shares similar
properties to these spaces.

HEOO®

DEFINITION. A T,-space is said to be c-stratifiable if it has a
COC-map that separates regularly compact sets from points. A
space is c-Nagata if it is c-stratifiable and first countable.

From the definition, every compact set in a c-stratifiable space
is a regular G,. Conversely, let X be a T,-space such that: For
each compact K, there exists a decreasing sequence {K,} of open
sets with the properties

(1) K=Nwer K, = Nnexy K; for each compact K, and

(2) If K and H are compacta with Kc H, then K,c H, for
every n. Define a COC-map ¢ by g(n, ) = {x},. Then g is a COC-
map that separates regularly compacta from points. Thus X is e-
stratifiable.

Note that every Nagata space is c-Nagata and that every
c-stratifiable space is c¢-semistratifiable. A c-stratifiable space is
Hausdorff. But there exists a nonregular, nonperfect c-stratifiable
space as 6.2 shows. This distinguishes c-stratifiable spaces from
stratifiable spaces and from semistratifiable spaces. As can easily
be shown, c-stratifiability is hereditary, countably productive.
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LEMMA 1.1. A COC-map g separates regularly T from compacta
if g separates regularly T from points.

Proof. Suppose g separates regularly T from points. Let K
be a compact set disjoint from 7. For each z in K, there exists
n(x)e N such that z¢g(n(x), T)~. This implies that {X — g(n(x),
T):xe K} forms an open cover of the compact set K. Let {X —
g(n(x,), T):x,€ K,1 <1<k} be a finite subcover of K, and n =
max {n(,): 1 <i1=<k}. Then KNgn, T) = Q.

LEMMA 1.2. A first countable COC-map g for a Ti-space sepa-
rates closed sets (compact sets, points, respectively) from compact a
if and only if g separates regularly closed sets (compact sets, points,
respectively) from points.

Proof. First we show that a T\,-space which has a first count-
able COC-map ¢ separating points from compacta is Hausdorff.
Assume there are distinet points z and y such that g(n, )N g(n, y)=
@ for each n. There exists a sequence {x,} which converges to
both z and y. We may assume y ¢ {x,>. The point ¥ cannot be
separated from the compact set <z, x,>. This contradiction shows
that the space is Hausdorff.

Assume there exists a subset T and a point pe X — T such
that pegn, T)~ for every n. If gn,p)Ngn, T)— T= @ for
infinitely many %, then g(n, ») N T # @ for infinitely many =, and
hence pe T~ =T if T is a closed (compact, singleton) set. Thus
we can choose ¥, €g(n, ») N g(n, T) — T. Then T cannot be separated
from the compactum {p, y,>. The converse is clear from 1.1.

COROLLARY (Lutzer). A first countable k-semistratifiable T,-
space is stratifiable.

THEOREM 1.3. The following conditions on a first countable
COC-map g for a Ti-space are equivalent:

(1) g separates regularly compacta from compacta,

(2) g separates regularly compacta from points,

(8) g separates compacta from compacta, and

(4) If g(n,z) N gln,x,) = @ for each n, then Cpfx,} C {x}.

Proof. By virtue of 1.1 and 1.2, it suffices to show that (3) «
4).

Let ¢ satisfy the third condition and let g(n, 2) N g(n, x,) * @
for each n. If zeCp{x,} with z = z, there exists a subsequence
{x,,} of {x,} converging to z. Let {y.} be a sequence such that y, ¢
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g(n, ®) N g(n, v,) for each n and that (y,) is disjoint from <(z,).
Now the compactum (z, «,,) cannot be separated from the compac-
tum (2, 9,

Conversely, suppose ¢ satisfies the fourth condition. Assume
there exist disjoint compacta K, and K, such that K, cannot be
separated from K,. Choose a point z, in K, N g(n, K,) for each nu.
Let 2eCp{x,}. Then ze N {gn, K,)":neN}. This implies that
there exists a sequence {y,} in K, such that g(n, z) N g(n, ¥.) # O.
Since Cp{y.} N K, #+ @, x is the unique cluster point of {y,} which
belongs to K,. This implies K, N K, #* ©@. This completes the
proof.

2. Nagata spaces and 7-spaces. A space is called a wN-space
[9] if it has a COC-map ¢ such that: If g(n, )N g(n, x,) # @ for
each ne N, then Cpx,} # @. Similarly, a space is called a wv-
space [9] if it has a COC-map g such that: If x,€¢9(n, v, and ¥y, €
g(n, ) for each n e N, then Cp{x,} + @.

Martin [16] shows that a regular c-semistratifiable wd-space is
developable, and Hodel [9] proves that a Hausdorff v, wN-space is
metrizable. Since there exist nonmetrizable Nagata spaces, the
condition being v-spaces in Hodel’s proposition cannot be weakened
to ¢c-Nagataness. However, as the following lemmas show, ¢c-Nagata-
ness is a necessary and sufficient condition for wN-spaces to be
Nagata, and for wy to be 7.

LEMMA 2.1. A space is Nagata if and only if it is a c-Nagata
wN-space.

LEMMA 2.2. A Hausdorff space is v if and only if it is c-
Nagata and w.

Proof. By Theorem 2.1 of [13], a 7-space has a COC-map which
separates compacta from closed sets. But a Hausdorff space which
has a first countable COC-map that separates compacta from com-
pacta is ¢-Nagata by 1.3. These imply that Hausdorff v-spaces are
c-Nagata.

Conversely, let g be a first countable COC-map for a Hausdorff
space satisfying the fourth condition of 1.3 and the condition of
wy. Let z,€9(n, vy, and y, <€ g(n, x) for each %, and let zeCop{x,}.
There exists a subsequence {x,} of {x,} such that x, €g(i, 2) for
each 1€ N. Thus =, €9, 2) N g(n, ¥,.,) C9(t, 2) N 9(4, ¥,,) for each
i€ N, from which it follows that Cpfy, )} {z}. Since g is a first
countable COC-map, {y,} converges to x. Thus we have z = x.
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If a T,-space has a COC-map that separates compacta from
closed sets, the COC-map separates compacta from points. This
implies that every T, v-space is c-semistratifiable. But such a space
need not be c-stratifiable as 6.3 shows.

COROLLARY. Hwvery Nagata wy-space 1s metrizable.

Proof. A Nagata w7y-space is a <v-space by 2.2. Now apply
[9, Theorem 4.3].

A regular wd-space is developable if it is «, and a regular
wN-space is Nagata if it is a@. A natural substitute for a in the
case of wN and wv is c-stratifiability as seen in the following.

THEOREM 2.8. (1) A regular space is Nagata if and only if
it is a c-stratifiable wN-space. (2) A regular space is v if and
only if it is a c-stratifiable wy-space.

Proof. Note that a wN-space or a wv-space is a g-space [19]
and that each point is a G, in a c-stratifiable space. Lutzer showed
that a regular ¢-space in which each point is G; are first countable.
The result follows from 2.1 and 2.2.

3. Spaces with regular G,-diagonals. A space is said to have
a G;(k)-diagonal if it has a sequence {9, D,, D, ---} of open covers
such that: For any distinct two points z and y, there is »n such
that yestix, 9,). G,(1)-diagonal coincides with G;-diagonal. A
space is said to have a regular G,-diagonal if the diagonal of X x X
is a regular G,set in the product space. For more properties of
these, see [2, 10,16 and 21].

LEMMA 8.1 (Zenor). A space X has a regular G,diagonal if
and only if there is a sequence {7,} of open covers of X such that
if x and Yy are distinct points of X, then there exists an integer m
and open sets U and V containing x and y respectively such that
no member of 7, intersects both U and V.

PROPOSITION 3.2. Any space with a reqular Gy;-diagonal is c-
stratifiable.

Proof. Let {v,} be a sequence of open covers of a space X
metioned in 3.1. We may assume that each v, is refined by 7,..
Define a COC-map ¢ by g(n, ) = st(x, 7,). Let a compactum K and
a point pe X — K be given. For each x ¢ K, there exists an integer
n(x) and open sets U(x) and V(x) containing p and z, respectively,
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such that U(x) N st(V(x), Vo) = @. Since K is compact, we can
find a finite number of points x,, x,, ---, x, of K such that {V(x,):
1=1,2, +++,k} covers K. Let n = max{n().1=12,---,k}, and
U= n{Ux):i=1,2,---,k}. Then UnNstK,~,) = @. That Iis,
UNngn, K) = @. This implies p¢g(n, K).

4. Pseudocompact spaces. A space X is pseudocompact if
every real-valued continuous function on X is bounded. The follow-
ing characterization of completely regular pseudocompact spaces is
well known.

LEMMA 4.1. Let X be a completely regular space. X is pseudo-
compact if and only if for every sequence G,Cc G, C G, C--- of non-
void open subsets of X, Nuen G = D .

In [18], it is proved that a completely regular pseudocompact
space with a regular G,-diagonal is metrizable. Even though the
condition that the space have a regular G,-diagonal cannot be
weakened to c-stratifiability (see 3.2) as shown in 6.6, we are able
to prove the following.

THEOREM 4.2. Completely regular pseudocompact c-stratifiable
spaces are .

Proof. Let g be a c-stratifiable COC-map for a completely
regular pseudocompact space X, and K a compact subset and G an
open set containing K. Assume g(n, K)N(X — G) # @ for every
n. Since X is regular there is an open set H such that KCc HC
H- cG. Then {g(n, K)N(X — H):ne N} is a decreasing sequence
of nonvoid open sets so that @ # M.y {9(n, K)N (X — H )} C
Neev 9, K)" N (X —H)=KN(X — H)=@. This contradiction
implies that g separates compacta from closed sets. Thus X is a
v-space.

COROLLARY. A completely regular pseudocompact stratifiable
space 1s metrizable.

Proof. Note that a stratifiable space is c-stratifiable. Now
apply 4.2 and corollary to 2.2.

5. K-symmetrics and semi-refined sequences of covers satis-
fing the 3-link property. Let X be a space and d a real-valued
nonnegative function defined on X X X such that d(zx, ¥) = d(y, x),
and d(x,y) =0 if and only if x = y. The function d is called a
symmetric [1] for X provided that a set Mc X is closed if and
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only if d(x, M) > 0 for any x€ X — M. The function d is called a
semimetric for X provided that for a set Mc X, ae M~ if and
only if d(z, M) =0. In [1] and [15] it is proved that a space is
metrizable if and only if it has a compatible symmetric d such that
d(F, K) > 0 for any disjoint closed F' and compact K. The follow-
ing condition on symmetrics is due to Arhangel’skii.

(K) For any disjoint compacta K, and K, in X, d(K, K;) > 0.

DEFINITION. A symmetric satisfying (K) is called a K-sym-
metric. Similarly, a semimetric satisfying (K) is called a K-semi-
metric [17]. A space is said to be K-symmetrizable (K-semimetriz-
able) if it is symmetrizable (semimetrizable) via a K-symmetrie
(K-semimetric).

We can no longer claim that a K-symmetrizable space is metri-
zable even if it is paracompact. Arhangel’skii’s conjecture saying
that every symmetrizable space is K-symmetrizable seems to be
unsolved yet. It is known that a paracompact semimetric space is
K-semimetrizable.

A sequence ¥ = (7, V5 Vs ) of covers of a space X such that
each v,,, refines 7, is called a semi-refined sequence of covers [3] if
B, = {st(x, v,): ne N} forms a weak-base [1], a semi-development if
it is a semi-refined sequence of covers such that each st(z,v,) is a
neighborhood of x, and a dewvelopment if it is a semi-development
such that each v, is an open cover of X.

A development v = (v, V., Vs, -+ +) for a space X is said to satisfy
the 3-link property [7] if it is true that for any distinct points z
and y, there exists an integer » such that no member of v, inter-
sects both st(x,v,) and sit(y, v.). We generalize this concept to
arbitrary sequence of covers.

DEFINITION. Let v = (v, 7, Vs +++) be a sequence of covers of
a space. 7 is said to satisfy the 8-link property if for any distinct
points 2 and y, there exists an integer » such that v ¢ st’(x, 7..).

Note that this definition coincides with the original definition
of the 38-link property for developments, and that a space has a
sequence of open covers with the 3-link property if and only if it
has a G,(8)-diagonal.

A continuously semimetrizable space is a Moore space that
admits a development with the 3-link property. A space admits a
development with the 3-link property if and only if it is a w4-space
with a regular G,-diagonal. A locally connected developable space
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with a regular G,-diagonal has a K-semimetric d such that the space
is d-spherically connected, a locally connected rim compact space is
K-semimetrizable if and only if it is a developable v-space. See
[4], [17] and [21] for details.

The following three theorems show that the condition (K) has
a close relation to the 3-link property and the c-stratifiability.

THEOREM 5.1. A space X is Hausdorf K-symmetrizable if and
only if it admits a semi-refined sequence of covers satisfying the
3-link property.

Proof. Let d be a K-symmetric for X. For each n, put v, be
the set of all subsets of X with diameter less than 1/n. Then
d(z, y) < 1/n if and only if yest(x,v,). This implies that v = (v,,
Vo Vs +-+) is a semi-refined sequence of covers of X. If there exist
distinct points 2 and y such that y e st’(x, v,) for every =, there are
sequences {z,} and {y,} such that x, € st(z, 7,), ¥.<st(y,7,) and ¥, €
st(x,, 7.). We may assume <z, z,) N <Y, ¥,y = @ with both sets
compact. But d({z, ., ¥, ¥.>) = 0, a contradiction.

Conversely, let v = (v, ¥, 74 -+ +) be a semi-refined sequence of
covers of X satifying the 3-link property. Define a symmetric d
by d(x, ¥) = 1/inf {je N: x ¢ st(y, 7;)}. From the definition d(x, ¥) <
1/n if and only if x e st(y, v,). Assume there exist disjoint compacta
K, and K, such that d(K,, K,) = 0. We can find two sequences {x,}
and {y,} in K, and K, respectively, such that d(z,, ¥,) < 1/n. Note
that X is sequential and Hausdorff so that {x,} and {y,} have con-
vergent subsequences. Let {x,,} and {y,.,} be subsequence of {x,} and
{y.} converging to x and y, respectively. Without loss of generality,
we may assume d(z,2,,) <1/t and d(y, y,,) <1/¢ for each iecN.
Since d(x.,, ¥.,) < 1/i, it follows that there is no k& such that y¢
st’(x, ;). This contradiction completes the proof.

THEOREM 5.2. For a space X, the following are equivalent:
(1) X is a semimetrizable c-stratifiable space, (2) X 1is K-semimetri-
zable, and (3) X admits a semi-development with the 3-link property.
Furthermore, if the space s regular, each of these is equivalent to
(4) X is a ¢-Nagata B-space.

Proof. Note that spaces satisfying one of these conditions are
Hausdorff. In a semimetric space, any compatible symmetric is
actually a compatible semimetric. Also it is easily verified that
any semi-refined sequence of covers of a semimetric space forms a
semi-development. Applying these remarks to 5.1, we have (2) =

3.
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For (1) = (2), let g be a semistratifiable, first countable, ¢c-strati-
fiable COC-map for X. Define a semimetric d by d(z, y) = 1/inf {j €
N:zeg(d,y) and ye¢g9(d, x)}. Let K, and K, be disjoint compacta.
By 1.3, there is me N such that K, Ngim, K,) = @ and K, N g(m,
K) = @. It follows that d(K, K;) = 1/m > 0. Conversely, let d be
a K-semimetric on X. Define a first countable COC-map g by g(n,
2) = Interior of 1/n sphere centered at x. It is easily verified that
g satisfies the third condition of 1.3.

For (4) note that a c-Nagata space is c-semistratifiable. Martin
shows that a regular c-semistratifiable B-space is semistratifiable.

COROLLARY. A semistratifiable v-space is K-semimetrizable.

The following lemma is due to Alexandrov-Nemitskii and Morton
Brown. Analogous result for symmetrics can be found in [12].

LEmMA 5.3. A Hausdorff space is developable if and only if
it 1s semimetrizable via o semimetric d salisfying one of the follow-
ing equivalent conditions: (1) Every convergent sequence 18 d-
Cauchy, (2) If {x,} and {y,} are sequences both converging to x,
then lim d(x,, ¥,) = 0, and (3) (AN) Each point has a mneighborhood
of arbitrarily small diameter.

THEOREM 5.4. For a space X, the following are equivalent:
(1) X s a wd-space with a regular Gyodiagonal, (2) X is K-semi-
metrizable via a semimetric satisfying (AN), (3) X admits a deve-
lopment with the 3-link property, and (4) There is a semimetric d
on X such that: (a) If {x.} and {y.} are sequences both converging
to the same point, then limd(x,, ¥,) =0, and (b) If & and y are
distinet points of X and {x,} and {y,} are sequences converging to
x and Yy, respectively, then there are imtegers L and M such that
if m > L, then d(x,, ¥, > 1/M.

Proof. Zenor proved the equivalence of (1), (8) and (4). (2) =
(4) is easy.

REMARK. In view of 5.8 and 5.4, one may conjecture that a
developable K-semimetrizable space satisfies the above four condi-
tions. This can be rephrased as: If a space X satisfies one of the
following equivalent conditions, it satisfies the conditions of 5.4:
(1) X is semimetrizable via a semimetric satisfying (AN) and is K-
semimetrizable, (2) X is developable and admits a semidevelopment
with the 3-link property, and (3) X has two semimetrics satisfying
(a) and (b) of (4) in 5.3, respectively.
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If this were true, any developable space that does not admit
a development with the 3-link property would be semimetrizable
but not K-semimetrizable. But we have an example (see 6.6).

6. Examples.

6.1. There exists a perfect, hereditarily Lindelof, hereditarily
separable v-space which is not a S-space. Such a space is c-strati-
fiable but not semistratifiable. The space of reals with the upper
limit topology.

6.2. There exists a Hausdorff v-space which is neither regular
nor perfect. Such a space is c-stratifiable but not semistratifiable.
Let X be the space of all real numbers equipped with the topology
generated by a first countable COC-map ¢

(x — 1/n, 2 + 1/n), if x is rational

g(n, x) = (@ — 1/n,z + 1/n) N (X — Q), otherwise

where @ denotes the rationals. It is easy to check this space is a
v-space. The point V2 and the closed set @ cannot be separated
by disjoint open sets, which shows that X is not regular. By the
Baire Category Theorem, it is easily shown that @ is not a G,.

6.8. There exists a T,, v-space which is not Hausdorff and
hence, is not c-stratifiable. Let X = R U {— o, + o}, where R is
the reals, with the topology generated by a first countable COC-

map ¢

(x —1/n,z + 1/n), if xe R,
g(n, ) = {(—o0, —n) U (N, +00) U {400}, if 2=+,
(—oo, —m) U (N, +o0) U{—co}, if 4=—oc0 .

Then g separates compacta from closed sets.

6.4. There exists a first countable Hausdorff wN-space which
is not c-semistratifiable, and hence is not c-stratifiable. Let 2 be
the first uncountable ordinal, and consider the space [0, 2) with
the order topology. Since it is countably compact, it is a wN-
space. Now Corollary 5 of [16] ensures that this space is not c¢-
semistratifiable.

6.5. Nonmetrizable Nagata spaces ([2], Examples 9.1 and 9.2)
are c-stratifiable spaces which are not wvy. See corollary to 2.2.
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6.6. The space ¥ of [6, 5I] is completely regular, pseudocom-
pact, ¢-Nagata and developable but does not have a regular G;-dia-
gonal, and hence is not metrizable. See the remark following 4.1,
4.2,5.8 and 5.4. We define a COC-map ¢ for ¥ as follows. g(n, x)=
{x} for every ne N and for every x€ N. Note that for each point
®z, there corresponds an infinite sequence E = {x,, 2, ¥ +--} of
distinet natural numbers. Let g(n, wz) = {X., ®ut1, Tusg =} Since
any compact set can contain only finitely many points of D, we can
easily verify that g separates regularly compacta from points.
That is, ¥ is c-stratifiable. Also, g satisfies: If =z, x,€g9(n,y,) for
each n, then {x,} converges to x. This is a characterization of
developable spaces proved in [8].
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