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SOME PROPERTIES OF THE SORGENFREY LINE
AND RELATED SPACES

ERIC K. VAN DOUWEN AND WASHEK F. PFEFFER

Any finite power Sn of the Sorgenfrey line S has this
covering property: if φ(x) is a neighborhood of x for each
xeSn, then there is a closed discrete subset D of Sn such
that {φ(x): xeD} covers Sn. No finite power of the Sorgenfrey
line is homeomorphic to finite power of the irrational
Sorgenfrey line. The Sorgenfrey plane is not the union of
countably many nice subspaces.

0. Introduction* All spaces considered are 2\. The Sorgenfrey
line, S, is the set of all reals, retopologized by letting all half-open
intervals [a, b) be a base. The irrational Sorgenfrey line, T, is the
subspace of S consisting of all irrational numbers. If £ is a cardinal,
Sκ and Tκ are the product of tz copies of S and T, respectively. We
refer to S2 as the Sorgenfrey plane, and to T2 as the irrational
Sorgenfrey plane.

A neighborhood assignment for a space X is a function φ from
X to the topology of X such that x e φ{x) for all xeX, [2]. A
space X is a D-space if for every neighborhood assignment φ for
X there is a closed discrete subset D of X such that {φ(x): xeD}
covers X, [2]. The space of countable ordinals is not a D-space since,
as observed in [2]: every countably compact D-space is compact. Up
to now no satisfactory example of a space which is not a D-space
is known, where by satisfactory example we mean an example having
a covering property at least as strong as metacompactness or sub-
paracompactness.

Since the Sorgenfrey plane is subparacompact, [8, 3.1], it is a
natural candidate for a satisfactory example of a non-D-space. How-
ever, we have the following theorem.

THEOREM 1. Every finite power of S is a D-space.

This leaves open the following three questions: Is every finite
power of S hereditarily a D-space? Is Sω a D-space? Is Sω hereditari-
ly a D-space? A negative answer to any of these questions would be
welcome (but is not expected), since Sω is hereditarily subparacom-
pact, [8, 3.2], We do not even know if T2 is a D-space; however,
it follows from results in [2] that S is hereditarily a D-space. In
particular, T is a D-space.

The proof of Theorem 1 has suggested a new class of spaces,
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which generalizes the class of left-separated spaces. Recall that a
space X is left-separated if there is a well-order ^ on X such that
{yeXix^y} is open in X for each xeX, [6, 0.4]. If ^ is any
reflexive (not necessarily transitive) relation on a set E and F Q E,
then we shall call m e F a ^ -minimal element of F whenever x = m
for each x e F with x ^ m.

DEFINITION. A space X is called a generalized left-separated
space (abbreviated GLS-space) if there is a reflexive binary relation
^ on X, called GLS-relation, such that

(1) every nonempty closed subset has a ^-minimal element

(2) {y eX: x ^ y} is open for each a e l ,

THEOREM 2. Every GLS-space is a D-space.

THEOREM 3. Every finite power of S is a GLS-space.

Theorem 1 is an immediate consequence of these two theorems.
Other applications of Theorem 2 will be mentioned in §2. Clearly
a subspace of a left-separated space is again a left-separated space.
The corresponding statement for GLS-spaces is false.

THEOREM 4. T is not a GLS-space.

In [1] it was shown that S and T are not homeomorphic. Since
a closed subspace of a GLS-space is again a GLS-space [see (4.4a)],
Theorems 3 and 4 yield the following strengthening of this result.

THEOREM 5. For no positive integers m and n the spaces Sm

and Tn are homeomorphic.

It is apparently unknown if Sm and Sn, or Tm and Tn, can be
homeomorphic for distinct positive integers m and n.

By a classical result of P. B. Jones, [5], a separable space which
has a closed discrete subset of cardinality c is not normal. By a
recent result of W. G. Fleissner, [4], such a space is not countably
paracompact either. And it is obvious that such a space fails to
have many other properties, like metacompactness and collectionwise
Hausdorίfness. Therefore, the following theorem shows that S2, and
hence Sκ for K ̂  2, is not the union of countably many nice subspaces.

THEOREM 6. For every countable family i? of subspaces of S2

that covers S2 there is an E e i? which contains a closed separable
subspace that has a closed discrete subset of cardinality c.
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Since S2 is (weakly) #-refinable, [8, 2.9], it follows that a weakly
#-refinable space need not be the union of countably many metacom-
pact subspaces (the converse is patently true).

The organization of this paper is as follows. Theorem 2 is
proved in §1, where we also consider some of its applications different
from Theorem 1. Theorems 3 and 4 are proved in §2, and Theorem
6 is proved in §3. In the Appendix we collect some properties of
GLS-spaces.

1* Proof of Theorem 2, and consequences*

1.1. The proof. Let X be a GLS-space with GLS-relation ^ .
Let φ be a neighborhood assignment for X Define a new neighbor-
hood assignment ψ for X by

f(x) = {yeφ(x):x ^ y} .

It suffices to construct a closed discrete set D in X with U ψ[D] = X*
With transfinite recursion construct, if possible, an xξ e X in such a
way that for each xζ, when defined,

xξ is a ^ -minimal element of Aξ = X — U{ψ(xv): V < ξ} .

We can find such an xξ if Aζ Φ 0 , since clearly Aξ is closed. Let
a be the ordinal at which the construction breaks down because
Aa = 0 ; a exists, for xξ Φ xη if ξ Φ η. Let D = {xζ: ξ < a}. Then

It remains to show that D is closed and discrete. To this end
it suffices to prove that ψ(x) ft D = {x} for all x e D, since U ψ[D] = X.
Let aje eψ(xv) for some f, 37 < α. Clearly £ <; 77, and a?9 ^ α?f. Both
α?̂  and α;f belong to Aζ. Consequently xη = xζ, as xζ is ^-minimal
in Aζ.

1.2. Consequences. Theorem 2 has been used in [3] for proving
that certain spaces are D-spaces.

Let ^f(X) be the collection of nonempty compact subsets of a
Hausdorff space X. Equip ^Γ(X) with the so-called Pixley-Roy
topology, i.e., basic neighborhoods about Fe^Γ(X) have the form
{G 6 J£%3Q: ί7 £ G C ?7}, where U is an open neighborhood of F in
X. It is noted in [3] that *3Γ(X) is a GLS-space (ordinary inclusion
is a GLS-relation). Consequently ^Γ(X) is a .D-space.

Let 2N be the hyperspace of the integers, i.e., the nonempty
subsets of N, equipped with the Vietoris (or finite, or exponential)
topology. It is shown in [3] that 2N is a GLS-space (reverse inclu-
sion is a GLS-relation). Consequently 2N is a JD-space. The same
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argument would work for the hyperspaee of an uncountable discrete
space.

1.3. REMARK. Assume that a GLS-space X admits a GLS-relation
satisfying

(1) ^ is a linear order (or, equivalently, every nonempty closed
subset of X has a unique ^-minimal element);

(2) The intervals [x, y) = {z e X: x ^ z < y) form a base for
the topology of X.
The technique of the proof in 1.1 can be used to show that X is
ultraparacompact. (Recall that a space is ultracompact if every
open cover has a disjoint open refinement.) Indeed, let ^ be an
open cover of X. For each xeX, choose ψ(x) = [x, yx) so that
ψ(x)aU for some Ue1%S. If D is as in 1.1, then ψ[D] is a disjoint
open refinement of ^ .

In the proof of Theorem 3, we will see that S and H = S Π [0, °o)
are homeomorphic, and that ^ is a GLS-relation on H. So we have
a somewhat unusual proof of the well-known fact that S is ultra-
paracompact.

2* Proof of Theorems 3 and 4. For the proof of Theorem 3
we will need the following simple lemma.

LEMMA 2.1. Let ^ be a reflexive and transitive binary re-
lation on a space X such that for every nonempty ^-chain K in
X there is an me K~ with m ^ x for all xeK. Then each non-
empty closed subset of X has a -^-minimal element.

Proof. Let F be a nonempty closed subset of X. For every
nonempty ^-chain K in F there is an meK" with m ^ x for all
x e K; clearly meF. It follows from the Kuratowski-Zorn lemma
that F has a ^-minimal element.

2.2. Proof of Theorem 3. Let H be S Π [0, oo), half the Sorgenfrey
line. Then H and S are homeomorphic, for both admit a disjoint
open cover by countably many copies of S Π [0,1). We shall consider
H instead of S. Let n be nonnegative integer. As usual, the ith
coordinate of x e Hn is xi9 1 <; i ^ n. Define a reflexive and transi-
tive binary relation ^ on Hn by

x ^ y if Xt^Vi for all 1 ^ i ^ n .

Clearly {y e Hn: x ^ #} is open in Hn for each x e i ϊ \ Let
be a ^-chain, and define meHn by
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TΠi = inf fail x 6 K} .

Then m 5̂  x for each xeK, and since K is a ^-chain, it is easy to
see that for each ε > 0 there is an x e K such that m* <5 xi < mt + ε
for 1 <; i ^ w. Consequently m e JBΓ". It follows from the above
lemma that ^ is a GLS-relation.

2.3. Proof of Theorem 4. Let ^ be a reflexive binary relation
on T such that {y e T: x -^ y} is open in T for each x e T. Now T
is a Baire space as a subspace of S (since it is a Baire space as a
subspace of R). Hence one can easily find ε > 0 and a, b with a < δ,
and a dense subset E of (α, δ) Π 2\ such that [x, α? + ε) n 21 £
{y e T: x ^ y} for each as e E. Let g be a rational number, a < q <b.
There is a set F = {#„: n^l} Q E such that

g < xn+ί < xn < q + min {ε, 1/̂ } for n ^ 1 .

Then ί7 is closed in Γ but has no ^-minimal element, since xn+1 < xn

(i.e., xn+1 ^ xn and a?Λ+1 Φ xn) for all ^ ^ 1.

3. Proof of Theorem 6. Let R be the real line with its usual
topology. For x e R let Rx = R x {#}.

3.1. T%e proof. For each seϋ? the set

f7* = {(x,y)eS2:x + y = z}

is closed and discrete in S2. Hence it suffices to show that there
are an S e g 7 and a z6R such that some separable, not necessarily
closed, subspace intersects Vz in a set of cardinality c.

It is easy to see that if A Q R2 is dense in some open subspace
of R2, then A, considered as subspace of S2, is separable. Since all
sets Vz are lines of slope — 1, the theorem follows from the following
lemma.

LEMMA 3.2. Let <Szf be any countable family of subsets of R2

that covers R2. Then there are an Ae *s%f and a nonempty open U
in R2 such that

ϋ{Rx Π A Π U: x eR, \RX n A Π U\ = c}

is dense in U.

Proof. Let ^ be a countable base for iϋ2. We argue by con-
tradiction, and suppose that for each i e j / and B e & we can find
a nonempty open V(A, B) £ B such that
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\RX n A ΓΊ V(A, B)\ <c for all x e R .

F o r i e j / let W(A) = U{V(A, B): Be &}. Then W(A) is a dense
open set in R%, and since the union of countably many sets of
cardinality less than c has again cardinality less than c,

\RX n A n W(A)\ < c f or all x e i2 .

If G = n {W(A): A 6 j ^ } , then \Rxf]AΓ\G\<c for all x 6 R. Since
(r £ U Jxζ the same argument shows that

\RX nG\ <c for all x e R .

However, this is impossible. For by [7], or [9, 15.1], every inter-
section of countably many dense open sets in R2 intersects Rx in a
set that is dense in Rx with respect to the subspace topology for at
least one x. But then Rx Γ) G is a dense Gδ in RXJ hence has
cardinality c, cf. [9, 5.1].

4. Appendix: GLS-spaces* GLS-spaces are useful in proving
that certain spaces are D-spaces. Here we collect some of their
basic properties. We omit straightforward proofs.

We did not postulate that a GLS-relation be transitive; an easy
example shows that it need not be: define a GLS-relation ^ on the
nonnegative integers by k^nifίk^n^k + 1. (We did not at-
tempt to decide whether or not every GLS-space admits a transitive
GLS-relation.) On the other hand, since all spaces considered are Tlf

we have the following.

PROPOSITION 4.1. Every GJu$-relation is antisymmetric.

This can be used to prove the following propositions.

PROPOSITION 4.2. A compact Hausdorff space without isolated
points is not a GLS-spαce.

The example of a countable space with the cofinite topology
shows that the Hausdorff condition is essential. A collection j y of
subsets of a space X is called a network for X if for every open
U in X and every x e U there is an A 6 s$f with x e A Q U.

PROPOSITION 4.3. If the space X has a network jx? with
< \X\, then X is not a GLS-space. In particular, no uncoun-

table separable metrizable space is a GLS-space.

The following proposition should be compared with analogous
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results for Z>-spaees [2].

PROPOSITION 4.4. (a) A closed subspace of a GLS-space is a
GLS-space.

(b) If X = Xι U X2, with Xι and X2 GLS-spaces and X^ closed,
then X is a GLS-space.

(c) A space is a GLS-space if it is the union of countably
many closed subspaces, each of which is a GLS-space.

Note that it follows from 4.4 (a), and 4.2 or 4.3 that no infinite
product of nontrivial spaces is a GLS-space. In particular, Sω is not
a GLS-space.
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