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SOME PROPERTIES OF THE SORGENFREY LINE
AND RELATED SPACES

Eric K. vAN DOUWEN AND WASHEK F. PFEFFER

Any finite power S* of the Sorgenfrey line S has this
covering property: if ¢(x) is a neighborhood of x for each
xS, then there is a closed discrete subset D of S* such
that {o(x): € D} covers S*. No finite power of the Sorgenfrey
line is homeomorphic to finite power of the irrational
Sorgenfrey line. The Sorgenfrey plane is not the union of
countably many nice subspaces.

0. Introduction. All spaces considered are T,. The Sorgenfrey
line, S, is the set of all reals, retopologized by letting all half-open
intervals [a, b) be a base. The irrational Sorgenfrey line, T, is the
subspace of S consisting of all irrational numbers. If £ is a cardinal,
S* and T* are the product of £ copies of S and T, respectively. We
refer to S? as the Sorgenfrey plane, and to T® as the irrational
Sorgenfrey plane.

A neighborhood assignment for a space X is a function ¢ from
X to the topology of X such that xep(x) for all ze X, [2]. A
space X is a D-space if for every neighborhood assignment @ for
X there is a closed discrete subset D of X such that {p(x): 2 € D}
covers X, [2]. The space of countable ordinals is not a D-space since,
as observed in [2]: every countably compact D-space is compact. Up
to now no satisfactory example of a space which is not a D-space
is known, where by satisfactory example we mean an example having
a covering property at least as strong as metacompactness or sub-
paracompactness.

Since the Sorgenfrey plane is subparacompact, [8, 3.1], it is a
natural candidate for a satisfactory example of a non-D-space. How-
ever, we have the following theorem.

THEOREM 1. Ewery finite power of S is a D-space.

This leaves open the following three questions: Is every finite
power of S hereditarily a D-space? Is S®a D-space? Is S hereditari-
ly a D-space? A negative answer to any of these questions would be
welecome (but is not expected), since S is hereditarily subparacom-
pact, [8, 3.2]. We do not even know if T® is a D-space; however,
it follows from results in [2] that S is hereditarily a D-space. In
particular, T is a D-space.

The proof of Theorem 1 has suggested a new class of spaces,
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which generalizes the class of left-separated spaces. Recall that a
space X is left-separated if there is a well-order < on X such that
{yeX:x <y} is open in X for each zc X, [6, 0.4]. If =< is any
reflexive (not necessarily transitive) relation on a set £ and F C E,
then we shall call m € F a < -minimal element of F' whenever x = m
for each x ¢ F with 2 < m.

DEFINITION. A space X is called a generalized left-separated
space (abbreviated GLS-space) if there is a reflexive binary relation
< on X, called GLS-relation, such that

(1) every nonempty closed subset has a =<-minimal element

(2) {yeX:x =y} is open for each x e X.
THEOREM 2. FEwvery GLS-space is a D-space.
THEOREM 3. Ewvery finite power of S is a GLS-space.

Theorem 1 is an immediate consequence of these two theorems.
Other applications of Theorem 2 will be mentioned in §2. Clearly
a subspace of a left-separated space is again a left-separated space.
The corresponding statement for GLS-spaces is false.

THEOREM 4. T 14s not a GLS-space.

In [1] it was shown that S and T are not homeomorphic. Since
a closed subspace of a GLS-space is again a GLS-space [see (4.4a)],
Theorems 3 and 4 yield the following strengthening of this result.

THEOREM 5. For no positive integers m and n the spaces S™
and T" are homeomorphic.

It is apparently unknown if S™ and S”, or T™ and T", can be
homeomorphic for distinct positive integers m and n.

By a classical result of F. B. Jones, [5], a separable space which
has a closed discrete subset of cardinality ¢ is not normal. By a
recent result of W. G. Fleissner, [4], such a space is not countably
paracompact either. And it is obvious that such a space fails to
have many other properties, like metacompactness and collectionwise
Hausdorffness. Therefore, the following theorem shows that S2, and
hence S¥ for £ =2, is not the union of countably many nice subspaces.

THEOREM 6. For every countable family & of subspaces of S*
that covers S* there is an K e & which contains a closed separable
subspace that has a closed discrete subset of cardinality c.
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Since S? is (weakly) f-refinable, [8, 2.9], it follows that a weakly
f-refinable space need not be the union of countably many metacom-
pact subspaces (the converse is patently true).

The organization of this paper is as follows. Theorem 2 is
proved in §1, where we also consider some of its applications different
from Theorem 1. Theorems 3 and 4 are proved in §2, and Theorem
6 is proved in §3. In the Appendix we collect some properties of
GLS-spaces.

1. Proof of Theorem 2, and consequences.

1.1. The proof. Let X be a GLS-space with GLS-relation =.
Let @ be a neighborhood assignment for X. Define a new neighbor-
hood assignment + for X by

¥(x) = {yep@):z = y} .

It suffices to construct a closed discrete set D in X with U+[D] = X.
With transfinite recursion construct, if possible, an z.€ X in such a
way that for each z,, when defined,

x; is a < -minimal element of A, = X — U{y(x,): 9 < &} .

We can find such an xz, if 4. # @, since clearly A, is closed. Let
« be the ordinal at which the construction breaks down because
A, = Q; a exists, for x, =, if £#79. Let D= {x.:&<a}. Then
Ud[Dl=X - A4, =X.

It remains to show that D is closed and discrete. To this end
it suffices to prove that y(x) N D = {x} for all x € D, since U~{D] = X.
Let x. € 4(x,) for some & 7 < a. Clearly ¢ <7, and x, < .. Both
2, and x. belong to A,. Consequently z, = ., as x. is <-minimal
in A,.

1.2. Comsequences. Theorem 2 has been used in [3] for proving
that certain spaces are D-spaces.

Let 97°(X) be the collection of nonempty compact subsets of a
Hausdorff space X. Equip 22°(X) with the so-called Pixley-Roy
topology, i.e., basic neighborhoods about Fe . 2°(X) have the form
{(Ge #(X): FS GZ U}, where U is an open neighborhood of F in
X. Itisnoted in [3] that 927(X) is a GLS-space (ordinary inclusion
is a GLS-relation). Consequently .227(X) is a D-space.

Let 2Y be the hyperspace of the integers, i.e., the nonempty
subsets of N, equipped with the Vietoris (or finite, or exponential)
topology. It is shown in [3] that 2 is a GLS-space (reverse inclu-
sion is a GLS-relation). Consequently 2% is a D-space. The same
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argument would work for the hyperspace of an uncountable discrete
space.

1.8. REMARK. Assume thata GLS-space X admits a GLS-relation
satisfying

(1) =X is alinear order (or, equivalently, every nonempty closed
subset of X has a unique <-minimal element);

(2) The intervals [z,¥%) = {ze X:2 <2<y} form a base for
the topology of X.
The technique of the proof in 1.1 can be used to show that X is
ultraparacompact. (Recall that a space is wuliracompact if every
open cover has a disjoint open refinement.) Indeed, let % be an
open cover of X. TFor each xe X, choose +(x) =[x, y,) so that
(@)U for some Ue Z. If D is as in 1.1, then [D] is a disjoint
open refinement of Z.

In the proof of Theorem 3, we will see that S and H = SN [0, «)
are homeomorphic, and that < is a GLS-relation on H. So we have
a somewhat unusual proof of the well-known fact that S is ultra-

paracompact.

2. Proof of Theorems 3 and 4. For the proof of Theorem 3
we will need the following simple lemma.

LEMMA 2.1. Let = be a reflexive and transitive binary re-
lation on a space X such that for every nonempty =<-chain K in
X there is an me K~ with m 2« for all x€ K. Then each non-

empty closed subset of X has a =-minimal element.

Proof. Let F be a nonempty closed subset of X. For every
nonempty =-chain K in F there is an me K~ with m =<« for all
xe K; clearly me F. It follows from the Kuratowski-Zorn lemma
that F' has a =<-minimal element.

2.2. Proof of Theorem 8. Let H be SN[0, ), half the Sorgenfrey
line. Then H and S are homeomorphic, for both admit a disjoint
open cover by countably many copies of SN [0,1). We shall consider
H instead of S. Let » be nonnegative integer. As usual, the ith
coordinate of xe H” is z;,, 1 £ ¢ < n. Define a reflexive and transi-

tive binary relation =< on H" by
c =<y if x, <y, forall 1<i<mn.

Clearly {y e H: 2 < y} is open in H" for each xc H*. Let K< H"
be a =<-chain, and define m € H* by
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m; = inf {x: 2z e K} .

Then m < x for each € K, and since K is a =<-chain, it is easy to
see that for each ¢ > 0 there is an z € K such that m;, < x, < m; + ¢
for 1 <7< n. Consequently me K-. It follows from the above
lemma that < is a GLS-relation.

2.3. Proof of Theorem 4. Let =< be a reflexive binary relation
on T such that {yeT:2 <y} is open in T for each xe€ 7. Now T
is a Baire space as a subspace of S (since it is a Baire space as a
subspace of R). Hence one can easily find ¢ > 0 and a, b with ¢ < b,
and a dense subset E of (a,b)N T, such that [z, +e)NT S
{ye T:x < y} for each x€ E. Let q be a rational number, a < q < b.
There is a set F = {x,: n = 1} £ E such that

Q< Xpyy <, <q -+ min{e, 1/n} for n=1.

Then F'is closed in T but has no =<-minimal element, since z,., < ,
(.e., £, =@, and z,,, # x,) for all » = 1.

3. Proof of Theorem 6. Let R be the real line with its usual
topology. For zeR let B, = R x {x}.

38.1. The proof. For each z€ R the set
V.=, ypeS"z +y =z}

is closed and discrete in S®. Hence it suffices to show that there
are an F€& and a z<€ R such that some separable, not necessarily
closed, subspace intersects V, in a set of cardinality c.

It is easy to see that if A C R® is dense in some open subspace
of R?, then A, considered as subspace of S?, is separable. Since all
sets /7, are lines of slope —1, the theorem follows from the following
lemma.

LEMMA 3.2. Let . be any countable family of subsets of R?
that covers R?. Then there are an Ac . and a nonempty open U
in R® such that

UR,NANU:xeR,|R,NANT| = ¢}
18 dense in U.
Proof. Let <& be a countable base for R®. We argue by con-

tradiction, and suppose that for each Ae¢.% and Be .<Z we can find
a nonempty open V(4, B) & B such that
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R,ANANV(A, B) <c¢ foral xcR.

For Ae.or let W(A) = U{V(A, B): Be <#}. Then W(A) is a dense
open set in R?, and since the union of countably many sets of
cardinality less than ¢ has again cardinality less than c,

IR, NANW(A)| <c¢ for all zeR.

If G=n{W(A):Ae.o7}, then [R,NANG| <c¢ for all xeR. Since
G S U.%7 the same argument shows that

[R,NG|<c¢ forall zeR.

However, this is impossible. For by [7], or |9, 15.1], every inter-
section of countably many dense open sets in R? intersects R, in a
set that is dense in R, with respect to the subspace topology for at
least one z. But then R,NG is a dense G, in R,, hence has
cardinality ¢, ef. [9, 5.1].

4. Appendix: GLS-spaces. GLS-spaces are useful in proving
that certain spaces are D-spaces. Here we collect some of their
basic properties. We omit straightforward proofs.

We did not postulate that a GLS-relation be transitive; an easy
example shows that it need not be: define a GLS-relation < on the
nonnegative integers by k=<nifk <n <k +1. (We did not at-
tempt to decide whether or not every GLS-space admits a transitive
GLS-relation.) On the other hand, since all spaces considered are T,
we have the following.

PROPOSITION 4.1. Ewvery GLS-relation s antisymmetric.
This can be used to prove the following propositions.

PROPOSITION 4.2. A compact Hausdorf space without isolated
points s not a GLS-space.

The example of a countable space with the cofinite topology
shows that the Hausdorff condition is essential. A collection .o of
subsets of a space X is called a metwork for X if for every open
U in X and every x€ U there is an Ac . with e A C U.

PROPOSITION 4.3. If the space X has a mnetwork . with
o7 < | X]|, then X is not a GLS-space. In particular, no uncoun-

table separable metrizable space is a GLS-space.

The following proposition should be compared with analogous
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results for D-spaces [2].

PROPOSITION 4.4. (a) A closed subspace of a GLS-space is a
GLS-space.

(b) If X=X, UX, with X, and X, GLS-spaces and X, closed,
then X is a GLS-space.

(¢) A space is a GLS-space if it is the umnion of countably
many closed subspaces, each of which is a GLS-space.

Note that it follows from 4.4 (a), and 4.2 or 4.8 that no infinite
product of nontrivial spaces is a GLS-space. In particular, S° is not
a GLS-space.
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