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THE CENTRALIZER OF TENSOR PRODUCTS OF
BANACH SPACES (A FUNCTION
SPACE REPRESENTATION)

EHRHARD BEHRENDS

Let X, Y be real Banach spaces, X ®5 Y their usual e-
tensor product. We represent Z(X Q. Y), the centralizer of

X ®s Y, as a space of real-valued functions on a suitable
compact Hausdorff space. As a corollary we obtain Wicks-
tead’s result: Z(X ®. Y) is the closure with respect to the
strong operator topology of Z(X)Q Z(Y). In addition it is
shown that Z(X @E Y) is in fact the uniform closure of Z(X) ®
Z(Y) provided the norm topology and the strong operator
topology coincide on the centralizers of X and Y.

1. Introduction. Let X be a real Banach space. By Z(X), the
centralizer of X, we denote the set of M-bounded operators on X,
i.e., the collection of those continuous linear operators T: X — X for
which there is a » € R such that T« is contained in every open ball
which contains +x2 (for z € X); ef [2], [3], [4], [5]), [8]. Z(X) is, as
a Banach algebra, isometrically isomorphic to the space C(K,) of
continuous real-valued functions on a suitable compact Hausdorff
space Ky: C(Ky) = Z(X) ([2], 4.8).

For example, if L is a locally compact Hausdorff space and X: =
CL: ={f|f: L— R, f continuous, f vanishes at infinity}, provided
with the supremum norm, then it is easy to see that Z(X) is identical
with the space of all multiplication operators M,, f+—nhf (all fe C,L), h
a bounded continuous function. Therefore Z(X) is isometrically
isomorphic with CL: = {h] hL—R, bk continuous and bounded} so
that K, = BL = the Stone-Cech compactification of L (up to homeo-
morphism).

Centralizers of Banach spaces play an important role in a great
number of papers (cf. for example the references in [2]). We will
investigate the centralizer of tensor products. In particular we are
interested in the relation between the centralizer of the tensor product
and the centralizers of the factors. Let X and Y be real Banach
spaces, X ® Y their algebraic tensor product. For D7, 2, Xy, € XRY
we define
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we will use the same symbol || || to denote the norm in all tensor
products of Banach spaces which will appear in this paper — this is
justified because we will not consider any other tensor product norms.
X @eY means the completion of X ®Y provided with this norm.

It is not hard to see that, for Te Z(X) and Se€ Z(Y) we have
SR TeZX ®5Y) ([8], p. 564; note that Wickstead uses another
but equivalent definition of M-boundedness and that he writes @,
instead of ®e). Therefore Z(X)® Z(Y) may be thought of as a
subspace of Z(X @; Y). We note that the tensor product norm of
the operators in Z(X) ® Z(Y) is exactly their operator norm. Wicks-
tead proves ([8], Th. 3) that Z(X ®.Y) is the strong closure of Z(X)®
Z(Y). In general the strong closure may not be replaced by the
uniform closure in this theorem. There are, however, important
classes of Banach spaces for which Z(X ® Y) is the uniform closure
of Z(X)R Z(Y). We will prove in §4 that this is the case if the
strong operator topology and the norm topology are equivalent on
the centralizers of X and Y.

We will proceed as follows: In §2 we will state without proof
those results of the function module representation theory introduced
in [5] which we will need in the sequel. We will show that X @eY
has a function module representation which is related to the function
module representations of X and Y in a natural way, a theorem
which will be of fundamental importance for the following considera-
tions. Section 3 contains a discussion of those Banach spaces X for
which the norm topology and the strong operator topology on Z(X)
are equivalent. In §4 we will show that Z(X G?e Y) is isometrically
isomorphic to a space of real-valued bounded(not necessarily continuous)
functions on a suitable compact Hausdorff space. Finally, we inves-
tigate some consequences of this representation theorem. For example,
we derive Wickstead’s result as a corollary.

Note. In the first version of this paper Wickstead’s theorem
was used at a crucial point in the proof of Theorem 4.2. We are
grateful to the referee for suggesting that we give an independent
proof using the theory of function modules.

2. A function module representation of X @.Y.

DeriniTION 2.1 ([5]). Let K be a compact Hausdorff space,
(Wokex & family of Banach spaces indexed by the points of K. A
closed subspace W of
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is called a function module in [I7.xW, if the following conditions
are satisfied:

(a) hwe W for he CK, we W ((hw)k):=h(k)w(k) for ke K)

(b) k+—||wk)|| is upper semi-continuous on K for we W

(¢) W,={wk)|we W} for kc K.

Note. By [5], p. 621, {w(k)|we W} is closed for each ke K if
W is a closed subspace of [[7.xW, and (a) and (b) are satisfied.

PROPOSITION 2.2. Let W be as in the preceding definition. For
h e CK, the multiplication operator M, W — W, w+— hw, is well-
defined by 2.1(a). We claim that M,c Z(W). More generally, if
a:K— R is a bounded function such that M (W)C W, then M,e
Z(W). In addition, M, is contained in the strong operator closure
of {M,|h e CK}.

Proof. It is easy to see that M,:W — W is linear and continuous
with || M, || £ ||«]|]: = sup{|a(k)||kec K}{a: K— R a bounded function
such that M (W)cC W). M, obviously satisfies the condition for M-
bounded operators with » = ||«]|.

Let w, -+, w,€ W, e >0 be arbitrarily given. For every ke K,
a(k)w, — aw, is in W and vanishes at k, so that, by 2.1(b), there is
an open neighborhood U, of k such that ||(a(k)w, — aw,)A)|| < ¢ for
1in U, (all te{l, +--,n}). Let U, ---, U, be a finite covering of
K. Then ||hw, — aw;|| < for ¢ =1, ---, n, where h: = >7_, a(k;)h;
and h,, ---, h, is a suitable partition of unity subordinate to U,,

«+, Uy, This proves that M, is in the strong closure of {M,|h ¢ CK}.

THEOREM 2.3. Let X be a real Banach space, Ky a compact
Hausdorff space such that Z(X) = CKy (note that Ky is uniquely
determined up to homeomorphism). X can be identified with a
Sunction module in [I7ex, Xy (Xiiex, @ family of Banach spaces,
the component spaces) such that the operators in Z(X) correspond
to multiplication operators associated with the elements of CKjy.
More precisely, there is a linear isometry @: X — [[7.x, X, such that

(i) o(X) is a function module in [I7.x, X;.

(ii) for Te Z(X), xe X we have o(Tx) = Tw(x), where TeCK,
corresponds to T according to the isometry Z(X) = CKy.

In addition we have

(iil) {k| X, # 0} is dense in Ky.
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Proof. (i) and (ii) are proved in [5] (Theorem 6 and Theorem 3;
note that the maximal M-structure of X is just Z(X) by [2], 4.8).
(iii) can be verified as follows: If T e CK, is an arbitrary function
with corresponding operator Te Z(X), then we have ||T|| = ||T|| =
sup {|| Tz || |||z]| = 1} = sup {|| To ()| |||z]| = 1} = sup {| T'(k)| | X, = O}.
This implies that {k|X, == 0} is dense in K.

THEOREM 2.4. Let X(resp. Y) be a function module in [[7.x X,
(resp. 1152.Y,), where K and L are compact Hausdorff spaces. For

ST Ry e XRQY let S x, @y, be the element
(S0 @ ui))

of Tz, X.®.Y.. Then
(1) 1w @ vl = | a2 @ uill for Tim o @ue X®Y so
that X Q.Y can be identified with a closed subspace of 117, X, @.Y;
further, it is not necessary to distinguish between x @y and x @y
(ii) X@eY is a function module in 1[5, X, @; Y..

(k,1)e KXL

Proof. (i) We will use the fact that the extreme points of
the unit ball Sf'(resp. SI') of X'(resp. Y’) are contained in the set
of functionals of the form z — f(x(k))(reisp. Y f(y(l))) where ke K,
feX, I fll = Uresp. Le L, fe (YY), || f]l =1); [6]

= sup {3 Fz)F(y) | FeX,||F|| =1, FeY', |[F|| =1}

= sup {3, F(xi)FN(yi)lFeeX S¥' Feex St}

= sup {3 f(b)Sw) ke K, fe (X, IfI =1,
leL, fe(Y), Ifll =1

= sup{| Sz @ vl ke K, 1e L)

Similarly one can prove that || >, x,(k) @ v.l| = SUpc;. | >, xl(lc)®
y,(1)|| for k € K (where the norms are calculated in X, ® Y and X, ® Y,
respectively).

(ii) We only have to show that

(a) h(in@)yi)eX@EY for heCK X L), 2, Ry, e XX Y.

(b) (k1) —|> 2zk)Q®y.1)]|| is upper semi-continuous for >, xz;, Q
1, e XRY

() X®Y is dense in X®.Y.
(a), (b), and (c) easily imply that (X ®.Y) = X@EY is a function
module (ef. the note at the end of 2.1).

(a) Let he C(KxX L), S 2,Qy;:€ XXY. For >0 there areh,, ---,
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h,eCK, g, +++, 9, €CL such that ||>3 . h;®g; — k|| <e. We thus
have

=[hX2 QY — %hjxiébgjyil! Sell X @il -

Since 3 ; bz, ® 9;.€ X ®Y this implies that » Sz, ® y.€¢ X ®.Y.

(b) Let aeR, (k, L)e K X L, 35.,4,Qv:c XRQY, || 2 x,(k) &
¥:1,)|| < a. We have to show that there are neighbourhoods U of
ko, V of 1, such that || > 2,(k) ® v,(1)|| < a for ke U,1e V.

At first we will prove that there is a neighborhood V of 1,
such that || 3 »,(k,) @ v.(1)||<a—27 for 1 e V (where >0 is a number
such that || > 2.(k,) & y:(1,)]| < @ — 3p). To this end we choose an
(m/R)-net f,, +-+, fy in the dual unit ball of the linear hull of x,(k,),
con, @, (k) (R = 2 [[ 2l [|will + 1. It follows that, for fe(X,),
IIfIl =1, there is an f;e{f, ---, fy} such that || 3, fi(w(ko)y(1) —
2% f@E)Y DI = (If; — £l X2k @ (DI S |Ifs — FIIR (all 1e L),

i.e.,

I 2 al) @ yo1) [| = sup {|| 32 flek)y (DI f e (X)), [ FI] = 1}
= sup {|| X fi@(k))y (DIl [7 =1, --+, N} + 7

(all 1e L).

For je{l,---,N}, 3. fi(x(k,))y, belongs to Y and || 3.1 (,(ko)y(1)l| =
|| 2hxkes) @ y,(L,) ]| < @ — 31 so that by 2.1(b) there is a neighbourhood
V of 1, with || 3, fi(@(k))v:(1)|| < @ — 3pforle Vand je{l, ---, N}
For 1e V we thus have || 3 2(k) @ v,(1)|| < a — 27.

We now choose a function g€ CL such that ||g|| =1, g1) =1in
a suitable neighborhood V of 1, contained in V and g¢|,, =0. We
then have (ef. the proof of (i))|| >} x:(k)) @ g¥:ll = sup,c. || 2 xi(ks) @
9(V)y(1)]] £ a — 279. Similarly to the first step of this proof we select
an (/R)-net Fiy v+, Fy in the dual unit ball of thg linear hull of
9Ys, -+, gy(it follows that || 3 z.(k) @ gv. || = sup{|| 3% fi(gy)zB)|| | 5 =
1, -+, M} + 7 for ke K). For jefl, .-, M} we have >, fi(gy.,)x; €
X and || > 7 {(9¥)x(k,) || < @ — 7. Therefore there is a neighborhood
U of k, such that || 3 Ffi(gv)zk)|| < a —n for ke U, j =1, ---, M.
This yields

sup || 3 2(k) ® 3D S sup || 3 2.6 ® (93D

= HZwi(k)@gyill
< sup{l| > figy)xE)|[15 =1, -+, M}+7
< a for ke U.

(e) This is obvious.
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REMARK. For the rest of this paper we will assume that X and
Y are real Banach spaces which are identified with function modules
in [I%.x, X, resp. IIix, Y, as described in 2.3. With thisidentification,
X@sY is a function module in I3, X, @; Y, by 2.4.

Another way of representing the centralizer as a space of real-
valued continuous functions is the Dauns-Hofmann type theorem of
Alfsen-Effros ([2], 4.9). The relationship between this and the function
module approach (2.3(ii)) is shown by the following proposition.

PrOPOSITION 2.5. Let X, Ky, (Xj)iex, be as above, Kji: =
{k|ke Ky, X, + 0}

(i) Ewvery h,e C(K%) has a unique continuous extension to Ky
(so that Ky = BK}%).

(ii) Let Ey be the set of extreme points in the unit ball of X'.
By [6] we have Eyx = Uyexy, Ex,. Let m: Ex — K% be defined by w(p): =k
for pe Ex,. Then, for every bounded structurally continuous mapping
g9: By — R there is a function h e C*K}%) such that g = how. Conver-
sely, for heCYK}%), how 1s structurally continuous.

Proof. (i) Leth,c C¥K%)be given. We define h: Ky — R by h(k):=
hy(k) for ke K% and h(k) =0 for ke K;\K%. Let x€ X be given and
€ >0. h is continuous on the closed set D: = {k|||z(k)| = e} C K%
so that we may choose a continuous function %,: Ky — R such that
hip = hplp, lIR]] = ||hpll. We then have hpyre X and ||hpx — hz]] =
2¢||h|| so that we may conclude that hxe X~ = X. 2.2 and 2.3(ii)
imply that there is a function h'e CK, such that M, = M,.. b’ is
obviously a continuous extension of » which is uniquely determined
by 2.8 (iii).

(ii) Let g: Ex— R be a bounded structurally continuous function.
By [2], 4.9, there is a T e Z(X) such that poT = g(p)p for every
pe Ey. Let TeCK, be that function which corresponds to 7. We
then have T(k)p = g(»)p for p in Ey, so that Tox = g. Conversely,
let e CK; be given. For pe Ey, we have poT = T(k)p = (Tor)(p)p.
By [2], 4.9 this implies that Torx is structurally continuous.

3. Centralizer-norming systems. In view of the following
considerations we want to single out those Banach spaces for which,
in a sense, the centralizer is “not too great”.

DeErFINITION 38.1. Let X be a real Banach space. A finite family
2, -+, %, in X is called a centralizer-norming system (abbreviated:
ens) if there is a number 7 > 0 such that max {|| Tx;|| |1 =1, «--, n} =
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2| T|| for every Te Z(X). Obviously X has a e¢ns iff the norm
topology and the strong operator topology coincide on Z(X).

ExAMPLES. (1) Let X bea Banach space for which Z(X) if finite-
dimensional (those spaces play an important role in the applications
of M-structure to theorems of the Banach-Stone type; cf. [3], [4]).
It is clear that X has a e¢ms (in fact, X has a ens consisting of a
single element).

We note that, for example, spaces which are smooth or strictly
convex have one-dimensional centralizer and that Z(X) is finite-
dimensional for every reflexive space X([4]).

(2) If L is a locally compact Hausdorff space, then C,L has
a cns iff L is compact. In this case we may choose n = land z, =1
(= the constant function assuming the value 1 at every point).

(3) Let A be a C*-algebra with unit ¢, X the self-adjoint part
of A. Then {e} is a ens in X since Z(X) is just the space of mul-
tiplication operators corresponding to the self-adjoint elements in the
center of A ([2], Cor. 6.17).

(4) One might suggest that for Banach spaces X having a cns
it is always possible to find a c¢ns consisting of a single element.
We will use the Borsuk-Ulam theorem from algebraic topology to
prove that inf {n|n e N, there exists a ¢ns in X consisting of n ele-
ments} may be an arbitrarily large number:

For me N let S™ be the m-dimensional sphere (i.e., the surface
of the unit ball in the (m + 1)-dimensional Hilbert space), X: =
{flf e C(8™), f(—x)=— f(x) for all x € S™}. (X is just the space Cyz(S™),
where >:S™ — S™ is the homeomorphism x> —z; cf. [7], Chapter
3, p. 71). A routine computation shows that T € Z(X) iff there is a
continuous function A: S™ — R such that h(x) = h(—x) for all xcS™
and Tf = hf for feX. Therefore a family f,, -+, f, in X is a
ens iff max {|f(x)|{4 =1, ---, n} >0 for all xeS™. X obviously has
a c¢ns consisting of m + l-elements (for example, fi(x): = the 4th
component of x, z€ 8™, 4 =1, .-+, m + 1, defines a family of functions
with this property). On the other hand, if g, ---, g, are arbitrary
funections in X, there is an «,€ S™ such that g,(x,) =---= g.(x,) = 0,
ie., ¢, *++, 9. cannot be a ens ([1], p. 485).

We will need the fact that there is a characterization of centralizer-
norming systems in terms of the function module representation 2.3:

LeMMA 8.2. Let X be a real Banach space, X represented as a
Sfunction module in [1%.x, X, as described in §2.

A finite family «,, ++-, 2, in X is a ens iff inf, max, ||z;(k)|| > O.
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Proof. Suppose that z,, ---,x, is a ¢ns in X, i.e., there is a
number 7 > 0 such that max, || T%,;|| = || T'|| for T € Z(X). We claim
that max, ||z,(k)|| = » for ke Ky. Assume that there is a k, € K; such
that ||2,(k)|| <r for ¢ =1, ---,n. Since X is a function module,
there is a neighborhood U of k, such that ||z, (k)| <7 <7 for ke U
and ¢ =1, ---,n. But then, for a suitable function h € CK; (which
corresponds to M, € Z(X)) we get max, || M,x;|| = max, ||ha;|] < ' ||k]] <
r||M,||, a contradiction.

The reverse conclusion is obvious.

In §4 we will also need a related definition, which by 3.2 is a
local version of Definition 3.1.

DErFINITION 8.8. (X, Ky as in 3.2). Let k, be a point of K;. A
finite family =x,, ---, x, is called a local centralizer-norming system
(local ¢nms) at k,, if there are a number 7 >0 and a neighborhood
U of k, such that max, ||z;(k)|| = » for ke U.

A simple compactness argument guarantees that X has a ¢ns iff
every point in K, has a local cns.

ExAaMPLE. Let L be a locally compact Hausdorff space, X: = G, L.
A point k in Ky = BL has a local ¢ns iff k€ L. However, every point
k in K, has a local ¢ns provided X, # 0. There are known to the
author only very complicated examples of Banach spaces not having
this property. We will say that X has the local e¢ns property if
every k with X, = 0 has a local cns.

4. The structure of Z(X®.Y). Let X, Ky, (Xiex, Yo Ko,
(Y))iex, be as in §2.

DEFINITION 4.1. M(K; X Ky): = {a|a: Ky X Ky — R a bounded
function, a(k, 1) = 0 whenever Xk® Y, =0, M, (X® Y)CX® Y}.
It is clear that M(K; x K,) is Banach algebra (with ||all: =
sup {|a(k, 1)| |k € Ky, 1 € Ky)).

THEOREM 4.2. (i) The mapping «+— M, is an isometric algebra
isomorphism from M(Ky X Ky) onto Z(X ®s Y) so that we may
identify these two spaces.

(ii) Let T be an operator wn Z(X@s Y) Then Te(Z(X)R
Z(Y))™ iff there is an a e C(Ky X Ky) such that T = M,. It follows
that (Z(X)® Z4(Y))” = C(Kx X Ky).

Proof. (i) The mapping is well-defined by 2.2. For (k,1)e
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K, x Ky such that X, ®.Y, #0,¢ > 0, there exist xe X and yeY
such that [[z(k) @yl = [lz®) [ [lyDI =1 —¢, [lz]| =1, [yl = 1.
This follows at once from 2.1(a), (b). Because of this fact we have
|M,|| = ||a]| for ¢ € M(Ky X K;). The mapping a+— M, is obviously
an algebra homomorphism, and it remains to show that it is onto.

Let T be an M-bounded operator on X ®e Y. By [2], 4.8, every
element of E,g , is an eigenvector for 7”. It can be shown that
this is also true for every » Q) q, where (p, q) € E; X E,. The proof
of this fact depends on elementary properties of tensor products and
weak*-topologies. We refer the reader to [8], p. 506. Therefore
there is a function a: £y X E; — R such that (p ® q)oT = a(p, ¢)(pX q)
for (p, )€ Ey X E,. We claim that a is separately continuous. Let
pe Ey be fixed and x a vector in X such that p(zx) = 1. For yeY,
the mapping Y' sy — (p ® ¥')(T(x @ y)) is linear and weak*-continuous
(by the Krein-Smulian theorem we have only to prove continuity on
bounded sets, and this is obvious). So there is a vector 7T,y such
that ¥'(T,y) = (p @ ¥')(T(x Q y)) for every y' € Y'. It is easy to see
that y — T,y is linear and continuous. In fact we have T,e Z(Y)
since every g€ E; is an eigenvector for T, (cf. [2], 4.8): qoT,(y) =
PRNTxRQY) = a® )P & )& y) = a(p, ¢)q(y). It follows that
the corresponding eigenvalue for q € E; is a(p, q) so that, by [2], 4.9,
g— a(p, @) must be structurally continuous. By symmetry, p+—
a(p, ¢) has the same property for every gec E,. By 2.4(ii) a induces
a mapping a,: K} X K¥ — R which is separately continuous: a,(k, 1): =
a(p, q) for peEy, qe By, k€ K%, 1€ K} (note that Eypy C{p ® q|
(p, Q) € Ex X Ey}; [8], p. 506). We thus have proved that T = M,,
where a: K;x K,— R is defined by a(k, 1)=a,k, 1) for (k, 1) e K3 x K}
and a(k, 1) = 0 otherwise.

(ii) The operators in Z(X)Q Z(Y) are by definition exactly the
operators M,, & € CK; Q CK,(CKy; ® CK, regarded as a subspace of
C(Ky X Ky)). For aeC(Ky x Ky) we have ||M,|| = ||«]| (this follows
at once from 2.3(iii); ef. also the proof of (i)) so that (Z(X)® Z(Y))” =
{M.|ae(CKy Q@ CKy)} = {M,|ae C(Ky X Ky)} = C(Ky X Ky).

COROLLARY 4.3 (Wickstead). Z(X ®E Y) is the closure with respect
to the strong operator topology of Z(X)R Z(Y).

Proof. This is a consequence of 4.2 and 2.2.

Because of 4.2 it is clear that in order to describe the relations
between Z(X)® Z(Y) and Z(X é Y) when considering the norm
topology we have to investigate the continuity properties of the
functions @« € M(Ky x K;). The following theorem asserts local con-
tinuity if there are local centralizer-norming systems:—
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THEOREM 4.4. Let kyc Ky, 1,€ Ky. If k, has a local cns x,, - -+, x,
i X and 1, has a local ensy,, <+, y, in Y, then all a € M(Ky X K,)
are continuous at (k, 1,).

Proof. Let U(resp. V) be a neighborhood of ky(resp. 1,) such
that max {||x,(k)]| |2 =1, -+, n} = r for ke U(resp. max {||y;(L)|||5=1,
eee,m} =7 for 1€ V) where rc R, r > O(resp. e R, 7 > 0) is a
suitable chosen number.

Now let & be a function in M(Ky X Ky), € > 0 arbitrary. For i e
{1, ---,n}, je{l, ---, m} the function 2,;: = a(x; ® ¥;) — alk, 1L)(*;Ry;)
is in X Q?SY and vanishes at (k,, 1,). Since the norm of the elements
of X @eY is upper semi-continuous (2.4(ii)) there are neighborhoods
U of k, and V'’ of 1, such that

l2:5(k, D| = |e(k, 1) — a(k, 1) | [|2:R) || [ly;1)]] = err’

forkeU,1eV,i=1,+-,m,5=1, ---, m. It follows that |a(k, 1) —
alky, 1) < ¢ for (b, )e(UNU) x (VNV).

THEOREM 4.5. Let X and Y be real Banach spaces such that
the norm topology and the stromg operator topology are equivalent
on Z(X) and Z(Y) (i.e., X and Y have a cns). We will identify
Z(X)R Z(Y) with a subspace of Z(X @sY). Then the following
assertions are valid:

(1) (ZX)QZY) = ZXQ.Y)

(ii) Z(X)@.2(Y) = Z(XQ@.Y)

(ili) Kxg,y = Kx X Ky (up to homeomorphism)

iv) X @sY has a cns
(more precisely: if x,, +++, %, 18 a cns in X and y, <+, Y, 18 @ cns
inY, then (&, Qu;|i=1,---,m,5=1,---,m} is a cns in XQ.Y).

Proof. (i) This is a consequence of 4.2(ii) and 4.4.

(ii) This follows from (i) since the norm of the operators in
Z(X)® Z(Y) is their tensor product norm.

(iii) C(Kxgr) = Z(XQ.Y)= Z(X)Q. Z(Y) = C(Kx) @.C(Ky) =
C(Kx x Ky). It follows that Ky3, = Ky X K, up to homeomorphism.

(iv) It is clear that inf {max;, ; ||2,(k) ® ;)| |k, 1) e Ky x Ky} >
0. As in 3.2 it follows that {#,@y;lt =1, -+, n,5 =1, ---, m} is
a cns in X @eY.

Finally, we want to point out that for Banach spaces which are not
too pathological the difference between Z(X @.Y) and Z(X) ®. Z(Y)
is just the difference between B(K% X K%) and BK% X BK%:—
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THEOREM 4.6. Let X and Y be Banach spaces having the local
cns property. Then Ky y = B(KF X K¥).

Proof. By 4.2 and 4.4, C(Kxp,) = Z(X®.Y) = C(K% x K%) =
C(B(K% x K¥)). The Banach-Stone theorem implies that Ky, =
B(K: X K%).

REFERENCES

1. P. Alexandroff and H. Hopf, Topologie, Chelsea Publ. Com., New York 1972.

2. E. M. Alfsen and E. G. Effros, Structure in real Banach spaces II, Ann. of Math.,
96 (1972), 129-173.

3. E. Behrends, An application of M-structure to theorems of the Banach-Stone type,
Tagungsberichte der Paderborner Funktionalanalysis-Tagung 1976, North Holland, Notas
de mathematica (1977).

4. , On the Banach-Stone theorem, Math. Annalen, 233 (1978), 261-272.

5, F. Cunningham, M-structure in Banach spaces, Proc. of the Camber. Phil. Soc., 63
(1967), 613-629.

6. F. Cunningham and N. Roy, Ewxtreme functionals on an wupper semicontinuous
Sunction space, Proc. Amer. Math. Soc., 42 (1974), 461-465.

7. H. E. Lacey, The Isometrical Theory of Classical Banach Spaces, Springer Verlag,
1974.

8. A. W. Wickstead, The centraliser of E ; F, Pacific J. Math., 65 (1976), 563-571.

Received September 15, 1977 and in revised form May 5, 1978.

I. MATHEMATISCHES INSTITUT
DER FREIEN UNIVERSITAT
HUTTENWEG 9

D 1000

BERLIN 33








