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THE CENTRALIZER OF TENSOR PRODUCTS OF
BANACH SPACES (A FUNCTION

SPACE REPRESENTATION)

EHEHARD BBHRENDS

Let X, Y be real Banach spaces, X®eY their usual ε-
tensor product. We represent Z(X®t Y), the centralizer of
X®* Y> as a space of real-valued functions on a suitable
compact Hausdorff space. As a corollary we obtain Wicks-
tead's result: Z(X®ε Y) is the closure with respect to the
strong operator topology of Z(X) ® Z{Y). In addition it is
shown that Z(X($ε Y) is in fact the uniform closure of Z(X) ®
Z(Y) provided the norm topology and the strong operator
topology coincide on the centralizers of X and Y.

1* Introduction* Let X be a real Banach space. By Z(X), the
centralizer of X, we denote the set of M-bounded operators on X,
i.e., the collection of those continuous linear operators T:X-+Xίoτ
which there is a λ 6 R such that Tx is contained in every open ball
which contains ±Xx (for xeX); cf [2], [3], [4], [5], [8]. Z(X) is, as
a Banach algebra, isometrically isomorphic to the space C(KX) of
continuous real-valued functions on a suitable compact Hausdorff
space Kx: C{KX) ^ Z(X) ([2], 4.8).

For example, if L is a locally compact Hausdorff space and X: =
C0L: = {f\f: L-> R, f continuous, / vanishes at infinity}, provided
with the supremum norm, then it is easy to see that Z(X) is identical
with the space of all multiplication operators Mh, f*-*hf (all / e C0L), h
a bounded continuous function. Therefore Z(X) is isometrically
isomorphic with ChL: = {h\h: L-^R, h continuous and bounded} so
that Kx = βL = the Stone-Cech compactification of L (up to homeo-
morphism).

Centralizers of Banach spaces play an important role in a great
number of papers (cf. for example the references in [2]). We will
investigate the centralizer of tensor products. In particular we are
interested in the relation between the centralizer of the tensor product
and the centralizers of the factors. Let X and Y be real Banach
spaces, X0Y their algebraic tensor product. For Σ<=1

we define

Σ : - s u p i = l

= sup feX',
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= sup

we will use the same symbol || || to denote the norm in all tensor
products of Banach spaces which will appear in this paper — this is
justified because we will not consider any other tensor product norms.
X® δ Y means the completion of X(g)Y provided with this norm.

It is not hard to see that, for TeZ(X) and SeZ(Y) we have
S(g) TeZ(X®εY) ([8], p. 564; note that Wickstead uses another
but equivalent definition of Λf-boundedness and that he writes ®^
instead of ®e). Therefore Z(X)®Z(Y) may be thought of as a
subspace of Z(XφBY). We note that the tensor product norm of
the operators in Z{X) (x) Z( Y) is exactly their operator norm. Wicks-
tead proves ([8], Th. 3) that Z(X®εY) is the strong closure of Z(X)®
Z{Y). In general the strong closure may not be replaced by the
uniform closure in this theorem. There are, however, important
classes of Banach spaces for which Z(X®εY) is the uniform closure
of Z(X)®Z(Y). We will prove in §4 that this is the case if the
strong operator topology and the norm topology are equivalent on
the centralizers of X and Y.

We will proceed as follows: In §2 we will state without proof
those results of the function module representation theory introduced
in [5] which we will need in the sequel. We will show that X®εY
has a function module representation which is related to the function
module representations of X and Y in a natural way, a theorem
which will be of fundamental importance for the following considera-
tions. Section 3 contains a discussion of those Banach spaces X for
which the norm topology and the strong operator topology on Z{X)
are equivalent. In §4 we will show that Z(Xφ,Y) is isometrically
isomorphic to a space of real-valued bounded(not necessarily continuous)
functions on a suitable compact Hausdorff space. Finally, we inves-
tigate some consequences of this representation theorem. For example,
we derive Wickstead's result as a corollary.

Note. In the first version of this paper Wickstead's theorem
was used at a crucial point in the proof of Theorem 4.2. We are
grateful to the referee for suggesting that we give an independent
proof using the theory of function modules.

2* A function module representation of

DEFINITION 2.1 ([5]). Let I be a compact Hausdorff space,
(Wk)keκ a family of Banach spaces indexed by the points of K. A
closed subspace W of
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Π Wk: = (w(fc)W ( # ) ) M e Π Wk,
keK \ keK

\\(w(k))keκ\\: =sup| |w(A0| |<
keK

is called a function module in TίΐeκWk if the following conditions
are satisfied:

(a) hw e W for h e CK, w e W ((hw)(k):=h(k)w(k) for keK)
(b) k\-^\\w(k)\\ is upper semi-continuous on K for weW
(c) IF, = {u (Jfc) I w e W) f or A; 6 K.

Note. By [5], p. 621, {w(k)\we W) is closed for each keK ii
W is a closed subspace of ΐlΐeκWk and (a) and (b) are satisfied.

PROPOSITION 2.2. Le£ W be as in the preceding definition. For
h 6 CK, the multiplication operator Mh: W -> W, wv-+ hw, is well-
defined by 2 l(a). We claim that MheZ(W). More generally, if
a: K—> R is a "pounded function such that Ma{ W) c W, then Ma 6
Z(W). In addition, Ma is contained in the strong operator closure
of {Mh\heCK}.

Proof. It is easy to see that Ma: W —> W is linear and continuous
with \\Ma\\ ^ | | α | | : = sup{\a(k)\ \keK}(a: K->R a bounded function
such that Ma{W)aW). Ma obviously satisfies the condition for M-
bounded operators with λ = \\ct\\.

Let wlf - , wn6 W, ε > 0 be arbitrarily given. For every keK,
a(k)Wi — OLWi is in W and vanishes at k, so that, by 2.1(b), there is
an open neighborhood Uk of k such that \\(a(k)Wi — aWi)(l)\\ ^ ε for
1 in Uk (all ie{l, -",n}). Let Uh, •••, Ukr be a finite covering of
K. Then \\hwt — awt\\ ^ e for i = 1, , n, where h: = Σί=i <x(kj)h5

and h19 •• ,hr is a suitable partition of unity subordinate to ZT̂ ,
• , i7fcr. This proves that Ma is in the strong closure of {Mh |h e CK}.

THEOREM 2.3. Let X be a real Banach space, Kx a compact
Hausdorjf space such that Z(X) = CKX {note that Kx is uniquely
determined up to homeomorphism). X can be identified with a
function module in UΐeκxXk ((Xk)keKχ a family of Banach spaces,
the component spaces) such that the operators in Z{X) correspond
to multiplication operators associated with the elements of CKX.
More precisely, there is a linear isometry ω: X-+ ΐ[teκx Xk such that

( i ) Q)(X) is a function module in ΐlteκχXk
(ii) for TeZ(X),xeX we have ω(Tx) = fω(x), where TeCKx

corresponds to T according to the isometry Z(X) = CKX.
In addition we have
(iii) {k I Xk Φ 0} is dense in Kx.
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Proof, (i) and (ii) are proved in [5] (Theorem 6 and Theorem 3;
note that the maximal Af-structure of X is just Z(X) by [2], 4.8).
(iii) can be verified as follows: If TeCKx is an arbitrary function
with corresponding operator TeZ(X), then we have | |Γ | | = | |Γ | | =
sup {|| Tx\\ IIMI = 1} = sup {|| fω(x)\\ | \\x\\ = 1} <: snp{\f(k)\\Xk Φ 0}.
This implies that {k | Xk Φ 0} is dense in Kx.

THEOREM 2.4. Let X{resp. Y) be a function module in ΐ[i°eκXk

(resp. TlTeLYi), where K and L are compact Hausdorff spaces. For

Σί=i Xi®Vi^X®Y let Σ<=i χi (§) Vi be the element

(k,i)eκXL

I K . Λ & Γ , . Then

( i ) [ I Σ L i ^ Θ ^ I I = IIΣίUB<<§)2/ill / ^ Σ Γ = i ^ ( 8 ) ^ J

X®eY" cαw δβ identified with a closed subspace of Hΐ,ιXk®eYi',

further, it is not necessary to distinguish between x (x) y and x®y.

(ii) X®εY is a function module in ΐlZi %k &eYi

Proof, (i) We will use the fact that the extreme points of
the unit ball Sf '(resp. SΓ) of X'(resp. Y') are contained in the set
of functionals of the form x h->/(sc(ft))(resp. y *-* f(y(X))) where JceK,
f e (XJ, | | / | | ^ l(resp. 1 e L, fe (YJ, \\f\\£ 1); [6].

Σ
- sup {Σ F(xτ)F{yx) \Feex Sf, F e ex Sf'}

- sup {Σ f(x%(k))f(yi(ΐ)) \keK,fe (Xk)
f, \ \ f \ \ g

l e J ^ / e O T , 11/11 <*1}

- sup {|| Σ xm (g) ̂ (1) || I & e X, 1 e L}

= I I Σ :
Similarly one can prove that || ΣΓ=i ^( fc) ® vA\ = sup l e L || Σ<=i
^ (̂1) 11 for & e if (where the norms are calculated in Xk ® ε F and Xk ® ε

respectively).
(ii) We only have to show that

(a) h(ΣXi®Vt)eX®tY fox heC(Kx L), Σ«< ® ^eX(x) Γ.
(b) (fc, 1) H» || Σ î(^) ® 2/i(l) II is upper semi-continuous for ΣΣ

(c) X(x)Γ is dense in

(a), (b), and (c) easily imply that (X(x)£Y)~ = J ® e 7 is a function

module (cf. the note at the end of 2.1).

(a) Let h e C(K x L), Σ ί̂Θ /̂i e X(x) Γ. For ε > 0 there are hL, ,
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hn 6 CK, g19 *. ,gneCL such that || Σ?=i h ® 9s - h|| ^ e. We thus
have

Σ χt ® v, - (Σfcy

Since ΣtjhjXt® gjyteX(g)Y this implies that Λ Σ ^ ® 2/<
(b) Let aeR, (fc0, l0) 6 ίΓ x L, Σ L i ^ <g> Vt e X ® Γ,

2/i(lo)|| < a- We have to show that there are neighbourhoods U of
K V of l 0 such that || Σ xlk) (x) ^(1) || < a for k e U, 1 e F.

At first we will prove that there is a neighborhood F of l 0

such that || Σ ^ Λ ) ® 2/<(l)||<α —2J? for 1 e F (where 77>0 is a number
such that HΣ^tί^o)® 2/ί(lo)ll < a — 3η). To this end we choose an
(η/R)-netflf *",fN in the dual unit ball of the linear hull of xjjcύ)>
•••, xr(kQ)(R: = Σllfcill \\Vi\\ + 1). It follows that, for /6(X f e o)',
Il/H ^ 1 , there is an fde{flf -- ,fN} such that || Σ*/V(»<(*0))l/*(l) —
Σ*̂ (»€CΛo))2/*Cl-)ll ^ ll-fy — JTII SL a?*Cfeo> <8> 1/*C1)II ^ HjTy — jT II J« (all l e L ) ,
i.e.,

^ sup {|| Σ/y(»i(fco))2/<(DII li = 1, , ΛΓ} + 2?

(all 1 e L).

For i 6 {1,... ,ΛΓ}, Σif&tft^Vi belongs to F a n d ||Σ*/V(»*(Λo))y*(lo)ll ^
II Σ Λ ( & O ) Θ ί/<(lo) II < α — 3̂ ? so that by 2.1(b) there is a neighbourhood
V of l 0 with II ΣiΛ(*i(*o))l/i(l) II < α - 3̂ 7 for 1 e F and i e {1, , N}.
For 1 G F we thus have || Σ %ih) Θ 2/<(l) 11 <a — 2η.

We now choose a function g e CL such that \\g\\ = 1, #(1) = 1 in
a suitable neighborhood F of l 0 contained in V and flr|MF = 0. We
then have (cf. the proof of (i))|| Σ xt(K) ®9Vi\\ = sup 1 6 L || Σ %IK) ®
^(I)l/<(1)|| ^ a — 2τ]. Similarly to the first step of this proof we select
an (η/R)-net fίf , fM in the dual unit ball of the linear hull of
βVi, , 9Vr(it f o l l o w s t h a t 11 Σ XtQc) 0 9Vi 11 ̂  s u p {| | Σ i fitevJxflΐ) \\\j =
1, , If} + η for & G JBΓ). For i G {1, , M) we have Σ i fi(9Vi)Xi6

X and II Σ/i(^i)^i(^o)ll < a — η. Therefore there is a neighborhood
U of &o such that || Σ Λ(ff2/i)*ί(fc) II < α — ̂  for k e U, j = 1, , M".
This yields

sup 11 Σ aJ*(fc) ® W*(D 11 ̂  sup 11 Σ α*(fc) <g> (ff 2/0(1) 11
l e F ίeL

^ sup {|| Σ fάJViMk) III i = 1, , M}+v
< a for k e U .

(c) This is obvious.
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REMARK. For the rest of this paper we will assume that X and
Y are real Banach spaces which are identified with function modules
in ΐlΐeκx Xk resp. TlΓeκγYi as described in 2.3. With this identification,

is a function module in ΐ[ΐ,iXk^8Yi by 2.4.

Another way of representing the centralizer as a space of real-
valued continuous functions is the Dauns-Hofmann type theorem of
Alfsen-Effros ([2], 4.9). The relationship between this and the function
module approach (2.3(ii)) is shown by the following proposition.

PROPOSITION 2.5. Let X, Kx, {Xk)kζKχ be as above, Kx: =
{k I k e Kx, Xk Φ 0}.

( i ) Every hQ e Ch(Kx) has a unique continuous extension to Kx

{so that Kx = βKx).
(ii) Let Ex be the set of extreme points in the unit ball of X'.

By [6] we have Ex — {JkeKχ Eχk Let π: Ex —> Kx be defined by π(p): — k
for p 6 EXk. Then, for every bounded structurally continuous mapping
g: Ex —» R there is a function h € Gh{Kx) such that g — h°π. Conver-
sely, for heC\Kx),hoπ is structurally continuous.

Proof, (i) Let h0 e C\KX) be given. We define/*,: KX-^R by h(k): =
hQ(k) for keKx and h(k) = 0 for k e KX\KX. Let x e X be given and
ε > 0. h is continuous on the closed set D: — {k \ ||α?(λj)|| ^e}aKx

so that we may choose a continuous function hD: Kx —> R such that
Λ|* = hD\Df \\h\\ = l l ^ l l . We then have hDxeX and \\hDx - hx\\ ^

2e||fe|| so that we may conclude that hxeX~ = X. 2.2 and 2.3(ii)
imply that there is a function h' eCKx such that Mh = Mw. h' is
obviously a continuous extension of fe which is uniquely determined
by 2.3 (iii).

(ii) Let g: EX-^R be a bounded structurally continuous function.
By [2], 4.9, there is a Te^(X) such that p°T = g(p)p for every
p 6 i?x. Let T e Ciί x be that function which corresponds to T. We
then have f(k)p = #(p);p for p in J&XA. so that Toπ — g. Conversely,
let TeCKx be given. For p eEX]c we have poT = f(k)p = (f<>π)(p)p.
By [2], 4.9 this implies that T°π is structurally continuous.

3* Centralizer-norming systems* In view of the following
considerations we want to single out those Banach spaces for which,
in a sense, the centralizer is "not too great".

DEFINITION 3.1. Let X be a real Banach space. A finite family
xlf '",xn in X is called a centralizer-norming system (abbreviated:
ens) if there is a number r > 0 such that max {|| Txt\\ \ i = 1, , n) ̂ >
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r\\T\\ for every TeZ(X). Obviously X has a ens iff the norm
topology and the strong operator topology coincide on Z(X).

EXAMPLES. (1) Let X be a Banach space for which Z{X) if finite-
dimensional (those spaces play an important role in the applications
of M-structure to theorems of the Banach-Stone type; cf. [3], [4]).
It is clear that X has a ens (in fact, X has a ens consisting of a
single element).

We note that, for example, spaces which are smooth or strictly
convex have one-dimensional centralizer and that Z(X) is finite-
dimensional for every reflexive space X([4]).

(2) If L is a locally compact Hausdorff space, then C0L has
a ens iff L is compact. In this case we may choose n = 1 and xι — 1
(= the constant function assuming the value 1 at every point).

(3 ) Let A be a C*-algebra with unit e, X the self-adjoint part
of A. Then [e] is a ens in X since Z{X) is just the space of mul-
tiplication operators corresponding to the self-adjoint elements in the
center of A ([2], Cor. 6.17).

(4) One might suggest that for Banach spaces X having a ens
it is always possible to find a ens consisting of a single element.
We will use the Borsuk-Ulam theorem from algebraic topology to
prove that inf {n | n e N, there exists a ens in X consisting of n ele-
ments} may be an arbitrarily large number:

For meN let Sw be the m-dimensional sphere (i.e., the surface
of the unit ball in the (m + l)-dimensional Hubert space), X: =
{/|/ e C(SW), f(-x)=-f(x) for all x e Sm}. (X is just the space CΣ(Sm),
where Y,: Sm—> Sm is the homeomorphism xι->—x cf. [7], Chapter
3, p. 71). A routine computation shows that T e Z(X) iff there is a
continuous function h: Sm —> R such that h(x) = h( — x) for all xeSm

and Tf = hf for feX. Therefore a family fίf ••-,/„ in X is a
ens iff max {\fi(x) \ \ i = 1, , n) > 0 for all a e Sw. X obviously has
a cws consisting of m + 1-elements (for example, /*(#): = the ith
component of cc, x e Sm, i = 1, , m + 1, defines a family of functions
with this property). On the other hand, if gίf •••, gm are arbitrary
functions in X, there is an x0 e Sm such that g^Xo) = = #m(#o) = 0,
i e., £7i> "φy9m cannot be a cws ([1], p. 485).

We will need the fact that there is a characterization of centralizer-
norming systems in terms of the function module representation 2.3:

LEMMA 3.2. Let X he a real Banach space, X represented as a
function module in JϊkεκxXk &s described in §2.

A finite family xίf , xn in X is a ens iff inf^maXi || &<(&)!! > 0.
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Proof. Suppose that xlf -—,xn is a ens in X, i.e., there is a
number r > 0 such that max, || Txt\\ ̂  r | | Γ|| for TeZ(X). We claim
that max* || α?i(ft) || ^ r for k e Kx. Assume that there is a kQ e Kx such
that I|Xί(fco)ll < T fo r i = 1, - , n. Since X is a function module,
there is a neighborhood U of ft0 such that 11 xjjc) \ | ^ rr < r for ft e ?7
and i = 1, ••-,%. But then, for a suitable function heCKx (which
corresponds toMh e Z(X)) we get max, 11Mhxt\\ = max^ \\hxt\\ ^ r'||h\\ <
r| |ilίA | |, a contradiction.

The reverse conclusion is obvious.

In §4 we will also need a related definition, which by 3.2 is a
local version of Definition 3.1.

DEFINITION 3.3. (X, Kx as in 3.2). Let kQ be a point of Kx. A
finite family x19 , xn is called a local centralίzer-norming system
(local ens) at k0, if there are a number r > 0 and a neighborhood
£/ of k0 such that max* || £*(&)! I ̂  r for ke U.

A simple compactness argument guarantees that X has a cws iff
every point in Kx has a local

EXAMPLE. Let L be a locally compact Hausdorff space, X: = C0L.
A point fc in Kx = /SL has a local cws iff fc 6 L. However, every point
Λ in Kx has a local ens provided Xk Φ 0. There are known to the
author only very complicated examples of Banach spaces not having
this property. We will say that X has the local ens property if
every k with Xk Φ 0 has a local ens.

4. The structure of Z(X®BY). Let X, Kx, (Xk)keKχ, Y, Kγ,
(Yi)ieKy be as in §2.

DEFINITION 4.1. M(KX x Kγ): = {a\a: Kx x Kγ -> R a bounded
function, a(k, 1) = 0 whenever Xfe ® ε Γ, - 0, Mα(X®£Γ) c ! 0 5 Γ}.
It is clear that M(KX x iΓr) is Banach algebra (with | | α | | : =
sup{Ia(k, l)\\keKx,leKγ}).

THEOREM 4.2. (i) The mapping απ>M a i s an isometric algebra
isomorphism from M(KX x Kγ) onto Z(X(&εY) so that we may
identify these two spaces.

(ii) Let T be an operator in Z(X®eY). Then Te{Z(X)®
Z{ Y))~ iff there is an a e C(KX x Kγ) such that T = Ma. It follows
that (Z(X) (x) Z(Y)Y = C(KX x Kγ).

Proof, (i) The mapping is well-defined by 2.2. For (ft, 1) 6
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Kx x Kγ such that Xk®e7t Φ 0, ε > 0, there exist xeX and yeY
such that \\x(k)®y(X)\\ = ||a?(fc)|| | | y ( l ) | | ^ 1 - ε, \\x\\ ̂  1, \\y\\ ̂  1.
This follows at once from 2.1(a), (b). Because of this fact we have
||Λfα|| = | | α | | for a eM{KX x KY). The mapping αh->Λfα is obviously
an algebra homomorphism, and it remains to show that it is onto.

Let T be an M-bounded operator on X®εY. By [2], 4.8, every
element of Ex&εY is an eigenvector for T". It can be shown that
this is also true for every p (g) q, where (p, q) e Ex x EY. The proof
of this fact depends on elementary properties of tensor products and
weak*-topologies. We refer the reader to [8], p. 506. Therefore
there is a function a: Ex x EY-> R such that (p (x) q)°T= a(p, g)(p(g)?)
for (p, q) 6 Ex x EY. We claim that a is separately continuous. Let
peEx be fixed and x a vector in X such that p(x) = 1. For yeY,
the mapping F ' 9 T/' I-> (p (x) yr){T{x®y)) is linear and weak*-continuous
(by the Krein-Smulian theorem we have only to prove continuity on
bounded sets, and this is obvious). So there is a vector Tpy such
that y'{Tvy) = (p (x) τ/')(Γ(x (x) 2/)) for every 2/' e Γ r. It is easy to see
that y ι-» Γpi/ is linear and continuous. In fact we have Tp e Z{ Y)
since every qeEY is an eigenvector for T'p (cf. [2], 4.8): qoTp(y) =
(p (x) q)(T(x (g) 2/)) = α(p, g)(p (g) g)(a? ® 2/) = α(p, q)q(y). I t follows that
the corresponding eigenvalue for qeEY is a(p, q) so that, by [2], 4.9,
q\-+a(p,q) must be structurally continuous. By symmetry, p ^
a(p, q) has the same property for every q e EY. By 2.4(ii) a induces
a mapping a0: K* x K* —> i? which is separately continuous: αo(&, 1): =
a(p, q) for p 6 EXk, q e EXl, keKx, leKY (note that Ez&z c {p (x) g |
(p,q)eEx x .Ey}; [8], p. 506). We thus have proved that T = Ma,
where a: KxxKY-+R is defined by a(k, ΐ)=ao(k, 1) for (fc, 1) eKxxKY

and α(fc, 1) = 0 otherwise.
(ii) The operators in Z(X) (x) Z( Y) are by definition exactly the

operators Ma9 a e CKX (x) CKY(CKX (g) CKY regarded as a subspace of
C(KX x ϋΓF)). For aeC(Kx x JBΓF) we have ||AΓβ|| = | | α | | (this follows
at once from 2.3(iii); cf. also the proof of (i)) so that (Z(X)(x) Z(Y))~ =
{Ma\ae (CKX (x) CKYY) = {Ma\ae C(KX x KY)} ^ C(ίΓx x iΓF).

COROLLARY 4.3 (Wickstead). Z(XQεY) is the closure with respect
to the strong operator topology of Z(X) <$ξ> Z(Y).

Proof. This is a consequence of 4.2 and 2.2.

Because of 4.2 it is clear that in order to describe the relations
between Z(X) (x) Z( Y) and Z{X <g)e Y) when considering the norm
topology we have to investigate the continuity properties of the
functions a e M{KX x KY). The following theorem asserts local con-
tinuity if there are local centralizer-norming systems:—
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THEOREM 4.4. Let k0 e Kx, l0 6 Kγ. If k0 has a local ens xlf , xn

in X and l0 has a local ens y19 , ym in Y, then all a G M{KX x Kγ)
are continuous at {kQ, l0).

Proof. Let Z7(resp. V) be a neighborhood of &0(resp. l0) such
that max {||«<(&)]! | i = 1, , w}^r for fee Ϊ7(resp. max{||2//(l)|| | j = 1,
• , m) ̂  r for leV) where r e R, r > 0(resp. r e R, r > 0) is a
suitable chosen number.

Now let a be a function in ikf(ίCx x iΓF), ε > 0 arbitrary. For i e
{1, , n], j 6 {1, , m] the function «<y: = a(xt (x) i/y) - α(jko, lQ){Xi®Vό)
is in X ® £ F and vanishes at (fc0, l0). Since the norm of the elements
of X ®£ Y is upper semi-continuous (2.4(ii)) there are neighborhoods
IT of k0 and V of l0 such that

\\ziά{k, 1)|| = |α(fc, 1) - αfo, l0) | ||^(Λ)|| | | ^ (1)|| £ err'

for A; G U', 1 e F', i = 1, , w, i = 1, , m. It follows that |α(Λ, 1) —
a(K l0) I ̂  ε for (fc, 1) e (U n C/') x (V n F').

THEOREM 4.5. Let X and Y" 6e real Banach spaces such that
the norm topology and the strong operator topology are equivalent
on Z(X) and Z(Y) (i.e., X and Yhave a ens). We will identify
Z(X)0Z(Y) with a subspace of Z{X®εY). Then the following
assertions are valid:

( i ) (Z(X) ® Z(Y)~ = &
(ii) Z{X)®εZ{Y)
(iii) Kχ&$γ = Kx x Kγ {up to homeomorphism)
(iv) X(&εY has a ens

{more precisely, if xlf , xn is a ens in X and ylf , ym is a ens
in Y, then {Xi (g) #,-1 i = 1, , n, j = 1, , m} is α c^s m X ® ε Y).

Proof, (i) This is a consequence of 4.2(ii) and 4.4.
(ii) This follows from (i) since the norm of the operators in

Z(X)(g)Z(Y) is their tensor product norm.
(iii) C{KX^Y) s Z{X®εY) = Z{X) ® e Z{Y) ̂  C{KX) ®εC{KY) =

C{KX x Kγ). It follows that Kz&tT = ϋΓ̂  x iΓF up to homeomorphism.
(iv) It is clear that inf {max^ \\xt{k) <g) yά{l)\\ \ (fc, 1) e Jfx x iίF} >

0. As in 3.2 it follows that {&< (x) 2/y | ΐ = 1, , n, j = 1, , m} is
a c^s in

Finally, we want to point out that for Banach spaces which are not
too pathological the difference between Z{X®εY) and Z{X)®εZ{Y)
is just the difference between β{Kx x Kf) and βKx x βKγ\—
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THEOREM 4.6. Let X and Y be Banach spaces having the local
ens property. Then Kx^γ — β(Kz x K}).

Proof. By 4.2 and 4.4, C(Kx&tT) ~ Z{X®tY) = C\KX x Kγ) =z
C(β(Kx x K*)). The Banach-Stone theorem implies that Kx^εY =
β{Kx x KY).
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