THE OBSTRUCTION OF THE FORMAL MODULI SPACE IN THE NEGATIVELY GRADED CASE

MARIE A. VITULLI

Consider a semigroup ring $B_{\mathcal{H}} = k[t^h/h \in H]$ where t is a transcendental over an algebraically closed field k of characteristic 0. Let $T^1(B)$ denote $T^1(B/k, B)$ where $T^1(B/k, -)$ is the upper cotangent functor of Lichtenbaum and Schlessinger. Then $T^1(B)$ is a graded k-vector space of finite dimension and B is said to be negatively graded if $T^1(B)_+=$ 0. It is known that a versal deformation T/S of B/k exists in the sense of Schlessinger, where (S, m_s) is a complete noetherian local k-algebra. We say that the formal moduli space is unobstructed if S is a regular local ring. In this paper we restrict our attention to the negatively graded semigroup rings. In this case we compute the dimension of $T^1(B)$ and are thus able to determine which formal moduli spaces are unobstructed.

Let U denote the (open) subset of Spec (S) consisting of all points with smooth fibres. In a previous paper [5] we computed the dimension of U. We always have inequalities:

dim
$$U \leq (\operatorname{Krull}) \dim S \leq [m_{\scriptscriptstyle S}/m_{\scriptscriptstyle S}^{\scriptscriptstyle 2} : k]$$
 .

Consequently S is a regular local ring if and only if dim $U = [m_s/m_s^2; k] = [T^1(B); k]$. In the general case the difference $[T^1(B); k] - \dim U$ gives some indication of the extent of the obstruction.

I would like to express my gratitude to Dock S. Rim for stimulating my interest in the subject and for his valuable suggestions and advice.

2. Preliminaries and notation.

(2.1) Let H be a subsemigroup of the additive subgroup N of nonnegative integers. H is called a numerical semigroup if the greatest common divisior of the elements of H is 1, so that only finitely many positive integers are missing from H. Such elements are called the gaps of H and the number of gaps is called the genus of H, denoted by g(H). The least positive integer c such that $c + N \subset H$ is called the conductor of H, denoted by c(H). The least positive integer m in H is called the multiplicity of H and is denoted by m(H). Throughout this paper H will denote a numerical semigroup, k an algebraically closed field of characteristic 0.

Let B_H denote the k-subalgebra of the polynomial ring k[t] generated by the monomials t^h , $h \in H$. B_H is called the *semigroup* ring of H.

When no possible confusion can arise we simply write B for B_H , g for g(H), c for c(H) and m for m(H).

(2.2) We now construct a generating set called the *standard* basis for H, denoted S_H . Let m = m(H). For $0 \leq j \leq m - 1$ choose a_j to be the least positive integer in H such that $a_j \equiv j \pmod{m}$.

For $1 \leq j \leq k \leq m-1$, set

$$f_{j,k} = X_j X_k - X_0^{e(j,k)} X_{r(j,k)}$$

where $0 \leq r(j, k) \leq m-1$ and $a_j + a_k = e(j, k)m + a_{r(j,k)}$. Set $I = I_H$ equal to the ideal of $P = k[X_0, \dots, X_{m-1}]$ generated by $\{f_{j,k}\}_{1 \leq j \leq k \leq m-1}$ where P is a polynomial algebra over k.

PROPOSITION 2.3. If we define a k-algebra map $\varphi: k[X_0, \dots, X_{m-1}] \rightarrow B$ by $\varphi(X_j) = t^{a_j}$ for $0 \leq j \leq m-1$ then $0 \rightarrow I \rightarrow P \rightarrow B \rightarrow 0$ is exact. Furthermore, if we assign the weight a_j to X_j in P, then φ is a homomorphism (of degree 0) of graded k-algebras and I is homogeneous.

We will not attempt to give a precise definition of T^* here. For definition and details of T^0 , T^1 one can consult [1]; for the full cohomological properties one should consult Rim's article "Formal Deformation Theory" [4] (note that our T^i plays the role of Rim's D^i). We state here some properties of T^* that will facilitate our computations. For proofs of these assertions see [4] and [5].

PROPOSITION 2.4. Let P be a polynomial algebra over R and let $0 \rightarrow I \rightarrow P \rightarrow A \rightarrow 0$ be exact. Then for any A-module M,

 $T^{\circ}(A | R, M) \cong \operatorname{Der}_{R}(A, M)$, $T^{1}(A | R, M) \cong \operatorname{Coker} (\operatorname{Der}_{R}(P, M) \longrightarrow \operatorname{Hom}_{A}(I/I^{2}, M))$ $\cong the set of isomorphism classes of R-algebra$ extensions of A by M.

(2.5) In our case, if $B = B_H$ then $T^1(B) = T^1(B|k, B)$ becomes a graded k-vector space via the exact sequence of (2.3). We then have

$$T^{1}(B) = \bigoplus_{-\infty

$$\cong \bigoplus_{-\infty$$$$

so that

$$T^{1}(B)_{p} \cong$$
 the set of isomorphism classes of (degree 0)
graded k-algebra extensions of B by $B(p)$

where B(p) is the graded k-module obtained from B by shifting the degree by p; i.e., $B(p)_n = B_{p+n}$.

Those monomial curves B_H for which $T^{1}(H)_{+} = T^{1}(B_H)_{+} = 0$ are the so called *negatively graded semigroup rings* of Pinkham [3]. In [5] we completely classified these and described a method for computing $T^{1}(H)_p$. We now recall these results and set up some notation which will be used in § 3.

(2.6) Let $S_H = \{a_0 = m, a_1, \dots, a_{m-1}\}$ denote the standard basis for H (as in 2.2). For each integer p let $G_p = \{a \in S_H | a + p \notin H\}$ and let $R_p = \{f_{j,k} \in I_H | a_j + a_k + p \notin H\}$. By abuse of notation associate with each $f_{j,k}$ of R_p a vector $f_{j,k} = (f_{j,k}^0, \dots, f_{j,k}^{m-1})$ of k^m where the *l*th component is given by

$$egin{array}{ll} f_{j,k}^l &= -e(j,k) & ext{if} \ l = 0 \ ext{and} \ r(j,k)
eq 0 \ , \ &= -(e(j,k)+1) & ext{if} \ l = 0 = r(j,k) \ , \ &= -1 & ext{if} \ l = r(j,k)
eq 0 \ , \ &= 2 & ext{if} \ l = j = k \ , \ &= 1 & ext{if} \ l = j \ ext{or} \ l = k \ ext{and} \ j
eq k \ , \ &= 0 & ext{otherwise} \ . \end{array}$$

Again by abuse, let R_p denote the vector subspace of k^m spanned by those $f_{j,k}$ in R_p . We note that if $a_l \notin G_p$ then $f_{j,k}^l = 0$ for all $f_{j,k} \in R_p$. Thus if $G_p \neq \emptyset$, dim $R_p \leq \#G_p - 1$.

PROPOSITION 2.7. In the notation above,

$$\dim \, T_{_{p}} = \dim \, T_{^{1}}(H)_{_{p}} = \max \left\{ 0, \, \# G_{_{p}} - \dim R_{_{p}} - 1
ight\} \, .$$

(2.8) We say that H is an ordinary semigroup of multiplicity m, denoted by H_m , if $H = \{0, m, m + 1, m + 2, \dots\}$. We say that H is hyperordinary if $H = mN + H_{m'}$ where $H_{m'}$ is ordinary and 0 < m < m'.

THEOREM 2.9. H is negatively graded if and only if H is of one of the following types:

(i) H is ordinary;

(ii) H is hyperordinary;

(iii) Excluding the above two cases, H is negatively graded of multiplicity m if and only if there exists precisely one gap m + i

between m and 2m; if i = 1 then $2m + 1 \notin H$ (or H would be hyperordinary).

If $2 \leq i \leq m-1$ then $H_{m,i} = \{0, m, m+1, \cdots, \widetilde{m+i}, m+i+1, m+i+2, \cdots\}$. If i=1 we have

 $H_{m,1} = \{0, m, m+2, \cdots, 2m, 2m+1, 2m+2, 2m+3, \cdots\}$

3. A Dimension formula for $T^{1}(H)$. We now compute the dimension of the tangent space $T^{1}(H)$ for the negatively graded semigroup rings. We first deal with the ordinary and hyperordinary cases and finally with those of the third type.

For these semigroups $T^{1}(H) = T^{1}(H_{-})$. Recall the notation of (2.6) and let a = a(H) denote the least positive integer in H - m(H)N, let c = c(H). Then $p \leq 2a - c$ entails $R_{-p} = \emptyset$ since for $f_{j,k} \in I$ we have $a_{j} + a_{k} - p \geq 2a - p \geq c$ so that $a_{j} + a_{k} - p \in H$. Thus by Proposition 2.7 dim $T^{1}(H)_{-p} = \max\{0, \#G_{-p}-1\}$.

Throughout these computations [r] = the greatest integer $\leq r$; $\{r\}$ = the least integer $\geq r$; $\delta_{r,s}$ denotes the Kronecker delta, i.e., $\delta_{r,s} = 1$ if r = s and 0 otherwise. Once a semigroup H is fixed we let $T_{-l} = T^{1}(H)_{-l}$. By dim() we mean dimension as a k-vector space.

Now assume H is ordinary or hyperordinary so that $H = mN + \{pm + i, pm + i + 1, pm + i + 2, \dots\}$ where $p \ge 1$ and $1 \le i \le m - 1$. 1. Then a(H) = pm + i.

PROPOSITION 3.1. Let $H = mN + \{pm + 1, pm + 2, \dots\}$. Then

$\dimT_{-\iota}=l-1$	$if \; 1 \leq l \leq m-1$,
= m - 2	$if \ l=m \ or \ m+1 \leqq l \leqq pm+2$
	and $m eq l$,
= m - 1	if $m+1 \leq l \leq pm+2$ and $m \mid l$,
$=(p+1)m-l+\delta_{l,(p+1)m}$	$if \hspace{0.1in} pm+3 \leq l \leq (p+1)m$,
$=\delta_{m,2}$	$if \; (p + 2)m \leq l \leq (2p + 1)m$
	and $m \mid l$,
= 0	otherwise .

Consequently,

dim
$$T^{1}(H) = (p-1)(m-1)^{2} + m(m-1) - 1$$
 if $m \ge 3$,
= $2p$ if $m = 2$.

Proof. Note that 2a(H) - c(H) = pm + 2 so that for $1 \leq l \leq l$

pm + 2 we have dim $T_{-l} = #G_{-l} - 1$.

Suppose l > (p+1)m and set $q = l - [l/m]m + \delta_{l,[l/m]m}m$. If q = 1 then $R_{-l} \supseteq \{f_{1,1}, \dots, f_{1,m-1}\}$; if $q = 2 \leq m-1$ then $R_{-l} \supseteq \{f_{1,2}, \dots, f_{1,m-1}, f_{2,2}\}$; if $3 \leq q \leq m$ then $R_{-l} \supseteq \{f_{1,1}, \dots, \hat{f}_{1,q-1}, \dots, f_{1,m-1}, f_{2,q-1}\}$. Finally if q = 2 = m we see that $R_{-l} = \emptyset$ for $2(p+2) \leq l \leq 2(2p+1)$ while $R_{-l} = \{f_{1,1}\}$ for l > 2(2p+1). Our assertions follow.

Set $R'_{-l} = \{f_{1,1}, \dots, f_{1,q-2}\}$. Then R'_{-l} generates R_{-l} for if $j+k \leq q-1$ and $j \geq 2$ we have (as vectors) $f_{j,k} = f_{1,j+k-1} + \dots + f_{1,j} - (f_{1,k-1} + \dots + f_{1,1})$. Since rank $R'_{-l} = q-2$ we have dim $T_{-l} = (p+1)m - l + \delta_{l,(p+1)m}$.

Summing up the various components we see that

Now suppose $H = mN + \{pm + i, pm + i + 1, \dots\}$ where $2 \le i \le m-1$. Then $c(H) = a(H) = pm + i = a_i$. We treat the cases $2i \le m$ and 2i > m separately but as the proofs are analagous we only give the former.

PROPOSITION 3.2. Suppose that $H = mN + \{pm + i, pm + i + 1, \dots\}$ where $2 \leq i \leq m/2$. Then

$\dimT^{\scriptscriptstyle 1}(H)_{-\iota}=l$	$if \ 1{\leq}l{\leq}i{-}1$,
= l - 1	$if \ i \leqq l \leqq m - i$,
= l - 2	$i\!f~m\!-\!i\!+\!1\!\!\leq\!\!l\!\leq\!m$,
= m - 2	if $m+1 \leq l \leq pm+i$ and
	m e l,
= m - 1	if $m+1 \leq l \leq pm+i$ and
	$m \mid l$,
$=m\!-\!2(l\!-\!pm-i)\!-\!\delta_{l,pm+i+1}$	$if pm+i+1 \leq l \leq pm$
	$+2i{-}1$,
$= m - 2(l - pm - i) + 1 + \delta_{l,(p+1)m}$	if $pm+2i \leq l \leq pm$
$+\delta_{l,(p+1)m+1}$	$+2i{+1}$,
= m - min(2i+1, m-1) - 1	$if \; l\!=\!pm\!+\!2i\!+\!2$,
$+\delta_{l,(p+1)m}+\delta_{i,2}$	
$=(p\!+\!1)m\!-\!l\!+\!\delta_{l,(p+1)m}$	if $pm+2i+3 \leq l$
	\leq $(p+1)m$,
= 0	otherwise .

Consequently,

$$\dim\,T^{_1}(H)=(p-1)(m-1)^2+m(m-1)+i(i-2)+\delta_{i,2}$$
 .

Proof. Now 2a(H) - c(H) = a(H) = pm + i so for $1 \le l \le pm + i$ we have dim $T_{-l} = \#G_{-l} - 1$.

For $pm + i + 1 \leq l \leq (p + 1)m + i - 1$ we set $q = l - [l/m]m + m \cdot \delta_{l,(p+1)m}$. Then $G_{-l} = S_H - \{a_q\}$ if $q \neq m$ and $G_{-(p+1)m} = S_H$. We note that $R_{-l} = \{f_{j,k} | a_j + a_k < a_i + l \text{ and } j + k \not\equiv q \pmod{m}\}$. Then $R_{-(pm+i+1)} = \{f_{i,i}\}$ entails dim $T_{-(pm+i+1)} = m - 3$.

Suppose that $pm + i + 2 \leq l \leq pm + 2i - 1$. Then $R_{-l} = \{f_{j,k} | j + k \leq i + q - 1 \text{ and } k \geq j \geq i\}$ and is generated by $R'_{-l} = \{f_{i,i}, \dots, f_{i,q-1}, f_{i+1,i+1}, \dots, f_{i+1,q-2}\}$. For suppose $f_{j,k} \in R_{-l} - R'_{-l}$ so that $j \geq i + 2, k \leq q - 3$. Then $i + 2 < j + k - i \leq q - 1$ and as vectors $f_{j,k} = \Delta_{j+k} - \Delta_j - \Delta_k$ where $\Delta_r = \sum_{s=i+1}^{r-i-1} (f_{i,s+1} - f_{i+1,s})$.

As for independence, we observe that $f_{i,i}, \dots, f_{i,m-1}, f_{i+1,i+1}, \dots, f_{i+1,2i-1}$ are independent. This is more readily seen by substituting the vectors

$$v_r = f_{i,r+1} - f_{i+1,r} ext{ if } i+1 \leq r \leq 2i-2$$

and

$$egin{aligned} & v_{2i-1} = f_{i,i} + f_{i,2i} - f_{i+1,2i-1} & ext{if} \;\; 2i < m \;, \ & = -f_{i+1,2i-1} \;\; ext{if} \;\; 2i = m \end{aligned}$$

for the last i-1 vectors.

Thus dim $R_{-l} = 2(l - pm - i) - 2$ and dim $T_{-l} = m - 2(l - pm - i)$ for $pm + i + 2 \leq l \leq pm + 2i - 1$.

We wish to consider those integers l between pm + 2i and (p+1)m + i - 1.

Suppose $pm + 2i \leq l \leq pm + 2i + 1$ and let q = l - pm. Then $R'_{-l} = \{f_{i,i}, \dots, \hat{f}_{i,q-i}, \dots, f_{i,\min(q-1,m-1)}, f_{i+1,i+1}, \dots, f_{i+1,q-2}\}$ generates R_{-l} as above and has rank $2(q - i) - 3 - \delta_{l,(p+1)m+1}$.

Let l = pm + 2i + 2 and set q = 2i + 2. If i = 2 so that q = 6then $R_{2-l} = \{f_{1,2}, f_{2,2}, f_{2,3}\}$ if m = 4 and $R_{-l} = \{f_{2,2}, f_{2,3}, \hat{f}_{2,4}, \dots, f_{2,n}\}$ min $(5, m - 1), f_{3,4}\}$ if $m \ge 5$. In either case rank $R_{-l} = \#R_{-l} - 1$ as we note that

$$\begin{aligned} f_{1,2} &= f_{2,2} - f_{2,3} & \text{if } m = 4 , \\ f_{3,4} &= f_{2,3} - f_{2,2} & \text{if } m = 5 , \\ f_{3,4} &= f_{2,3} - f_{2,2} + f_{2,5} & \text{if } m \ge 6 . \end{aligned}$$

So we have dim $R_{-i} = \min(q-1, m-1) - 2 + \delta_{m,4}$. If $i \ge 3$ then set $R'_{-i} = \{f_{i,i}, \hat{f}_{i,i+1}, \dots, f_{i,\min(q-1,m-1)}, f_{i+1,i+2}, \dots, f_{i+1,2i-1}, f_{i+2,i+2}\}$. Note that $(f_{i+1,i+1} - f_{i,i+2}) = f_{i+1,i+3} - f_{i+2,i+2} + f_{i+1,i+2} - f_{i,i+3}$ and if 2i < m

we have $f_{i+1,2i} = f_{i,i+1} - f_{i,i} + (1 - \delta_{2i+1,m})f_{i,2i+1}$. So R'_{-l} generates R_{-l} as above and has rank min (q - 1, m - 1) - 1.

Now assume that l > pm + 2i + 2. If $l \leq (p + 1)m$ set q = l - pm and let $R'_{-l} = \{f_{i,i}, \dots, \hat{f}_{i,q-i}, \dots, f_{i,q-1}\} \cup B_{-l}$ where

$$egin{aligned} B_{-l} &= \{f_{i+1,i+1},\, \cdots, f_{i+1},\, {}_{2i-1}\} ext{ if } q > 3i \ &= \{f_{i+1},\, {}_{i+1},\, \cdots,\, \hat{f}_{i+1,q-i-1},\, \cdots,\, f_{i+1,2i-1},\, f_{i+2,q-i-1}\} \ & ext{ if } 2i+3 \leq q \leq 3i \;. \end{aligned}$$

Observe that if $f_{i+1,j} \in R_{-l}$ and $j \ge 2i$, setting t = [j/i] we have $f_{i+1,j} = (1 - \delta_{j,m-1})f_{i,j+1} - [f_{i,j-i} + f_{i,j-2i} + \cdots + f_{i,j-(t-1)i}] + [f_{i,j-i+1} + f_{i,j-2i+1} + \cdots + f_{i,j-(t-1)i+1}] + (1 - \delta_{j,ti})[f_{i+1,j-(t-1)i} - f_{i,j-(t-1)i+1}]$. Similarly if i = 2 then $f_{i+2,q-i-1} = f_{4,q-3}$ is in the span of R'_{-l} . Finally note that $(f_{i,q-i} - f_{i+1,q-i-1}) = (f_{i+1,q-i} - f_{i+2,q-i-1}) + (f_{i,i+2} - f_{i+1,i+1})$ so that R'_{-l} generates R_{-l} as above. Hence dim $R_{-l} = q - 2$.

If $(p+1)m + i - 1 \ge l > (p+1)m$ (and l > pm + 2i + 2) set q = l - pm so that $i+3 \le q-i \le m-1$. Set

$$R'_{-l} = \{f_{i,i}, \cdots, \hat{f}_{i,q-i}, \cdots, f_{i,m-1}\} \cup B_{-l}$$

where

$$\begin{split} B_{-l} &= \{f_{i+1,i+1},\,\cdots,\,f_{i+1,2i-1}\} \text{ if } q > 3i \text{ ,} \\ &= \{f_{i+1,i+1},\,\cdots,\,\hat{f}_{i+1,q-i-1},\,\cdots,\,f_{i+1,2i-1},\,f_{i+2,q-i-1}\} \text{ if } 2i + 3 \leq q \leq 3i \text{ .} \end{split}$$

Then $R'_{-\iota}$ generates $R_{-\iota}$ as it has maximal rank m-2. Hence $T_{-\iota}=0$.

Finally suppose that $l \ge (p+1)m + i$ (and l > pm + 2i + 2) and set q = l - [l/m]m. If $1 \le q \le i - 1$ so that $l \ge (p+2)m$ then

$$R_{-l} \supseteq \{f_{1,1}, \cdots, \hat{f}_{1,q-1}, \cdots, f_{1,m-1}, f_{2,q-1}\}$$
.

If $i \leq q \leq 2i - 1$ then

$$R_{-l} \supseteq \{f_{i,i}, \cdots, f_{i,m-1}, f_{i+1,i+1}, \cdots, f_{i+1,2i-1}\}$$
 .

If $2i \leq q \leq m-1$ then

$$R_{-l} \supseteq \{f_{i,i}, \cdots, \widehat{f}_{i,q-i}, \cdots, f_{i,m-1}\} \cup B_{-l}$$

where

$$egin{aligned} B_{-l} &= \{f_{i+1,i+1}, \, \cdots, \, f_{i+1,2i-1}, \, f_{i+1,q}\} ext{ if } q \leq 2i+1 ext{ or } q > 3i ext{ ,} \ &= \{f_{i+1,i+2}, \, \cdots, \, f_{i+1,2i-1}, \, f_{i+1,q}, \, f_{i+2,i+2}\} ext{ if } q = 2i+2 ext{ ,} \ &= \{f_{i+1,i+1}, \, \cdots, \, \widehat{f_{i+1,q-i-1}}, \, \cdots, \, f_{i+1,2i-1}, \, f_{i+1,q}, \, f_{i+2,q-i-1}\} \ & ext{ if } 2i+3 \leq q \leq 3i ext{ .} \end{aligned}$$

If q = 0 so that $l \ge (p + 2)m$ then

$$R_{-l} \supseteq \{f_{1,1}, \cdots, \widehat{f_{1,i-1}}, \cdots, \widehat{f_{1,m-1}}, f_{i,m-i+1}, f_{i+1,m-1}\}$$

In all cases dim $R_{-l} = m - 1$ so that $T_{-l} = 0$.

PROPOSITION 3.3. Suppose $H = mN + \{pm + i, pm + i + 1, \dots\}$ where $i \ge 2$ and 2i > m. Then

Consequently, dim $T^{1}(H) = (p-1)(m-1)^{2} + m(m-1) + i(i-2) + \delta_{i,2}$.

COROLLARY 3.4. Suppose H is ordinary or hyperordinary of multiplicity m and a(H) = pm + i. Then

$$\dim \, T^{\scriptscriptstyle 1}(H) = (p-1)(m-1)^2 + m(m-1) + i(i-2) + \delta_{i,2} \, \, if \, \, m \! \geq \! 3 \, , \ = 2p \, \, \, if \, \, m = 2 \, .$$

We finally deal with those negatively graded semigroups of the third type so that there is precisely one gap m + i between m and 2m. Recall that if i = 1 then $2m + 1 \notin H$. In any case, $a_j = m + j$ for $j \neq i$ while $a_i = a_j + a_k$ whenever $j + k = i + \delta_{i,1}m$. Again we deal with a series of cases governed by the relation of i and m. As the proofs are similar we only give the proof in case $2 \leq i \leq m - 1 \leq 2i$.

PROPOSITION 3.5. Let $H = H_m - \{m + 1, 2m + 1\}$ where H_m is ordinary and $m \ge 3$. Then

$$egin{array}{ll} \dim\,T^{_1}(H)_{_{-l}} &= l - \left[rac{l+1}{2}
ight] + \delta_{l,_1} & ext{if} \ 1 \leq l \leq m-2 \ , \ &= l - \left[rac{l+1}{2}
ight] - 1 & ext{if} \ m-1 \leq l \leq m+1 \ , \end{array}$$

 $l=l-\left\lceil rac{l+1}{2}
ight
ceil-3+\delta_{l,m+2}$ if $m\!+\!2\!\leq\!l\!\leq\!m\!+\!4$ and $l \leq 2m-2$. $=m - \left\lceil rac{l+1}{2}
ight
ceil + \delta_{l,m+6}$ if $m+5 \leq l \leq 2m-2$, $=\delta_{m,5}+\delta_{m,7}$ if l=2m-1, $= \mathbf{1} + \delta_{m.4} + \delta_{m.R}$ $if \ l=2m$, $=\delta_{m,3}+\delta_{m,5}$ if l=2m+1 , $= \delta_{m,A}$ $if \ l=2m+2 \ or \ 3m+2$, $=\delta_{m,3}+\delta_{m.4}$ if l=3m, $=\delta_{m,3}$ if l = 3m + 1, 4m or 5m, = 0otherwise.

Consequently,

$$\dim \, T^{_1}\!(H) = rac{m(m-1)}{2} + 2 + 3 \delta_{_{m,3}} + 2 \delta_{_{m,4}} \, .$$

PROPOSITION 3.6. Suppose $H = H_m - \{m + i\}$ where H_m is ordinary and $2 \leq i \leq (m - 2)/2$. Then

Consequently,

dim
$$T^{i}(H) = m^{2} - (i + 1)m + \frac{i(i + 1)}{2} + 3\delta_{i,2}$$
.

PROPOSITION 3.7. Suppose that $H = H_m - \{m + i\}$ where H_m is ordinary and $2i \ge m - 1 \ge i \ge 2$. Then

$$\begin{array}{lll} \dim T^{\scriptscriptstyle 1}(H)_{-l} = l & \mbox{if } 1 \leq l \leq m - i - 1 \ , \\ = l - 1 - \left[\frac{l + i - m}{2}\right] & \mbox{if } m - i \leq l \leq i \ , \\ = l - 2 - \left[\frac{l + i - m}{2}\right] - \delta_{l, m + 1} & \mbox{if } i + 1 \leq l \leq m + 1 \ , \\ = 2m - l - \left[\frac{l + i - m}{2}\right] + \delta_{l, m + i} & \mbox{if } m + 2 \leq l \leq 2m - i \ , \\ = i - \left[\frac{l + i - m}{2}\right] + \delta_{l, m + i} & \mbox{if } 2m - i + 1 \leq l \leq m + i \ , \\ = 1 & \mbox{if } l = m + i + 1 \ , \\ = \delta_{m,5} & \mbox{if } l = m + i + 1 \ , \\ = \delta_{m,5} & \mbox{if } l = 2m - 4 \ and \ i = 2 \ , \\ = \delta_{m,5} + \delta_{m,4} & \mbox{if } l = 2m + 2 \ , \\ = \delta_{m,4} + \delta_{m,3} & \mbox{if } l = 3m \ and \ i = m - 1 \ , \\ = \delta_{m,3} & \mbox{if } l = 4m \ , \\ = 0 & \mbox{otherwise.} \end{array}$$

Consequently,

$$egin{array}{ll} \dim\,T^{_1}\!(H) &= m^2\!-\!(i\!+\!1)m + \!rac{i(i\!+\!1)}{2}\!+\!2\delta_{_{m,4}} & i\!f\,\,\,i \ge 3 \;, \ &= m^2 - 3m + 5 + \delta_{_{m,3}} & i\!f\,\,\,i = 2 \;. \end{array}$$

Proof. We note that 2a(H) - c(H) = m - i + 1. Hence for $1 \leq l \leq m - i + 1$ one has dim $T_{-l} = \#G_{-l} - 1$. Also note that

$$egin{aligned} G_{-l} &= \{a_0,\,\cdots,\,a_{l-1},\,a_{l+i}\} & ext{if } 1 \leq l \leq m-i-1 \ , \ &= \{a_0,\,\cdots,\,a_{l-1}\} & ext{if } m-i \leq l \leq i \ , \ &= \{a_0,\,\cdots,\,\widehat{a_i},\,\cdots,\,a_{l-1}\} & ext{if } i+1 \leq l \leq m-1 \ , \ &= \{a_1,\,\cdots,\,a_{m-1}\} & ext{if } l=m \ , \ &= S_H - \{a_i,\,a_{l-m}\} & ext{if } m+1 \leq l \leq m+i-1 \ , \ &= S_H - \{a_{l-m}\} & ext{if } m+i \leq l \leq 2m-1 \ , \ &= S_H - \{a_i\} & ext{if } l=2m \ and \ l\neq 2m+i \ , \ &= S_H - \{a_i\} & ext{if } l=2m+i \ . \end{aligned}$$

If $m - i + 2 \le l \le m + 1$ then $R_{-l} = \{f_{j,k} | a_j + a_k = m + l + i\} = \{f_{j,k} | j + k = l + i - m \text{ and } k \ne i\}$. Hence dim $R_{-l} = [(l + i - m)/2] - \delta_{l,m+1}$.

If
$$m+2 \leq l \leq 2m-i$$
 set $q=l-m$. Then

$$egin{aligned} R_{-l} &= \{f_{j,k} | \, a_j + a_k = 2m + i + q \, ext{ or } a_j + a_k < 2m + q \} \ &= \{f_{j,k} | \, j + k = i + q \, ext{ and } j, \, k
eq i \, ext{ or } j + k \leq q - 1 \}. \end{aligned}$$

290

Hence

$$R_{-l} = \operatorname{span} \{ f_{1,q+i-1}, \cdots, \hat{f}_{q,i}, \cdots, f_{\lfloor q+i/2 \rfloor, \lfloor q+i/2 \rfloor}, f_{1,1}, \cdots, f_{1,q-2} \}$$

and dim $R_{-l} = q + [(q + i)/2] - 3 = l - m + [(l + i - m)/2] - 3$. If $2m - i + 1 \le l \le m + i$ then

$$egin{aligned} R_{-l} &= \{f_{j,k} | \, a_j + a_k = 2m + i + q \, ext{ or } a_j + a_k < 2m + q \} \ &= \{f_{j,k} | \, j + k = i + q \, ext{ and } j, \, k
eq i \, ext{ or } j + k &\leq q - 1 \} \ &= ext{span} \, \{f_{i+q-m+1,m-1}, \, \cdots, \, \widehat{f_{q,i}}, \, \cdots, \, f_{\lfloor (q+i)/2
brace, \lfloor (q+i)/2
brace, f_{1,1}, \, \cdots, \, f_{1,q-2} \} \,. \end{aligned}$$

Hence dim $R_{-i} = m - 1 - \{(q + i)/2\} + q - 2 = m + [(q + i)/2] - i - 3$.

Suppose $l = m + i + 1 \ge 2m - i + 1$ so that $2i \ge m$. Then if i = m - 1 we have l = 2m and $R_{-l} = \text{span} \{f_{1,1}, \dots, f_{1,m-2}\}$ so that dim $T_{-l} = 1$. If $i \le m-2$ then $R_{-l} = \text{span} \{f_{1,1}, \dots, f_{1,i-1}, f_{2i+2-m,m-1}, \dots, f_{i-1,i+2}\}$ and has rank m - 3 so again dim $T_{-l} = 1$.

Now suppose $m + i + 2 \leq l \leq 2m - 1$ and set q = l - m. If i = 2 then m = 5 and $R_{-l} = \{f_{1,1}, f_{3,3}\}$ so dim $T_{-l} = 1$. If $i \geq 3$, $R_{-l} =$ span $\{f_{1,1}, \dots, \widehat{f_{1,i}}, \dots, f_{1,q-2}, f_{i+q-m+1,m-1}, \dots, f_{i-1,q+1}, f_{i+1,q-1}, f_{2,i-1}\}$ so that dim $R_{-l} = m - 2$ and $T_{-l} = 0$.

Assume that l = 2m > m + i + 1, so $i \leq m - 2$. If $i \geq 3$ then $R_{-i} = \text{span} \{f_{1,1}, \dots, \widehat{f_{1,i}}, \dots, f_{1,m-2}, f_{2,i-1}, f_{i+1,m-1}\}$ and $T_{-i} = 0$.

If i = 2 and m = 4 or 5 then $R_{-l} = \{f_{1,1}, f_{1,2}, \dots, f_{1,m-2}, f_{3,m-1}\}$ so that dim $T_{-l} = 1$.

Now suppose $l \ge 2m + 1$ and set q = l - [l/m]m. If q = 1 or q = i and $l \ge 3m + i$ then

$$R_{-l} \supseteq \{f_{1,1}, \cdots, f_{1,m-1}\}$$
.

If l = 2m + i so that $G_{-l} = S_H - \{a_i\}$ then R_{-l} is spanned by:

$$\{f_{1,1}, \dots, \widehat{f_{1,i-1}}, \widehat{f_{1,i}}, \dots, f_{1,m-1}, f_{2,i-1}\}$$
 if $i \ge 3$,
 $\{f_{1,3}, \dots, f_{1,m-1}\}$ if $i = 2$ and $m \le 4$,
 $\{f_{1,3}, f_{1,4}, f_{3,3}\}$ if $i = 2$ and $m = 5$.

Consequently dim $T_{-l} = \delta_{i,2}(\delta_{m,3} + \delta_{m,4})$. Suppose $q = 2 \leq i - 1$. Then R_{-l} is spanned by:

$$\{f_{1,2}, \dots, f_{1,i}, \dots, f_{1,m-1}, f_{2,2}, f_{2,i-1}\} \text{ if } i \ge 4 , \\ \{f_{1,2}, f_{1,3}, \dots, f_{1,m-1}, f_{2,2}, f_{2,m-1}\} \text{ if } i = 3 \text{ and } m \ge 5 , \\ \{f_{1,2}, f_{2,2}\} \text{ if } i = 3 \text{ and } m = 4 \text{ and } l = 2m + 2 , \\ \{f_{1,2}, f_{1,3}, f_{2,2}\} \text{ if } i = 3, m = 4 \text{ and } l \ge 3m + 2 .$$

We note that dim $T_{-(2m+2)} = \delta_{m,3} + \delta_{m,4}$. Now suppose $3 \leq q \leq m-1$ and that $q \neq i$. Then R_{-i} is spanned by:

$$\{f_{1,1}, \cdots, \widehat{f_{1,q-1}}, \cdots, \widehat{f_{1,i}}, \cdots, f_{1,m-1}, f_{2,q-1}, f_{2,i-1}\}$$
 if $i \ge 3$ and $q \ne i+1$
 $\{f_{1,1}, \cdots, \widehat{f_{1,i}}, \cdots, f_{1,m-1}, f_{i+1,i+1}\}$ if $q = i+1 \le m-1$,
 $\{f_{1,1}, f_{1,2}, \widehat{f_{1,3}}, f_{1,4}, f_{3,3}\}$ if $i = 2, m = 5, q = 4$.

Hence dim $R_{-l} = m - 1$ and $T_{-l} = 0$. If q = 0 so that $l = \lfloor l/m \rfloor m \ge 3m$, then R_{-l} is spanned by:

$$\{f_{1,1}, \cdots, f_{1,m-2}, f_{i+1,m-1}\}$$
 if $i \leq m-2$,
 $\{f_{1,1}, \cdots, f_{1,m-2}\}$ if $i = m-1$, $m \leq 4$ and $l = 3m$,
 $\{f_{1,1}, \cdots, f_{1,m-2}, f_{3,m-2}\}$ if $i = m-1$ and $m \geq 5$,
 $\{f_{1,1}\}$ if $i = m-1$, $m = 3$ and $l = 4m$,
 $\{f_{1,1}, \cdots, f_{1,m-2}, f_{2,2}\}$ if $i = m-1$, $m = 4$ and $l \geq 4m$
or $m = 3$ and $l \geq 5m$.

Hence

$$\dim T_{-3m} = \delta_{m,3} + \delta_{m,4} \cdot \delta_{i,3}$$

 $\dim T_{-4m} = \delta_{m,3}$
 $\dim T_{-l} = 0 ext{ if } m \mid l ext{ and } l \geq 5m$

COROLLARY 3.8. If H is negatively graded of the third type with $c(H) = m + i + 1 \leq 2m$ then

$$\dim\,T^{_1}(H) = m^2 - (i+1)m + rac{i(i+1)}{2} + 2\delta_{_{m,4}}\,\,if\,\,i \geqq 3$$
 , $= m^2 - 3m + 6 - \delta_{_{m,4}} - \delta_{_{m,5}}\,\,if\,\,i = 2$.

If c(H) = 2m + 2 then

$$\dim T^{_1}(H) = rac{(m-1)m}{2} + 2 + 3\delta_{_{m,3}} + 2\delta_{_{m,4}}$$
 .

4. The obstruction of the formal moduli space. Let $B = B_H$ be negatively graded and let T|S represent the versal deformation of B|k in the sense of Schlessinger [6]. Then (S, m_S) is a complete noetherian k-algebra with residue field k. T is flat as an S-module and $T \bigotimes_S k \cong B$.

Pinkham [3] has shown that T | S admit gradings as k-algebras which are compatible with the structure of B as a graded k-algebra. One then has the isomorphism $T^{1}(B) \cong \operatorname{Hom}_{k}(m_{s}/m_{s}^{2}, k)$ in the category of graded k-vector spaces. Thus dim $T^{1}(B)$ also is the dimension of the tangent space $(m_{s}/m_{s}^{2})^{*}$ of the formal moduli space Spec (S).

We say the formal moduli space is *unobstructed* if S is a regular

292

local ring. Now S is regular if and only if Krull-dim $S = \dim (m_s/m_s^2)$ if and only if S is formally smooth over k ([2], Proposition 28. M). Thus the formal moduli space is unobstructed if and only if dim $T^1(B) =$ Krull-dim S.

Let U denote that open subset of Spec (S) cansisting of all points having smooth fibers, i.e., $U = \{x \in \text{Spec } (S) \mid T(x) \text{ is smooth over } \kappa(x)\}$ where $T(x) = T \bigotimes_{S} \kappa(x)$ and $\kappa(x) = A_x/\mathfrak{p}_x A_x$.

In [5] we showed that U is nonempty (as B can be smoothed) and effectively computed the dimension of U. We note that

 $\dim U \leqq \dim \operatorname{Spec} (S) \leqq \dim T^{\scriptscriptstyle 1}(B) \text{ .}$

Hence Spec (S) is unobstructed iff dim $U = \dim T^{1}(B)$.

We now recall the dimension formula for U and compare dim U to dim $T^{1}(B)$.

If H is a numerical semigroup let End $(H) = \{n \in N | n + H^+ \subset H\}$ where $H^+ = H - \{0\}$. Let $\lambda(H) = [\text{End}(H): H]$ so that $1 \leq \lambda(H) \leq g(H) = g$.

PROPOSITION 4.1. If H is negatively graded with $\lambda(H) = \lambda$, g(H) = g and U is as above then

dim
$$U = 2g + \lambda - 1$$
.

Proof. See [5], proof of Corollary 6.3.

Now suppose that H is ordinary or hyperordinary of multiplicity m with a(H) = pm + i (recall that $a(H) = \inf \{H - mN\}$). Then g(H) = p(m-1) + i - 1 and $\lambda(H) = m - 1$ ([5], Proposition 2.2). Thus dim $U = 2g + \lambda - 1 = (2p + 1)(m - 1) + 2i - 3$. Combining this with Corollary 3.4 we obtain:

PROPOSITION 4.2. Suppose that H is ordinary or hyperordinary of multiplicity m with a(H) = pm + i. Then

$$\dim T^{i}(H) - \dim U = p(m-1)(m-3) + i(i-4) + 3 + \delta_{i,2}$$
 if $m \ge 3$,
=0 if $m=2$.

Consequently the formal moduli space for $B_{\scriptscriptstyle H}$ is unobstructed iff $m \leq 3.$

Now suppose H is negatively graded of the third type with m(H) = m and m + i a gap for H. Then $g(H) = m + \delta_{i,1}$ and $\lambda(H) = m - i - \delta_{i,1}(m-2)$ ([5], Proposition 2.2). Hence dim $U = 2g + \lambda - 1 = 3m - i - 1 - \delta_{i,1}(m-4)$. Combining this with Corollary 3.8 we obtain:

PROPOSITION 4.3. Suppose that $H = H_m - \{m + i\}$ where H_m is ordinary and $2 \leq i \leq m - 1$. Let U be as above. Then

$$\dim \, T^{\scriptscriptstyle 1}(H) - \dim \, U = (m-3)^2 - \delta_{m,4} - \delta_{m,5} \quad if \, \, i=2 \; , \ = m^2 - (i+4)m + rac{(i+1)(i+2)}{2} + 2\delta_{m,4} \quad if \, \, i\geqq 3 \; .$$

If $H = H_m - \{m + 1, 2m + 1\}$ then

$$\dim \, T^{_1}\!(H) - \dim \, U = rac{m\,(m\,-\,5)}{2} + \, 3 \delta_{_{m,3}} + \, 2 \delta_{_{m,4}} \, .$$

Summarizing, the formal moduli space for B_H is unobstructed iff $m \leq 4$ or m = 5 and $i \neq 2$ (i.e., $m + 2 \in H$).

References

1. S. Lichtenbaum and M. Schlessinger, *The cotangent complex of a morphism*, Trans. Amer. Math. Soc., **128** (1967), 41-70.

2. H. Matsumura, Commutative Algebra, Benjamin, New York, 1970.

3. H. Pinkham, Deformations of Algebraic Varieties with G_m Action, Asterique 20, Soc. Math. France, 1974.

4. D. S. Rim, Formal Deformation Theory (SGA 7-I), Séminaire de Géométrie Algébrique du Bois-Marie, 1967-1969, Lecture Notes in Mathematics, No. 288, Springer-Verlag, Berlin, 1972.

5. D. S. Rim and M. A. Vitulli, Weierstrass points and monomial curves, J. Alg., 48 (1977).

Received November 7, 1977. UNIVERSITY OF OREGON EUGENE, OR 97403