THE OBSTRUCTION OF THE FORMAL MODULI SPACE IN THE NEGATIVELY GRADED CASE

Abstract

Marie A. Vitulli

Consider a semigroup ring $B_{H}=k\left[t^{n} / h \in H\right]$ where t is a transcendental over an algebraically closed field k of characteristic 0 . Let $T^{1}(B)$ denote $T^{1}(B / k, B)$ where $T^{1}(B / k,-)$ is the upper cotangent functor of Lichtenbaum and Schlessinger. Then $T^{1}(B)$ is a graded k-vector space of finite dimension and B is said to be negatively graded if $T^{1}(B)_{+}=$ 0 . It is known that a versal deformation T / S of B / k exists in the sense of Schlessinger, where (S, m_{S}) is a complete noetherian local k-algebra. We say that the formal moduli space is unobstructed if S is a regular local ring. In this paper we restrict our attention to the negatively graded semigroup rings. In this case we compute the dimension of $T^{1}(B)$ and are thus able to determine which formal moduli spaces are unobstructed.

Let U denote the (open) subset of $\operatorname{Spec}(S)$ consisting of all points with smooth fibres. In a previous paper [5] we computed the dimension of U. We always have inequalities:

$$
\operatorname{dim} U \leqq(\text { Krull }) \operatorname{dim} S \leqq\left[m_{s} / m_{S}^{2}: k\right]
$$

Consequently S is a regular local ring if and only if $\operatorname{dim} U=\left[m_{S} /\right.$ $\left.m_{S}^{2}: k\right]=\left[T^{1}(B): k\right]$. In the general case the difference $\left[T^{1}(B): k\right]-$ $\operatorname{dim} U$ gives some indication of the extent of the obstruction.

I would like to express my gratitude to Dock S. Rim for stimulating my interest in the subject and for his valuable suggestions and advice.
2. Preliminaries and notation.
(2.1) Let H be a subsemigroup of the additive subgroup N of nonnegative integers. H is called a numerical semigroup if the greatest common divisior of the elements of H is 1 , so that only finitely many positive integers are missing from H. Such elements are called the gaps of H and the number of gaps is called the genus of H, denoted by $g(H)$. The least positive integer c such that $c+N \subset H$ is called the conductor of H, denoted by $c(H)$. The least positive integer m in H is called the multiplicity of H and is denoted by $m(H)$. Throughout this paper H will denote a numerical semigroup, k an algebraically closed field of characteristic 0.

Let B_{H} denote the k-subalgebra of the polynomial ring $k[t]$ generated by the monomials $t^{h}, h \in H . \quad B_{H}$ is called the semigroup ring of H.

When no possible confusion can arise we simply write B for B_{H}, g for $g(H), c$ for $c(H)$ and m for $m(H)$.
(2.2) We now construct a generating set called the standard basis for H, denoted S_{H}. Let $m=m(H)$. For $0 \leqq j \leqq m-1$ choose a_{j} to be the least positive integer in H such that $a_{j} \equiv j$ $(\bmod m)$.

For $1 \leqq j \leqq k \leqq m-1$, set

$$
f_{j, k}=X_{j} X_{k}-X_{0}^{e(j, k)} X_{r(j, k)}
$$

where $0 \leqq r(j, k) \leqq m-1$ and $a_{j}+a_{k}=e(j, k) m+a_{r(j, k)}$. \quad Set $I=$ I_{H} equal to the ideal of $P=k\left[X_{0}, \cdots, X_{m-1}\right]$ generated by $\left\{f_{j, k}\right\}_{1 \leq j \leq k \leq m-1}$ where P is a polynomial algebra over k.

Proposition 2.3. If we define a k-algebra map φ : $k\left[X_{0}, \cdots, X_{m-1}\right] \rightarrow$ B by $\varphi\left(X_{j}\right)=t^{a_{j}}$ for $0 \leqq j \leqq m-1$ then $0 \rightarrow I \rightarrow P \rightarrow B \rightarrow 0$ is exact. Furthermore, if we assign the weight a_{j} to X_{j} in P, then φ is a homomorphism (of degree 0) of graded k-algebras and I is homogeneous.

We will not attempt to give a precise definition of T^{*} here. For definition and details of T^{0}, T^{1} one can consult [1]; for the full cohomological properties one should consult Rim's article "Formal Deformation Theory" [4] (note that our T^{i} plays the role of Rim's D^{i}). We state here some properties of T^{*} that will facilitate our computations. For proofs of these assertions see [4] and [5].

Proposition 2.4. Let P be a polynomial algebra over R and let $0 \rightarrow I \rightarrow P \rightarrow A \rightarrow 0$ be exact. Then for any A-module M,

$$
\begin{aligned}
T^{0}(A \mid R, M) \cong & \operatorname{Der}_{R}(A, M) \\
T^{1}(A \mid R, M) \cong & \left.\operatorname{Coker}^{\left(\operatorname{Der}_{R}(P, M) \longrightarrow\right.} \longrightarrow \operatorname{Hom}_{A}\left(I / I^{2}, M\right)\right) \\
\cong & \text { the set of isomorphism classes of } R \text {-algebra } \\
& \quad \text { extensions of } A \text { by } M .
\end{aligned}
$$

(2.5) In our case, if $B=B_{H}$ then $T^{1}(B)=T^{1}(B \mid k, B)$ becomes a graded k-vector space via the exact sequence of (2.3). We then have

$$
\begin{aligned}
T^{1}(B) & =\bigoplus_{-\infty<p<\infty} T^{1}(B)_{p} \\
& \cong \bigoplus_{-\infty<p<\infty} \operatorname{Coker}\left(\operatorname{Der}_{k}(P, B)_{p} \longrightarrow \operatorname{Hom}_{B}\left(I / I^{2}, B\right)_{p}\right),
\end{aligned}
$$

so that

$$
\begin{array}{r}
T^{1}(B)_{p} \cong \text { the set of isomorphism classes of (degree } 0 \text {) } \\
\quad \text { graded } k \text {-algebra extensions of } B \text { by } B(p)
\end{array}
$$

where $B(p)$ is the graded k-module obtained from B by shifting the degree by p; i.e., $B(p)_{n}=B_{p+n}$.

Those monomial curves B_{H} for which $T^{1}(H)_{+}=T^{1}\left(B_{H}\right)_{+}=0$ are the so called negatively graded semigroup rings of Pinkham [3]. In [5] we completely classified these and described a method for computing $T^{1}(H)_{p}$. We now recall these results and set up some notation which will be used in $\S 3$.
(2.6) Let $S_{H}=\left\{a_{0}=m, a_{1}, \cdots, a_{m-1}\right\}$ denote the standard basis for H (as in 2.2). For each integer p let $G_{p}=\left\{a \in S_{H} \mid a+p \notin H\right\}$ and let $R_{p}=\left\{f_{j, k} \in I_{H} \mid a_{j}+a_{k}+p \notin H\right\}$. By abuse of notation associate with each $f_{j, k}$ of R_{p} a vector $f_{j, k}=\left(f_{j, k}^{0}, \cdots, f_{j, k}^{m-1}\right)$ of k^{m} where the l th component is given by

$$
\begin{aligned}
f_{j, k}^{l} & =-e(j, k) & & \text { if } l=0 \text { and } r(j, k) \neq 0, \\
& =-(e(j, k)+1) & & \text { if } l=0=r(j, k), \\
& =-1 & & \text { if } l=r(j, k) \neq 0, \\
& =2 & & \text { if } l=j=k, \\
& =1 & & \text { if } l=j \text { or } l=k \text { and } j \neq k, \\
& =0 & & \text { otherwise } .
\end{aligned}
$$

Again by abuse, let R_{p} denote the vector subspace of k^{m} spanned by those $f_{j, k}$ in R_{p}. We note that if $a_{l} \notin G_{p}$ then $f_{j, k}^{l}=0$ for all $f_{j, b} \in R_{p}$. Thus if $G_{p} \neq \varnothing, \operatorname{dim} R_{p} \leqq \# G_{p}-1$.

Proposition 2.7. In the notation above,

$$
\operatorname{dim} T_{p}=\operatorname{dim} T^{1}(H)_{p}=\max \left\{0, \# G_{p}-\operatorname{dim} R_{p}-1\right\}
$$

(2.8) We say that H is an ordinary semigroup of multiplicity m, denoted by H_{m}, if $H=\{0, m, m+1, m+2, \cdots\}$. We say that H is hyperordinary if $H=m \boldsymbol{N}+H_{m^{\prime}}$ where $H_{m^{\prime}}$ is ordinary and $0<m<m^{\prime}$.

Theorem 2.9. H is negatively graded if and only if H is of one of the following types:
(i) H is ordinary;
(ii) H is hyperordinary;
(iii) Excluding the above two cases, H is negatively graded of multiplicity m if and only if there exists precisely one gap $m+i$
between m and $2 m$; if $i=1$ then $2 m+1 \notin H$ (or H would be hyperordinary).

If $2 \leqq i \leqq m-1$ then

$$
H_{m, i}=\{0, m, m+1, \cdots, \widehat{m+i}, m+i+1, m+i+2, \cdots\}
$$

If $i=1$ we have

$$
H_{m, 1}=\{0, m, m+2, \cdots, 2 m, 2 m \widehat{+1}, 2 m+2,2 m+3, \cdots\}
$$

3. A Dimension formula for $T^{1}(H)$. We now compute the dimension of the tangent space $T^{1}(H)$ for the negatively graded semigroup rings. We first deal with the ordinary and hyperordinary cases and finally with those of the third type.

For these semigroups $T^{1}(H)=T^{1}\left(H_{-}\right)$. Recall the notation of (2.6) and let $a=a(H)$ denote the least positive integer in H $m(H) N$, let $c=c(H)$. Then $p \leqq 2 a-c$ entails $R_{-p}=\varnothing$ since for $f_{j, k} \in I$ we have $a_{j}+a_{k}-p \geqq 2 a-p \geqq c$ so that $a_{j}+a_{k}-p \in H$. Thus by Proposition $2.7 \mathrm{dim} T^{1}(H)_{-p}=\max \left\{0, \# G_{-p}-1\right\}$.

Throughout these computations $[r]=$ the greatest integer $\leqq r$; $\{r\}=$ the least integer $\geqq r ; \delta_{r, s}$ denotes the Kronecker delta, i.e., $\delta_{r, s}=1$ if $r=s$ and 0 otherwise. Once a semigroup H is fixed we let $T_{-l}=T^{1}(H)_{-l}$. By $\operatorname{dim}()$ we mean dimension as a k-vector space.

Now assume H is ordinary or hyperordinary so that $H=m \boldsymbol{N}+$ $\{p m+i, p m+i+1, p m+i+2, \cdots\}$ where $p \geqq 1$ and $1 \leqq i \leqq m-$ 1. Then $a(H)=p m+i$.

Proposition 3.1. Let $H=m \boldsymbol{N}+\{p m+1, p m+2, \cdots\}$. Then

$$
\begin{array}{rlrl}
\operatorname{dim} T_{-l}=l-1 & & \text { if } 1 \leqq l \leqq m-1, \\
& =m-2 & & \text { if } l=m \text { or } m+1 \leqq l \leqq p m+2 \\
& \quad \text { and } m \nmid l, \\
& =m-1 & & \text { if } m+1 \leqq l \leqq p m+2 \text { and } m \mid l \\
& =\delta_{m, 2} & & \text { if }(p+2) m \leqq l \leqq(2 p+1) m \\
& & & \text { and } m \mid l, \\
& 0 & & \text { otherwise. }
\end{array}
$$

Consequently,

$$
\begin{array}{rlrl}
\operatorname{dim} T^{1}(H) & =(p-1)(m-1)^{2}+m(m-1)-1 & \text { if } m \geqq 3, \\
& =2 p & & \text { if } m=2 .
\end{array}
$$

Proof. Note that $2 a(H)-c(H)=p m+2$ so that for $1 \leqq l \leqq$
$p m+2$ we have $\operatorname{dim} T_{-l}=\# G_{-l}-1$.
Suppose $l>(p+1) m$ and set $q=l-[l / m] m+\delta_{l,[l / m]_{m}} m$. If $q=1$ then $R_{-l} \supseteqq\left\{f_{1,1}, \cdots, f_{1, m-1}\right\} ;$ if $q=2 \leqq m-1$ then $R_{-l} \supseteqq$ $\left\{f_{1,2}, \cdots, f_{1, m-1}, f_{2,2}\right\}$; if $3 \leqq q \leqq m$ then $R_{-l} \supseteq\left\{f_{1,1}, \cdots, \hat{f}_{1, q-1}, \cdots, f_{1, m-1}\right.$, $\left.f_{2, q-1}\right\}$. Finally if $q=2=m$ we see that $R_{-l}=\varnothing$ for $2(p+2) \leqq l \leqq$ $2(2 p+1)$ while $R_{-l}=\left\{f_{1,1}\right\}$ for $l>2(2 p+1)$. Our assertions follow.

Then assume $p m+3 \leqq l \leqq(p+1) m$ and set $q=l-p m$ so that $G_{-l}=S_{H}-\left\{a_{q}\right\}$ if $q<m$ while $G_{-(p+1) m}=S_{H}$. Then $R_{-l}=$ $\left\{f_{j, k} \mid a_{j}+a_{k}<p m+a_{q}\right\}=\left\{f_{j, k} \mid j+k \leqq q-1\right\}$.

Set $R_{-l}^{\prime}=\left\{f_{1,1}, \cdots, f_{1, q-2}\right\}$. Then R_{-l}^{\prime} generates R_{-l} for if $j+k \leqq$ $q-1$ and $j \geqq 2$ we have (as vectors) $f_{j, k}=f_{1, j+k-1}+\cdots+f_{1, j}-$ $\left(f_{1, k-1}+\cdots+f_{1,1}\right)$. Since rank $R_{-l}^{\prime}=q-2$ we have $\operatorname{dim} T_{-l}=(p+$ 1) $m-l+\delta_{l,(p+1) m}$.

Summing up the various components we see that

$$
\begin{aligned}
\operatorname{dim} T^{1}(H) & =(p-1)(m-1)^{2}+m(m-1)-1 & \text { if } m \geqq 3, \\
& =2 p & \text { if } m=2 .
\end{aligned}
$$

Now suppose $H=m \boldsymbol{N}+\{p m+i, p m+i+1, \cdots\}$ where $2 \leqq$ $i \leqq m-1$. Then $c(H)=a(H)=p m+i=a_{i}$. We treat the cases $2 i \leqq m$ and $2 i>m$ separately but as the proofs are analagous we only give the former.

Proposition 3.2. Suppose that $H=m \boldsymbol{N}+\{p m+i, p m+i+$ $+1, \cdots\}$ where $2 \leqq i \leqq m / 2$. Then

$$
\begin{aligned}
& \operatorname{dim} T^{1}(H)_{-l}=l \\
& \text { if } 1 \leqq l \leqq i-1 \text {, } \\
& =l-1 \quad \text { if } i \leqq l \leqq m-i, \\
& =l-2 \quad \text { if } m-i+1 \leqq l \leqq m \text {, } \\
& =m-2 \quad \text { if } m+1 \leqq l \leqq p m+i \text { and } \\
& m \nmid l \text {, } \\
& =m-1 \quad \text { if } m+1 \leqq l \leqq p m+i \text { and } \\
& m \mid l \text {, } \\
& =m-2(l-p m-i)-\delta_{l, p m+i+1} \quad \text { if } p m+i+1 \leqq l \leqq p m \\
& +2 i-1 \text {, } \\
& =m-2(l-p m-i)+1+\delta_{l,(p+1) m} \quad \text { if } p m+2 i \leqq l \leqq p m \\
& +\delta_{l,(p+1) m+1}+2 i+1 \text {, } \\
& =m-\min (2 i+1, m-1)-1 \quad \text { if } l=p m+2 i+2 \text {, } \\
& +\delta_{l,(p+1) m}+\delta_{i, 2} \\
& =(p+1) m-l+\delta_{l,(p+1) m} \quad \text { if } p m+2 i+3 \leqq l \\
& \leqq(p+1) m \text {, } \\
& =0
\end{aligned}
$$

Consequently,

$$
\operatorname{dim} T^{1}(H)=(p-1)(m-1)^{2}+m(m-1)+i(i-2)+\delta_{i, 2}
$$

Proof. Now $2 a(H)-c(H)=a(H)=p m+i$ so for $1 \leqq l \leqq p m+i$ we have $\operatorname{dim} T_{-l}=\# G_{-l}-1$.

For $p m+i+1 \leqq l \leqq(p+1) m+i-1$ we set $q=l-[l / m] m+$ $m \cdot \delta_{l,(p+1) m}$. Then $G_{-l}=S_{H}-\left\{a_{q}\right\}$ if $q \neq m$ and $G_{-(p+1) m}=S_{H}$. We note that $R_{-l}=\left\{f_{j, k} \mid a_{j}+a_{k}<a_{i}+l\right.$ and $\left.j+k \not \equiv q(\bmod m)\right\}$. Then $R_{-(p m+i+1)}=\left\{f_{i, i}\right\}$ entails $\operatorname{dim} T_{-(p m+i+1)}=m-3$.

Suppose that $p m+i+2 \leqq l \leqq p m+2 i-1$. Then $R_{-l}=$ $\left\{f_{j, k} \mid j+k \leqq i+q-1\right.$ and $\left.k \geqq j \geqq i\right\}$ and is generated by $R_{-l}^{\prime}=$ $\left\{f_{i, i}, \cdots, f_{i, q-1}, f_{i+1, i+1}, \cdots, f_{i+1, q-2}\right\}$. For suppose $f_{j, k} \in R_{-l}-R_{-l}^{\prime}$ so that $j \geqq i+2, k \leqq q-3$. Then $i+2<j+k-i \leqq q-1$ and as vectors $f_{j, k}=\Delta_{j+k}-\Delta_{j}-\Delta_{k}$ where $\Delta_{r}=\sum_{s=i+1}^{r i-i-1}\left(f_{i, s+1}-f_{i+1, s}\right)$.

As for independence, we observe that $f_{i, i}, \cdots, f_{i, m-1}, f_{i+1, i+1}, \cdots$, $f_{i+1,2 i-1}$ are independent. This is more readily seen by substituting the vectors

$$
v_{r}=f_{i, r+1}-f_{i+1, r} \text { if } i+1 \leqq r \leqq 2 i-2
$$

and

$$
\begin{aligned}
v_{2 i-1} & =f_{i, i}+f_{i, 2 i}-f_{i+1,2 i-1} \text { if } 2 i<m, \\
& =-f_{i+1,2 i-1} \text { if } 2 i=m
\end{aligned}
$$

for the last $i-1$ vectors.
Thus $\operatorname{dim} R_{-l}=2(l-p m-i)-2$ and $\operatorname{dim} T_{-l}=m-2(l-p m-$ i) for $p m+i+2 \leqq l \leqq p m+2 i-1$.

We wish to consider those integers l between $p m+2 i$ and $(p+1) m+i-1$.

Suppose $p m+2 i \leqq l \leqq p m+2 i+1$ and let $q=l-p m$. Then $R_{-l}^{\prime}=\left\{f_{i, i}, \cdots, \hat{f}_{i, q-i}, \cdots, f_{i, \min (q-1, m-1)}, f_{i+1, i+1}, \cdots, f_{i+1, q-2}\right\} \quad$ generates R_{-l} as above and has rank $2(q-i)-3-\delta_{l,(p+1) m+1}$.

Let $l=p m+2 i+2$ and set $q=2 i+2$. If $i=2$ so that $q=6$ then $\quad R_{2-l}=\left\{f_{1,2}, f_{2,2}, f_{2,3}\right\} \quad$ if $\quad m=4$ and $\quad R_{-l}=\left\{f_{2,2}, f_{2,3}, \hat{f}_{2,4}, \cdots, f_{2}\right.$, $\left.\min (5, m-1), f_{3,4}\right\}$ if $m \geqq 5$. In either case rank $R_{-l}=\# R_{-l}-1$ as we note that

$$
\begin{array}{ll}
f_{1,2}=f_{2,2}-f_{2,3} & \text { if } m=4, \\
f_{3,4}=f_{2,3}-f_{2,2} & \text { if } m=5, \\
f_{3,4}=f_{2,3}-f_{2,2}+f_{2,5} & \text { if } m \geqq 6 .
\end{array}
$$

So we have $\operatorname{dim} R_{-l}=\min (q-1, m-1)-2+\delta_{m, 4}$. If $i \geqq 3$ then set $R_{-l}^{\prime}=\left\{f_{i, i}, \hat{f}_{i, i+1}, \cdots, f_{i, \min (q-1, m-1)}, f_{i+1, i+2}, \cdots, f_{i+1,2 i-1}, f_{i+2, i+2}\right\}$. Note that $\left(f_{i+1, i+1}-f_{i, i+2}\right)=f_{i+1, i+3}-f_{i+2, i+2}+f_{i+1, i+2}-f_{i, i+3}$ and if $2 i<m$
we have $f_{i+1,2 i}=f_{i, i+1}-f_{i, i}+\left(1-\delta_{2 i+1, m}\right) f_{i, 2 i+1}$. So R_{-l}^{\prime} generates R_{-l} as above and has rank $\min (q-1, m-1)-1$.

Now assume that $l>p m+2 i+2$. If $l \leqq(p+1) m$ set $q=l-$ $p m$ and let $R_{-l}^{\prime}=\left\{f_{i, i}, \cdots, \hat{f}_{i, q-i}, \cdots, f_{i, q-1}\right\} \cup B_{-l}$ where

$$
\begin{aligned}
B_{-l}= & \left\{f_{i+1, i+1}, \cdots, f_{i+1},{ }_{2 i-1}\right\} \text { if } q>3 i \\
= & \left\{f_{i+1},{ }_{i+1}, \cdots, \hat{f}_{i+1, q-i-1}, \cdots, f_{i+1,2 i-1}, f_{i+2, q-i-1}\right\} \\
& \text { if } 2 i+3 \leqq q \leqq 3 i .
\end{aligned}
$$

Observe that if $f_{i+1, j} \in R_{-l}$ and $j \geqq 2 i$, setting $t=[j / i]$ we have $f_{i+1, j}=\left(1-\delta_{j, m-1}\right) f_{i, j+1}-\left[f_{i, j-i}+f_{i, j-2 i}+\cdots+f_{i, j-(t-1) i}\right]+\left[f_{i, j-i+1}+\right.$ $\left.f_{i, j-2 i+1}+\cdots+f_{i, j-(t-1) i+1}\right]+\left(1-\delta_{j, t i}\left[f_{i+1, j-(t-1) i}-f_{i, j-(t-1) i+1}\right]\right.$. Similarly if $i=2$ then $f_{i+2, q-i-1}=f_{4, q-3}$ is in the span of R_{-l}^{\prime}. Finally note that $\left(f_{i, q-i}-f_{i+1, q-i-1}\right)=\left(f_{i+1, q-i}-f_{i+2, q-i-1}\right)+\left(f_{i, i+2}-f_{i+1, i+1}\right)$ so that R_{-l}^{\prime} generates R_{-l} as above. Hence $\operatorname{dim} R_{-l}=q-2$.

If $(p+1) m+i-1 \geqq l>(p+1) m$ (and $l>p m+2 i+2)$ set $q=l-p m$ so that $i+3 \leqq q-i \leqq m-1$. Set

$$
R_{-l}^{\prime}=\left\{f_{i, i}, \cdots, \hat{f}_{i, q-i}, \cdots, f_{i, m-1}\right\} \cup B_{-l}
$$

where

$$
\begin{aligned}
B_{-l} & =\left\{f_{i+1, i+1}, \cdots, f_{i+1,2 i-1}\right\} \text { if } q>3 i \\
& =\left\{f_{i+1, i+1}, \cdots, \hat{f}_{i+1, q-i-1}, \cdots, f_{i+1,2 i-1}, f_{i+2, q-i-1}\right\} \text { if } 2 i+3 \leqq q \leqq 3 i
\end{aligned}
$$

Then R_{-l}^{\prime} generates R_{-l} as it has maximal rank $m-2$. Hence $T_{-l}=0$.

Finally suppose that $l \geqq(p+1) m+i$ (and $l>p m+2 i+2$) and set $q=l-[l / m] m$. If $1 \leqq q \leqq i-1$ so that $l \geqq(p+2) m$ then

$$
R_{-l} \supseteqq\left\{f_{1,1}, \cdots, \hat{f}_{1, q-1}, \cdots, f_{1, m-1}, f_{2, q-1}\right\}
$$

If $i \leqq q \leqq 2 i-1$ then

$$
R_{-l} \supseteqq\left\{f_{i, i}, \cdots, f_{i, m-1}, f_{i+1, i+1}, \cdots, f_{i+1,2 i-1}\right\}
$$

If $2 i \leqq q \leqq m-1$ then

$$
R_{-l} \supseteqq\left\{f_{i, i}, \cdots, \hat{f}_{i, q-i}, \cdots, f_{i, m-1}\right\} \cup B_{-l}
$$

where

$$
\begin{aligned}
B_{-l} & =\left\{f_{i+1, i+1}, \cdots, f_{i+1,2 i-1}, f_{i+1, q}\right\} \text { if } q \leqq 2 i+1 \text { or } q>3 i, \\
& =\left\{f_{i+1, i+2}, \cdots, f_{i+1,2 i-1}, f_{i+1, q}, f_{i+2, i+2}\right\} \\
& \text { if } q=2 i+2, \\
& \left\{f_{i+1, i+1}, \cdots, \overparen{f_{i+1, q-i-1}}, \cdots, f_{i+1,2 i-1}, f_{i+1, q}, f_{i+2, q-i-1}\right\} \\
& \text { if } 2 i+3 \leqq q \leqq 3 i .
\end{aligned}
$$

If $q=0$ so that $l \geqq(p+2) m$ then

$$
R_{-l} \supseteq\left\{f_{1,1}, \cdots, \widehat{f_{1, i-1}}, \cdots, \widehat{f_{1, m-1}}, \widehat{f_{i, m-i+1}}, \hat{f}_{i+1, m-1}\right\} .
$$

In all cases $\operatorname{dim} R_{-l}=m-1$ so that $T_{-l}=0$.
Proposition 3.3. Suppose $H=m \boldsymbol{N}+\{p m+i, p m+i+1, \cdots\}$ where $i \geqq 2$ and $2 i>m$. Then

$$
\begin{array}{rlrl}
\operatorname{dim} T^{1}(H)_{-l} & =l & & \text { if } 1 \leqq l \leqq m-i, \\
& =l-1 & & \text { if } m-i+1 \leqq l \leqq i-1, \\
& =l-2 & & \text { if } i \leqq l \leqq m, \\
& =m-2 & & \text { if } m+1 \leqq l \leqq p m+i \\
& =m-1 & & \text { and } m \nmid l, \\
& =m-2(l-p m-i)-\delta_{l, p m+i+1}+\delta_{l,(p+1) m} \\
& & & \text { and } m \mid l \\
& & \text { if } p m+i+1 \leqq l \leqq(p+1) m \\
& =1 & & \text { if }(p+1) m+1 \leqq l \leqq p m+2 i \\
& =0 & & \text { if } l=p m+2 i+2 \text { and } i=2, \\
& & \text { otherwise. }
\end{array}
$$

Consequently, $\operatorname{dim} T^{1}(H)=(p-1)(m-1)^{2}+m(m-1)+i(i-2)+\delta_{i, 2}$.
Corollary 3.4. Suppose H is ordinary or hyperordinary of multiplicity m and $a(H)=p m+i$. Then

$$
\begin{aligned}
\operatorname{dim} T^{1}(H) & =(p-1)(m-1)^{2}+m(m-1)+i(i-2)+\delta_{i, 2} \text { if } m \geqq 3, \\
& =2 p \text { if } m=2 .
\end{aligned}
$$

We finally deal with those negatively graded semigroups of the third type so that there is precisely one gap $m+i$ between m and $2 m$. Recall that if $i=1$ then $2 m+1 \notin H$. In any case, $a_{j}=m+j$ for $j \neq i$ while $a_{i}=a_{j}+a_{k}$ whenever $j+k=i+\delta_{i, 1} m$. Again we deal with a series of cases governed by the relation of i and m. As the proofs are similar we only give the proof in case $2 \leqq i \leqq m-$ $1 \leqq 2 i$.

Proposition 3.5. Let $H=H_{m}-\{m+1,2 m+1\}$ where H_{m} is ordinary and $m \geqq 3$. Then

$$
\begin{aligned}
\operatorname{dim} T^{1}(H)_{-l} & =l-\left[\frac{l+1}{2}\right]+\delta_{l, 1} & & \text { if } 1 \leqq l \leqq m-2 \\
& =l-\left[\frac{l+1}{2}\right]-1 & & \text { if } m-1 \leqq l \leqq m+1
\end{aligned}
$$

$$
\begin{array}{ll}
=l-\left[\frac{l+1}{2}\right]-3+\delta_{l, m+2} & \text { if } m+2 \leqq l \leqq m+4 \\
=m-\left[\frac{l+1}{2}\right]+\delta_{l, m+6} & \\
=\text { if } m+5 \leqq l \leqq 2 m-2, \\
=\delta_{m, 5}+\delta_{m, 7} & \text { and } l \leqq 2 m-2, \\
=1+\delta_{m, 4}+\delta_{m, 6} & \text { if } l=2 m-1, \\
=\delta_{m, 3}+\delta_{m, 5} & \text { if } l=2 m, \\
=\delta_{m, 4} & \text { if } l=2 m+1, \\
=\delta_{m, 3}+\delta_{m, 4} & \text { if } l=2 m+2 \text { or } 3 m+2, \\
=\delta_{m, 3} & \text { if } l=3 m, \\
=0 & \text { if } l=3 m+1,4 m \text { or } 5 m, \\
& \text { otherwise. }
\end{array}
$$

Consequently,

$$
\operatorname{dim} T^{1}(H)=\frac{m(m-1)}{2}+2+3 \delta_{m, 3}+2 \delta_{m, 4}
$$

Proposition 3.6. Suppose $H=H_{m}-\{m+i\}$ where H_{m} is ordinary and $2 \leqq i \leqq(m-2) / 2$. Then

$$
\begin{aligned}
& \operatorname{dim} T^{1}(H)_{-l}=l \\
& \text { if } 1 \leqq l \leqq i \text {, } \\
& =l-1 \quad \text { if } i+1 \leqq l \leqq m-i-1, \\
& =l-2-\left[\frac{l+i-m}{2}\right]-\delta_{l, m+1} \text { if } m-i \leqq l \leqq m+1 \text {, } \\
& =2 m-l-\left[\frac{l+i-m}{2}\right]+\delta_{l, m+i} \\
& +\delta_{l, m+i+1} \\
& \text { if } m+2 \leqq l \leqq m+i+1 \text {, } \\
& =2 m-(l+i)+\delta_{i, 2} \quad \text { if } m+i+2 \leqq l \leqq m+i+4 \\
& \text { and } l \leqq 2 m-i \text {, } \\
& =2 m-(l+i) \quad \text { if } m+i+5 \leqq l \leqq 2 m-i \text {, } \\
& =\delta_{m, 8}+\delta_{m, 7} \quad \text { if } l=2 m-1 \text { and } i=2 \text {, } \\
& =\delta_{m, 6} \quad \text { if } l=2 m \text { and } i=2 \text {, } \\
& =0 \quad \text { otherwise. }
\end{aligned}
$$

Consequently,

$$
\operatorname{dim} T^{1}(H)=m^{2}-(i+1) m+\frac{i(i+1)}{2}+3 \delta_{i, 2}
$$

Proposition 3.7. Suppose that $H=H_{m}-\{m+i\}$ where H_{m} is ordinary and $2 i \geqq m-1 \geqq i \geqq 2$. Then

$$
\begin{aligned}
\operatorname{dim} T^{1}(H)_{-l} & =l & & \text { if } 1 \leqq l \leqq m-i-1, \\
& =l-1-\left[\frac{l+i-m}{2}\right] & & \text { if } m-i \leqq l \leqq i, \\
& =l-2-\left[\frac{l+i-m}{2}\right]-\delta_{l, m+1} & & \text { if } i+1 \leqq l \leqq m+1, \\
& =2 m-l-\left[\frac{l+i-m}{2}\right]+\delta_{l, m+i} & & \\
& \quad+\delta_{l, m+i+1} & & \text { if } m+2 \leqq l \leqq 2 m-i, \\
& =i-\left[\frac{l+i-m}{2}\right]+\delta_{l, m+i} & & \text { if } 2 m-i+1 \leqq l \leqq m+i, \\
& =1 & & \text { if } l=m+i+1, \\
& =\delta_{m, 5} & & \text { if } l=m+4 \text { and } i=2, \\
& =\delta_{m, 5}+\delta_{m, 4} & & \text { if } l=2 m \text { and } i=2, \\
& =\delta_{m, 4}+\delta_{m, 3} & & \text { if } l=2 m+2, \\
& =\delta_{m, 4}+\delta_{m, 3} & & \text { if } l=3 m \text { and } i=m-1, \\
& =\delta_{m, 3} & & \text { if } l=4 m, \\
& =0 & & \text { otherwise. }
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
\operatorname{dim} T^{1}(H) & =m^{2}-(i+1) m+\frac{i(i+1)}{2}+2 \delta_{m, 4} & & \text { if } i \geqq 3 \\
& =m^{2}-3 m+5+\delta_{m, 3} & & \text { if } i=2
\end{aligned}
$$

Proof. We note that $2 a(H)-c(H)=m-i+1$. Hence for $1 \leqq l \leqq m-i+1$ one has $\operatorname{dim} T_{-l}=\# G_{-l}-1$. Also note that

$$
\begin{aligned}
G_{-l} & =\left\{a_{0}, \cdots, a_{l-1}, a_{l+i}\right\} & & \text { if } 1 \leqq l \leqq m-i-1, \\
& =\left\{a_{0}, \cdots, a_{l-1}\right\} & & \text { if } m-i \leqq l \leqq i, \\
& =\left\{a_{0}, \cdots, a_{i}, \cdots, a_{l-1}\right\} & & \text { if } i+1 \leqq l \leqq m-1, \\
& =\left\{a_{1}, \cdots, a_{m-1}\right\} & & \text { if } l=m, \\
& =S_{H}-\left\{a_{i}, a_{l-m}\right\} & & \text { if } m+1 \leqq l \leqq m+i-1, \\
& =S_{H}-\left\{a_{l-m}\right\} & & \text { if } m+i \leqq l \leqq 2 m-1, \\
& =S_{H} & & \text { if } l \leqq 2 m \text { and } l \neq 2 m+i, \\
& =S_{H}-\left\{a_{i}\right\} & & \text { if } l=2 m+i .
\end{aligned}
$$

If $m-i+2 \leqq l \leqq m+1$ then $R_{-l}=\left\{f_{j, k} \mid a_{j}+a_{k}=m+l+i\right\}=$ $\left\{f_{j, k} \mid j+k=l+i-m\right.$ and $\left.k \neq i\right\}$. Hence $\operatorname{dim} R_{-l}=[(l+i-m) / 2]-$ $\delta_{l, m+1}$.

If $m+2 \leqq l \leqq 2 m-i$ set $q=l-m$. Then

$$
\begin{aligned}
R_{-l} & =\left\{f_{j, k} \mid a_{j}+a_{k}=2 m+i+q \text { or } a_{j}+a_{k}<2 m+q\right\} \\
& =\left\{f_{j, k} \mid j+k=i+q \text { and } j, k \neq i \text { or } j+k \leqq q-1\right\} .
\end{aligned}
$$

Hence

$$
R_{-l}=\operatorname{span}\left\{f_{1, q+i-1}, \cdots, \hat{f}_{q, i}, \cdots, f_{[q+i / 2],\{q+i / 2]}, f_{1,1}, \cdots, f_{1, q-2}\right\}
$$

and $\operatorname{dim} R_{-l}=q+[(q+i) / 2]-3=l-m+[(l+i-m) / 2]-3$.
If $2 m-i+1 \leqq l \leqq m+i$ then

$$
\begin{aligned}
R_{-l} & =\left\{f_{j, k} \mid a_{j}+a_{k}=2 m+i+q \text { or } a_{j}+a_{k}<2 m+q\right\} \\
& =\left\{f_{j, k} \mid j+k=i+q \text { and } j, k \neq i \text { or } j+k \leqq q-1\right\} \\
& =\operatorname{span}\left\{f_{i+q-m+1, m-1}, \cdots, \widehat{f_{q, i}}, \cdots, f_{[(q+i) / 2],(t q+i) / 2 l}, f_{1,1}, \cdots, f_{1, q-2}\right\} .
\end{aligned}
$$

Hence $\operatorname{dim} R_{-l}=m-1-\{(q+i) / 2\}+q-2=m+[(q+i) / 2]-i-3$.
Suppose $l=m+i+1 \geqq 2 m-i+1$ so that $2 i \geqq m$. Then if $i=m-1$ we have $l=2 m$ and $R_{-l}=\operatorname{span}\left\{f_{1,1}, \cdots, f_{1, m-2}\right\}$ so that $\operatorname{dim} T_{-l}=1$. If $i \leqq m-2$ then $R_{-l}=\operatorname{span}\left\{f_{1,1}, \cdots, f_{1, i-1}, f_{2 i+2-m, m-1}, \cdots\right.$, $\left.f_{i-1, i+2}\right\}$ and has rank $m-3$ so again $\operatorname{dim} T_{-l}=1$.

Now suppose $m+i+2 \leqq l \leqq 2 m-1$ and set $q=l-m$. If $i=2$ then $m=5$ and $R_{-l}=\left\{f_{1,1}, f_{3,3}\right\}$ so $\operatorname{dim} T_{-l}=1$. If $i \geqq 3, R_{-l}=$ $\operatorname{span}\left\{f_{1,1}, \cdots, \widehat{f_{1, i}}, \cdots, f_{1, q-2}, f_{i+q-m+1, m-1}, \cdots, f_{i-1, q+1}, f_{i+1, q-1}, f_{2, i-1}\right\}$ so that $\operatorname{dim} R_{-l}=m-2$ and $T_{-l}=0$.

Assume that $l=2 m>m+i+1$, so $i \leqq m-2$. If $i \geqq 3$ then $R_{-l}=\operatorname{span}\left\{f_{1,1}, \cdots, \widehat{f_{1, i}}, \cdots, f_{1, m-2}, f_{2, i-1}, f_{i+1, m-1}\right\}$ and $T_{-l}=0$.

If $i=2$ and $m=4$ or 5 then $R_{-l}=\left\{f_{1,1}, \widehat{f_{1,2}}, \cdots, f_{1, m-2}, f_{3, m-1}\right\}$ so that $\operatorname{dim} T_{-l}=1$.

Now suppose $l \geqq 2 m+1$ and set $q=l-[l / m] m$. If $q=1$ or $q=i$ and $l \geqq 3 m+i$ then

$$
R_{-l} \supseteqq\left\{f_{1,1}, \cdots, f_{1, m-1}\right\}
$$

If $l=2 m+i$ so that $G_{-l}=S_{H}-\left\{a_{i}\right\}$ then R_{-l} is spanned by:

$$
\begin{aligned}
& \left\{f_{1,1}, \cdots, \widehat{f_{1, i-1}}, \widehat{f_{1, i}}, \cdots, f_{1, m-1}, f_{2, i-1}\right\} \text { if } i \geqq 3, \\
& \left\{f_{1,3}, \cdots, f_{1, m-1}\right\} \text { if } i=2 \text { and } m \leqq 4, \\
& \left\{f_{1,3}, f_{1,4}, f_{3,3}\right\} \text { if } i=2 \text { and } m=5
\end{aligned}
$$

Consequently $\operatorname{dim} T_{-l}=\delta_{i, 2}\left(\delta_{m, 3}+\delta_{m, 4}\right)$. Suppose $q=2 \leqq i-1$. Then R_{-l} is spanned by:

$$
\begin{aligned}
& \left\{f_{1,2}, \cdots, \widehat{f_{1, i}}, \cdots, f_{1, m-1}, f_{2,2}, f_{2, i-1}\right\} \text { if } i \geqq 4, \\
& \left\{f_{1,2}, \widehat{f_{1,3}}, \cdots, f_{1, m-1}, f_{2,2}, f_{2, m-1}\right\} \text { if } i=3 \text { and } m \geqq 5, \\
& \left\{f_{1,2}, f_{2,2}\right\} \text { if } i=3 \text { and } m=4 \text { and } l=2 m+2, \\
& \left\{f_{1,2}, f_{1,3}, f_{2,2}\right\} \text { if } i=3, m=4 \text { and } l \geqq 3 m+2 .
\end{aligned}
$$

We note that $\operatorname{dim} T_{-(2 m+2)}=\delta_{m, 3}+\delta_{m, 4}$. Now suppose $3 \leqq q \leqq m-1$ and that $q \neq i$. Then R_{-l} is spanned by:

$$
\begin{aligned}
& \left\{f_{1,1}, \cdots, \widehat{f_{1, q-1}}, \cdots, \widehat{f_{1, i}}, \cdots, f_{1, m-1}, f_{2, q-1}, f_{2, i-1}\right\} \text { if } i \geqq 3 \text { and } q \neq i+1 \\
& \left\{f_{1,1}, \cdots, \widehat{f_{1,2}} \cdots, \cdots, f_{1, m-1}, f_{i+1,2+1}\right\} \text { if } q=i+1 \leqq m-1, \\
& \left\{f_{1,1}, f_{1,2}, \widehat{f_{1,3}}, f_{1,4}, f_{3,3}\right\} \text { if } i=2, m=5, q=4
\end{aligned}
$$

Hence $\operatorname{dim} R_{-l}=m-1$ and $T_{-l}=0$. If $q=0$ so that $l=[l / m] m \geqq$ $3 m$, then R_{-l} is spanned by:

$$
\begin{aligned}
& \left\{f_{1,2}, \cdots, f_{1, m-2}, f_{i+1, m-1}\right\} \text { if } i \leqq m-2, \\
& \left\{f_{1,1}, \cdots, f_{1, m-2}\right\} \text { if } i=m-1, m \leqq 4 \text { and } l=3 m, \\
& \left\{f_{1,1}, \cdots, f_{1, m-2}, f_{3, m-2}\right\} \text { if } i=m-1 \text { and } m \geqq 5, \\
& \left\{f_{1,1}\right\} \text { if } i=m-1, m=3 \text { and } l=4 m, \\
& \left\{f_{1,1}, \cdots, f_{1, m-2}, f_{2,2}\right\} \text { if } i=m-1, m=4 \text { and } l \geqq 4 m \\
& \text { or } m=3 \text { and } l \geqq 5 m .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \operatorname{dim} T_{-3 m}=\delta_{m, 3}+\delta_{m, 4} \cdot \delta_{i, 3} \\
& \operatorname{dim} T_{-4 m}=\delta_{m \cdot 3} \\
& \operatorname{dim} T_{-l}=0 \text { if } m \mid l \text { and } l \geqq 5 m
\end{aligned}
$$

Corollary 3.8. If H is negatively graded of the third type with $c(H)=m+i+1 \leqq 2 m$ then

$$
\begin{aligned}
\operatorname{dim} T^{1}(H) & =m^{2}-(i+1) m+\frac{i(i+1)}{2}+2 \hat{o}_{m, 4} \text { if } i \geqq 3, \\
& =m^{2}-3 m+6-\delta_{m, 4}-\delta_{m i, 5} \text { if } i=2 .
\end{aligned}
$$

If $c(H)=2 m+2$ then

$$
\operatorname{dim} T^{1}(H)=\frac{(m-1) m}{2}+2+3 \delta_{m, 3}+2 \delta_{m, 4}
$$

4. The obstruction of the formal moduli space. Let $B=B_{H}$ be negatively graded and let $T \mid S$ represent the versal deformation of $B \mid k$ in the sense of Schlessinger [6]. Then (S, m_{S}) is a complete noetherian k-algebra with residue field $k . T$ is flat as an S-module and $T \bigotimes_{S} k \cong B$.

Pinkham [3] has shown that $T \mid S$ admit gradings as k-algebras which are compatible with the structure of B as a graded k-algebra. One then has the isomorphism $T^{1}(B) \cong \operatorname{Hom}_{k}\left(m_{S} / m_{S}^{2}, k\right)$ in the category of graded k-vector spaces. Thus $\operatorname{dim} T^{1}(B)$ also is the dimension of the tangent space $\left(m_{S} / m_{S}^{2}\right)^{*}$ of the formal moduli space Spec (S).

We say the formal moduli space is unobstructed if S is a regular
local ring. Now S is regular if and only if Krull-dim $S=\operatorname{dim}\left(m_{S}\right)$ m_{S}^{2}) if and only if S is formally smooth over k ([2], Proposition 28. M). Thus the formal moduli space is unobstructed if and only if $\operatorname{dim} T^{1}(B)=$ Krull-dim S.

Let U denote that open subset of Spec (S) cansisting of all points having smooth fibers, i.e., $U=\{x \in \operatorname{Spec}(S) \mid T(x)$ is smooth over $\kappa(x)\}$ where $T(x)=T \boldsymbol{\otimes}_{S} \kappa(x)$ and $\kappa(x)=A_{x} / \mathfrak{p}_{x} A_{x}$.

In [5] we showed that U is nonempty (as B can be smoothed) and effectively computed the dimension of U. We note that

$$
\operatorname{dim} U \leqq \operatorname{dim} \operatorname{Spec}(S) \leqq \operatorname{dim} T^{1}(B)
$$

Hence $\operatorname{Spec}(S)$ is unobstructed iff $\operatorname{dim} U=\operatorname{dim} T^{1}(B)$.
We now recall the dimension formula for U and compare $\operatorname{dim} U$ to $\operatorname{dim} T^{1}(B)$.

If H is a numerical semigroup let End $(H)=\left\{n \in N \mid n+H^{+} \subset H\right\}$ where $H^{+}=H-\{0\}$. Let $\lambda(H)=[\operatorname{End}(H): H]$ so that $1 \leqq \lambda(H) \leqq$ $g(H)=g$.

Proposition 4.1. If H is negatively graded with $\lambda(H)=\lambda$, $g(H)=g$ and U is as above then

$$
\operatorname{dim} U=2 g+\lambda-1
$$

Proof. See [5], proof of Corollary 6.3.

Now suppose that H is ordinary or hyperordinary of multiplicity m with $a(H)=p m+i$ (recall that $a(H)=\inf \{H-m N\}$). Then $g(H)=p(m-1)+i-1$ and $\lambda(H)=m-1$ ([5], Proposition 2.2). Thus $\operatorname{dim} U=2 g+\lambda-1=(2 p+1)(m-1)+2 i-3$. Combining this with Corollary 3.4 we obtain:

Proposition 4.2. Suppose that H is ordinary or hyperordinary of multiplicity m with $a(H)=p m+i$. Then
$\operatorname{dim} T^{1}(H)-\operatorname{dim} U=p(m-1)(m-3)+i(i-4)+3+\delta_{i, 2} \quad$ if $m \geqq 3$,
$=0 \quad$ if $m=2$.
Consequently the formal moduli space for B_{H} is unobstructed iff $m \leqq 3$.

Now suppose H is negatively graded of the third type with $m(H)=m$ and $m+i$ a gap for H. Then $g(H)=m+\delta_{i, 1}$ and $\lambda(H)=$ $m-i-\delta_{i, 1}(m-2)$ ([5], Proposition 2.2). Hence $\operatorname{dim} U=2 g+\lambda-$ $1=3 m-i-1-\delta_{i, 1}(m-4)$. Combining this with Corollary 3.8 we obtain:

Proposition 4.3. Suppose that $H=H_{m}-\{m+i\}$ where H_{m} is ordinary and $2 \leqq i \leqq m-1$. Let U be as above. Then

$$
\begin{aligned}
& \operatorname{dim} T^{1}(H)-\operatorname{dim} U=(m-3)^{2}-\delta_{m, 4}-\delta_{m, 5} \quad \text { if } i=2, \\
& \quad=m^{2}-(i+4) m+\frac{(i+1)(i+2)}{2}+2 \delta_{m, 4} \quad \text { if } i \geqq 3
\end{aligned}
$$

If $H=H_{m}-\{m+1,2 m+1\}$ then

$$
\operatorname{dim} T^{1}(H)-\operatorname{dim} U=\frac{m(m-5)}{2}+3 \delta_{m, 3}+2 \delta_{m, 4}
$$

Summarizing, the formal moduli space for B_{H} is unobstructed iff $m \leqq 4$ or $m=5$ and $i \neq 2$ (i.e., $m+2 \in H$).

References

1. S. Lichtenbaum and M. Schlessinger, The cotangent complex of a morphism, Trans. Amer. Math. Soc., 128 (1967), 41-70.
2. H. Matsumura, Commutative Algebra, Benjamin, New York, 1970.
3. H. Pinkham, Deformations of Algebraic Varieties with G_{m} Action, Asterique 20, Soc. Math. France, 1974.
4. D. S. Rim, Formal Deformation Theory (SGA 7-I), Séminaire de Géométrie Algébrique du Bois-Marie, 1967-1969, Lecture Notes in Mathematics, No. 288, Springer-Verlag, Berlin, 1972.
5. D. S. Rim and M. A. Vitulli, Weierstrass points and monomial curves, J. Alg., 48 (1977).

Received November 7, 1977.
University of Oregon
Eugene, OR 97403

