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THE CASE OF EQUALITY IN THE MATRIX-VALUED
TRIANGLE INEQUALITY

ROBERT C. THOMPSON

This paper presents an analysis of the case of equality
in the matrix-valued triangle inequality. There is complete
analogy with the case of equality in the usual scalar triangle
inequality.

In order to describe our assertion more precisely, let A and B
be ^-square complex matrices, and by \A\ denote the positive
semidefinite Hermitian matrix

\A\ = (AA*y<*,

where A* is the adjoint of A. It has been speculated several times
in the literature that this inequality should "naturally" hold:

\B\ ,

where the inequality sign signifies that the right hand side minus
the left hand side is positive semidefinite. This inequality is false,
however, as easy 2 x 2 examples show. Nevertheless, there is a
valid matrix valued triangle inequality. It was discovered in [1],
and takes the form

(1) \A + B\ ^ U\A\U* + V\B\V*

for appropriately chosen unitary matrices U and V (dependent upon
A and B). However, no analysis of a "case of equality" for (1)
was given in [1], and the purpose of this note is to supply such
an analysis. Specifically, we have:

THEOREM 1. The inequality sign in (1) must be equality if
A and B have polar decompositions with a common unitary factor.

THEOREM 2. Suppose A and B are such that inequality (1) can
hold only with the equality sign. Then A and B have polar
factorizations with a common unitary factor.

Proof of Theorem 1. We have A = WH and B = WK, where
W is unitary and H, K are positive semidefinite Hermitian. From
(1) we easily deduce that

H+ K^ U.HU? + V.KV? ,
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where Ulf V, are unitary. Thus the matrix U.HU^ + J ΐ
(H + K) is positive semidefinite; but its trace is zero, so it can only
be zero.

Proof of Theorem 2. We have to refer to the proof of the
matrix triangle inequality in [1]. Let C = A + B. After multiply-
ing C, A, and B by a unitary factor to make C positive semidefinite,
and renaming the resulting matrices as C, A, B, again, the proof
considers the expression

C = i-(A + A*) + i-OB + B*) ,

then uses 1/2(A + A*) <£ ί/jAlί/* for an appropriate unitary ?7, and
a similar fact for B. The hypothesis in the theorem implies that
we must have 1/2(A + A*) = U\A\ U* (so that 1/2(A + A*) is neces-
sarily positive semidefinite). Squaring and taking traces, we get

( 2 y = trAA* =

Hence

0 = tr (A - A*)(A* - A) ,

so that || A - A* ||2 = 0. Therefore A is Hermitian. Since 1/2(A +
A*) is semidefinite, A is semidefinite Hermitian. Similarly, so is B.
That is to say: after multiplying the original A, B, C by a unitary
matrix to make C semidefinite, A and B then also become semide-
finite. This completes the proof.
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