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ON SELF-ADJOINT DERIVATION RANGES

JOSEPH G. STAMPFLI

The properties of those operators on a Hubert space
which induce a derivation whose range after closure is
self-adjoint are studied. Such operators are termed D-
symmetric. A characterization of compact D-symmetric
operators is given. Normal derivations are considered, and
an example of an irreducible, not essentially normal, D-
symmetric operator is presented.

Let S^{^f) denote the bounded linear operator on a Hubert
space Sif. For A e £?{3ίf) define a linear operator

ΔA:

as follows

ΔA:X >AX- XA

for all l e ^ ( ^ ) . Then ΔA is an inner derivation on £?(<%?) and

remarkably enough all (linear) derivations on ^(Sίf) are of this form

(see [11], [12] and [18]). The properties of inner derivations, their

spectrum [13], norm [20] and ranges [2], [10], [21], [23] have been

scrutinized carefully in recent years . In t h e paper we wish to

consider t h e class of operators which have self-adjoint derivation

ranges, at least after one closes in t h e norm topology.

DEFINITION. A operator A e £?(£ΐf) is D-symmetric if (range ΔA)~ =
(ranged*)" (the — indicates closure in the norm topology). We denote
range ΔA by &(ΔA). We denote the class of £)-symmetric operotors
by Sf7. Obviously A is D-symmetric if and only if &(ΔA)~ is a self-
adjoint subspace of ^(^έf). The concept of D-symmetric was intro-
duced by Bunce and Williams.

Another paper [1] on this topic appeared at the same time as
this one, and we have modified our terminology in accordance with
theirs. On one occasion a more general result appears in [1] and in
that instance (Theorem 3) we have merely stated our result, which
is needed elsewhere, while omitting the proof.

The paper has been expanded to include an example of an irre-
ducible D-symmetric operator which is not essentially normal.

1* General considerations* We would like to explore the class
Sf in this paper. We begin by proving a very simple yet of ten-times
useful lemma concerning membership in &".
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LEMMA 1. Let A eJZf (<%?). If there exist nonzero vectors/, ge
2(f such that

(1) Af = \f,A*fΦ\f and
( 2) A*g = Xg.

Then A is not D-symmetric.

Proof. We must show that &(ΔA)~ Φ &(ΔA*)~. Since & = (JA) =

A_λ) we may assume without loss of generality that λ = 0. Note
that A*/ = wΦϋ where w±f. Define an operator l e ^ ( ί r ) as
follows.

Xw — g and X = 0 on {w}1 .

Then ((A*X - XA*)f, g) = -(</, flr) =* 0. But for any

Thus dist [A*X - XA*, &(AA)\ > 0 which completes the proof.

The last lemma has a sequential analogue which is sometimes
useful.

LEMMA 2. Let Ae ^f(^f). Assume l i m ^ \\(A - λ)/J | = 0
limsup 11 (A — λ)*/Jl2^>0 w&ere {/J is a^ orthonormal sequence.
Assume || (A — X)*gn \\ —>• 0 where {gn} is an orthonormal sequence. Then
A is not D-symmetric. Conversely, if A is Dsymmetric then A has
an infinite dim. direct summand modulo the compacts.

Proof. We may and do assume λ = 0. We may also assume
II A*/J| ^ c > 0 for all n by considering a subsequence if necessary.
Set A*/w = anfn + wn where wn 1 fn. Then | an \ —> 0. We claim wn -> 0
weakly. Indeed, for any fe e ^

(wn, Λ) = (A*/% - anfn, h)

( α j w λ) > 0 .

By choosing a subsequence of the {/J's and perturbing slightly if
necessary, we can arrive at sequences {fή}{w'n} such that || A*fl — w'n || —>0
and {fi}, {w'n} are mutually orthogonal i.e., (/», w«) = 0 for all ^, m.
(Since the last argument is standard by now we forgo any presenta-
tion.) We now define Xz£f(3if) as follows

Xfl = 0 for n = 1, 2, •

Xw'n = gn for n — 1,2,

X - 0 on {w'n}
λ .

Then for any Ye^f\Sif)\
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((AY-YA)f:,gn) >0 as n >a.

On the other hand

\((A*X -

= \(XA*f:, gn)\ ^ \(Xw'%, gn)\ - | |X|| \\(A*f: - w'n)\\

^ l i f i U I 2 - ^ where εn >0.

Thus dist[A*X - XA*, &(AA)] ^ 1 and so A is clearly not D-
symmetric.

REMARK. One can of course replace the orthonormal sequences
of the lemma by sequences which converge weakly to zero. One
might suggest that no conditions at all are required. After all {/J
has a weakly convergent subsequence; if it converges to zero fine,
if it does not converge to zero then A has on eigen vector. Be that
as it may we wish to point out that the proof does not go through
under these slightly more general conditions.

More precisely, there exists a D-symmetric operator A with the
following properties.

(1) Af = 0 but A*/ Φ 0 for some / e stf, f Φ 0.
(2) A*gn —> 0 for orthonormal sequence {gn}.

EXAMPLE 1. We define our operator A as follows. Let {hj be
an orthonormal basis for ^ .

Set

A*hn = anhn+1 for n = 1, 2, ,

where

an = 1 and an — for n ^ 2 .
logw

Then A satisfies the conditions above (just set / — ht and gn = hn).
Moreover A is D-symmetric since &(ΛΛ)~ = JJίΓ, the ideal of compact
operators as was proved in [21]. We remark that we will have
occasion to use this operator in other parts of the paper. Since a
slightly stronger form of the next theorem appears in [1] we state
the result without proof.

THEOREM 3. Let A^^^Sif) he essentially normal. Then A is
D-symmetric if and only if A~T implies A*~T for all Te^(trace
class).

DEFINITION. An operator A e £?(§ίf) is subnormal if there exists
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a larger Hubert space J ^ D Sίf and a normal operator Ne
such that Af = Nf for all /

COROLLARY 4. Le£ A e Jίf(J%^) be a subnormal operator with a
cyclic vector and no point spectrum. Then A is D-symmetric.

Proof. Since A is subnormal with a cyclic vector, A is essentially
normal by a result of Berger and Shaw [4]. To complete the proof
we will show that A commutes with no trace class operator T (other
than 0). Indeed if T commutes with A, then T is subnormal by
Yoshino's theorem. But any compact subnormal operator is normal.
Since the eigenspaces for T reduce A, and A has no point spectrum
we conclude that T is 0.

COROLLARY 5. Let Te^f(β^) be a hyponormal weighted shift
(unilaterial or bilaterial) with no point spectrum. Then T is D-
symmetric.

Proof. Since T is hyponormal the weights must be increasing
in modulus. Since T has no point spectrum they must all be nonzero.
Since the modulus of the weights must converge as%->±oo; T must
be essentially normal. It is well known that {T}' contains no trace
class operators (see [19], page 62) which completes the proof.

REMARK. Before going further we would like to show that both
of the hypotheses in Corollary 4 are necessary. To demonstrate the
relevance of the condition σp(A) = 0 is easy. Let S be the unilateral
shift operator. Set T = S © 0 on ̂  © βg* where < ^ can be finite
or infinite dimensional. Clearly T is subnormal and it follows imme-
diately from Lemma 1 that T is not D-symmetric.

The foregoing example raises an interesting question. If A and
B are D-symmetric how about A 0 5 ? The example demonstrates
that some care must be exercised. There is one rather easy and
obvious positive result which we state without proof. The reader
may find Rosenblum's theorem [17], useful here.

PROPOSITION 4. Let A and B be D-symmetric. If σ(A) Π σ(B) =
0 ; then A φ ΰ is D-symmetric.

EXAMPLE 2. We now present a second example which is inter-
esting on several counts. Let 3ίfγ — L\Δ, dA/π) where Δ denotes the
unit disc and dA denotes area measure. Define an operator M on

f[ as follows. For / 6 ̂  M: f(z) -> zf(z). Let S be the unilateral
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shift operator on £ίf2 where {eJSU is the canonical basis for S. Now
set T = Mζ& S on Sίf = ^ t Θ <^t Then Γ is a subnormal operator
and σ p(Γ) = 0 . Moreover T is the direct sum of two D-symmetric
operators. However T itself is not D-symmetric as we shall show.
James Deddens has independently shown that the operator M 0 S 0
S φ ? 5 ί It suffices to exhibit a trace class operator L which
commutes with T but not with T*. Our operator L will have the

form 0 J
0 0 Since Γ = MO

0 S the condition TL — LT is equivalent

to ikfJ = JS. Let φ = XD when D is the disc of radius a centered
at 0 and a < 1.

Define Jen = 2%φ for w = 1, 2, (J maps Jgt into ^ ) . Then
JSen = Je n + 1 = 2%+1<p while

= Λfo*9> = z%+1φ .

By continuity and linearity MJ = J S . Observe that

j j r2n+1drdθ = α2w+2/(2w + 2). Hencel/2ττjj r

Σ IIΛ.II ^ Σ α ^ / v ^ + 2 <

Thus ϊ7 and hence L is of trace class. It remains to show that L
does not commute with T*. But T*L = LT* is equivalent to M*J =
JS* which is equivalent to SJ* — J*M. However it follows from
[22] Theorem 3 that no nonzero operator (trace class or not) can
intertwine the shift and a normal in this way. Thus L does not
commute with T* and we are finished.

Although this example was included primarily to illustrate that
the subnormal operator in Theorem 3 must have a cyclic vector; it
also gives some indication of the subtleties involved in characterizing
just when the direct sum of D-symmetric operators is D-symmetric
since neither M nor S is a particularly pathological operator.

2* Compact symmetric operators* We will now give a classifi-
cation of compact symmetric operators modulo one difficulty. The
method does give rise to a situation where the direct sum of D-
symmetric operators is D-symmetric.

The proof of the next lemma was suggested by B. B. Morrel
and is more concise than the original. A more general result will
appear in the Appendix. We also note that the first half of Lemma
5 was obtained independently by L. Fialkow [7]

LEMMA 5. Let A = YXdE(X) be a normal operator and T an

arbitrary operator in £f(3ίf). If E[σ(A) f] σ(T)] = 0, then the
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equations AX — XT and YA = TY have only the trivial solution
X = Y=0. If σp(T*)Πσ(A*) = 0 and A\E[σ(A) n σ(T)] has a
complete set of eigenvectors, then the equation AX = XT has only the
solution X = 0.

Proof. Let ueβ^ and assume that AX = XT. For all Xeρ(T),
the resolvent set of Γ, (A - λ)X(T - X)~ιu = Xw. Since Xwe
range (A - λ) for all λe/(T), it follows from [16] that

XueE{σ(T))£έf = jΘ[σ(Γ) Π <7(A)]<̂ T == 0 .

Since % was arbitrary; X = 0. To handle the case YA = TY,
take adjoints and use the fact that range A = range A* for a normal
operator A.

In the second part, let {φn} be a complete set of eigenvectors for
A\E[σ(A) n σ{T)]^f. Iiue£έf>, then arguing as before Xu e E[σ(T)]βέ? =
E[σ(T) Π o{A)\^f, whence Xu = Σanφn (where Aφn = Xnφn). Note that
X*(A - \n)*φn = 0 = (Γ - \n)*Σ*φn which implies that X*φn = 0
since (Γ — λn)* is injective. Thus

- (u, ΣanX*φn) = 0

whence X = 0.

THEOREM 6. Let A e ^(£ίf) be compact. Then A is D-symmetric
if and only if A = NφQ on <^g10 Sίf% — έ%f where N a is compact
normal operator with no kernel and Q is a quasinilpotent D-symmetric.
operator If A is D-symmetric and Q is trace class then Q = 0. The
decomposition is unique.

Proof. Assume A is D-symmetric. Let (A — λ)/ = 0 where
λ Φ 0, / G

Claim, f reduces A. Since A* is compact there exists a vector
g e Sίf such that (A-X)*g = 0. It followsfrom Lemma 1 that (A-X)*f=
0, thus / reduces A. Now order the nonzero eigenvalues of A in
decreasing modulus |λx | :> |λ2| :> |λs| ^ •• . Use the fact just proved
to show that Eλl = {/e §ίf\ Af — \J\ reduces A and A\Eλι is normal.
Repeating the argument for λ2, λ3 , we find that

on

where N is normal with no kernel, and Q is quasinilpotent. Since
A is D-symmetric so are both N and Q. This proves the first half
of the theorem.
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Assume now that A = iVφQ where JV is normal with trivial
kernel and Q is quasinilpotent and D-symmetric. Since Q is compact,
the operator A is essentially normal. It follows from Theorem 3;
that A is D-symmetric if and only if A ~ T => A* ~ T for T of trace

If AT = TA thenclass. Write T =

NT, - T,N NT2 -T2Q o

QTZ - T3N QTt - T,Q ~

It follows from Lemma 5 that

f\ 0
T2 = Γ3 - 0. Thus Γ =

0

Moreover 2\ ~ iV implies 2\ - JV* and Γ4 — Q implies T4 ~ Q* by
Theorem 3. Thus Γ — A* and hence A is D-symmetric, again by
Theorem 3. Note that no use was made of the compactness of JVin
the second half of the theorem.

Finally, let us consider the case when Q is trace class. By Theorem
3, if Q is D-symmetric and Q ~ T, T of trace class then Q ~ T*.
But Q itself is trace class. Thus Q ~ Q* whence Q is normal.

The characterization just given is not altogether satisfactory since
we do not know which quasinilpotent compact operators are D-
symmetric. We note that the class is not vacuous. Indeed in Example
1 following Lemma 2, the weighted shift S with weights {(logw)"1}
is D-symmetric and it is obviously compact and quasinilpotent. Of
course the equally compact and quasinilpotent operator S φ O is not
D-symmetric by Lemma 1.

Before going further we observe that the D-symmetric operators
are not closed. To see this consider the following operators defined
on the orthonormal basis {fk}T

n-% for k - 1
„ , 7 . 1 for tt = 1, 2, .

fk+1 for k > 1

In other words Sn is just the unilateral shift with the first weight
diminished. It is well known that Sn is subnormal or hypernormal
and since the other hypothesis are satisfied. Sn is D-symmetric for
all n by Corollary 4 or 5. However Sn -> SQ where the first weight
of So is zero and thus So is not D-symmetric by Lemma 1. The fact
that S? is not closed was also noted in [1].

Next we wish to characterize the compact operators in ^ the
closure of the D-symmetric operators, We need thef olio wing lemma
which appears in [8] page 916 and is attributed to R. G. Douglas.



264 JOSEPH G. STAMPFLI

LEMMA 7. Let Te £^(3ίf) be a compact quasinilpotent operator.
Then T is the norm limit of, finite rank nilpotent operators.

Before attacking Sf we need the following sharpened version of
Lemma 2.

LEMMA 8. Let Tre J^^Sίf}. Assume that μ is an isolated point
of σ(T) and furthermore that (T — μ) is Fredholm. If Te 6^~ then
Eμ = {/e 3ίf\ Tf = μf) reduces T and T\Eμ is normal.

Proof. Let 7 = dist[μ, σ(T)\μ], Since the spectrum is an upper
semi-continuous function of the operator, there exists a δt > 0 such
that | |Γ - S|l <δ1 implies that σ(S)a{σ(T) + 7/4}. Define idempotents
as follows

pτ = J L ί (x _ Ty'dX

and

ps = JLf (x - sy'dX

where Γ(t) = μ + Ίl2eu for 0^t<>2π. (We are also assuming that
| |S - 2Ί| <8λ.) It is well known that | |P Γ - P 5 | | ->0as | | Γ - SΓ|| —>0.
Since (T — μ) is Fredholm; the subspace Pτ§tf is finite dimensional
and is invariant under T. Thus by continuity Ps^f is finite dimen-
sional for S close to T and Ps3ίf is invariant for S. Assume S e St
The first part of the proof of Theorem 6 may be repeated to show
that Ps3ίf reduces S and S\PsSίf is normal. Choose SneS^ where
Sn -> T. Since PSn -+ Pτ in norm, it follows that Pτ^f reduces T
and T\PT is normal which completes the proof.

THEOREM 9. Let Γ e ^ ( T ) be compact. Then Te£S~ if and
only if T = N@Q where N is normal with ker N = {0} and Q is
quasinilpotent.

Proof. Order the nonzero points in the spectrum of T by de-
creasing modulus as say | λx | ^ | λ21 ^ . Then \ is isolated in
σ{T) and (T — \) is Fredholm. It follows from the previous lemma
that Eh = {/e %f\ Tf = XJ) reduces T and T\Eh is normal. Re-
peating the argument, just as in Theorem 6, we see that T = ΛΓ0Q
when N is normal with trivial kernel and Q is quasinilpotent.

To prove the sufficiency let T = iVφQ. Since N is normal, in
light of Theorem 6 it suffices to show that Q e 6^~ for every compact
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quasinilpotent operator Q. In view of Lemma 7 we need only consider
finite rank nilpotent operator Q. Assume for the moment that 3ff
is separable. Choose an invertible operator S such that

(1) SQS'1 is in Jordan canonical form with respect to the basis

{/Jr.
(2) The l's in the matrix appear below the main diagonal.
(3 ) SQSΎ^ = fn but SQS-% = 0 for k ^ n.

Set M = | |S | | ||S"ΊI Let ε > 0 be given. We define a operator V as
follows:

(1) If SQS-% = / fc+1 then Vfk = / fc+1

(2) If k < n and SQS~ιfk = 0 then V/t = eM~lfk+1

( 3 ) F/A = αfc/,+1 for k^n where α* = εikΓ^log k)~\
By construction, 7 is a shift operator on £%f with no nonzero weights
and \\SQS~1 — VWKeM'1. Moreover V is compact and we claim that
V does not commute with any trace class operator. Note that V
differs from the operator in Example 1 at only a finite number of
weights. It is easily seen that the commutant of a weighted shift
is little influenced by modification of the first few weights, provided
one does not make any nonzero weights zero. (See [19], page 62.)
In particular the operator in Example 1 does not commute with
any trace class operator (in fact any Cp operator). Thus neither
V nor S^VS commutes with a trace class operator. Hence S^VS
is ^-symmetric. But \\Q - S-'VSW^WS-^SQS'1 - 7 ) S | | < ε which
completes the proof.

3. Degree of approximation* Let A be a normal operator. Let
AX - XA = W for some X, We j ^ ( ^ T ) . Since A is D-symmetrie,
there must exist a sequence of operators {Yn} such that

A*Yn-YnA*- >W .

In general the operators {Yn} are not uniformly bounded. For if they
were then a subsequence Ynh would converge weakly to Y and hence

A* Y - YA* = W .

However it is known that <&{Δ2) and &(ΔA*) are not equal for an
arbitrary normal operator (see [10]). The following question thus
arises: How is the norm of Yn related to the norm of [A* Yn —
YnA* — W]1 Before attacking this question we need the following
lemma, whose proof was suggested by Grahame Bennett.

LEMMA 10. Let M = [M^ ] be an n x n operator valued matrix

on £έf = ^ 0 •.. φ ^ T . Set M= [θiSMiS] where \θiβ\ = 1 for i, j =

1, ...,w. Then \\M\\ £ n1/2\\M\\.
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Proof. Let / = (/„••-, /„) where 11 /11 = 1 and /, e £&. Thus

Set gw = φtlfu , θinfn), whence \g\w || = 1. Let P t denote the pro-
jection of £%f in <r5£i. Then

Σ θu

Thus

Σ<

%}fi = PxMow -

* = \\piMgH)\\t

I P ^ I I M i l 2 .

Hence

Since / was arbitrary we conclude that

THEOREM 11. Let Abe a normal operator in £/?{3ίf) with σ(A)aΓ
where Γ is a rectίfiable curve and length Γ = /. Let AX — XA — W.
Then there exists a Ye ^{^f) such that

and

\\(A*Y-YA*) -W\\ g

Proof. Choose n2 distinct points \, , Xn2 on Γ such that the
discs D(Xi9 /n~2) cover Γ. Disjointify the discs to obtain sets K3 (not
necessarily open or closed) such that \Jf Kji) Γ, KίΓ\Kj= 0 for

i Φ 3, and K5aD{Xh /n~2). Let A = [χdE(X). Set ^ ^ = E{K^)Sίf
and set An — ΣX3Έ(Kj). Clearly An is normal and \\A — An\\ <>
n'Vf (An is a matrix on ̂  φ φ ^^2, A = diag (x19 ., λ%2)). Let
X - [X<y] on ^ φ . φ ^ 2 . Clearly || (A%X - XAn) - W\\ £
211 X\ I * r V. Moreover (A,X - XA J = [(λ, - λ, ) X,, ]. Set Γ - θtiXiS

where θ = (Xt — X/)/(\ — λ̂  ). Since \θίό\ — 1 for all i, it follows
from Lemma 11, that || Y\\ ^n\\X\\. By definition of θiβ, AIY'-YAϊ =
AnX — XAn. Moreover

\\[A*, Y]-[A*,
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Combining the equations above we see that

|| (A* Y-YA*) -W\\ ^ 2^-V||X|| + 2n,-*s\\X\\
f o r n>l

which completes the proof.

REMARK. R. Moore in [14] proved the following

PROPOSITION A. Let A be normal and let \\Xn\\ ^ 1 for n =

1, 2, . . . . // \\AXn - XnA\\ -> 0 then \\A*Xn - XnA*\\ -> 0. The
technique in the theorem above can be modified to show the following.

PROPOSITION B. Let A be a normal operator with σ{A) a Γ when
Γ is a rectifiable curve. Let \\X\\ ̂  1. // \\AX — XA\\ < <5 then
\\A*X — XA*|| < Cδ1/2 when C is a universal constant.

Since the proof is similar to the above we omit the details.

4* Ampliation. Let So e JZf(£έf) and denote its ampliation So φ
SQ 0 (°° many copies of S). In general So D-symmetric does not
imply S is ^-symmetric. Joel Anderson has been kind enough to
point out to us that it follows immediately from Lemma 2 that the
ampliation of the (^-symmetric) operator in Example 1 is not D-
symmetric. We next show that operators close to the unilateral
shift have D-symmetric ampliations. (It follows immediately from
Theorem 3, that the unilateral shift is D-symmetric, a fact also
observed in [1].) Note that condition 1 of the theorem is essential.
If the condition is dropped the operator (let alone its ampliation) need
not be D-symmetric as an example following the proof shows. The
example also shows that D-symmetry is not preserved under similarity
but much simpler examples will do that.

THEOREM 12. Let So be a weighted shift operator with weights
alf a2, . β. Assume that

( 1 ) 1 — S*S0 is compact
( 2 ) (a) S is similar to the unilateral shift or
(b) 0 KM'1 ^ \\S*f\\ ^ M for a l l f e H with \\f\\ = 1 a n d n =

1 , 2 , •••, or
( c ) 0 < infΛ,fc I α Λ α Λ + 1 ••• an+k\ a n d s u p Λ , f c | α Λ α Λ + 1 ••• an+k\ < ^.

Then S, the ampliation of So, is D-symmetric.

Proof. We first observe that conditions (a), (b), (c) under 2 are
equivalent. Indeed, the equivalence of (a) and (b) is implicitly contained
in [15]; and the equivalence of (b) and (c) is easy and may be found
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in [19] Note that S is unitarily equivalent to the operator which
sends (f19 /„ •) to (0, aj19 aj2, •) on ^ φ ^ φ . where each
^ is a copy of ^ Let SX - XS = W. We must show that
|| (S* y — YS*) — W\\<e for any preassigned ε > 0. As a first approxi-
mation to Y we try - SXS. Then S*(-SXS) - (-SXS)S* -
T7 + i^XS - SXK2 where Kx = (1 - S*S) and ΛΓ2 = (1 - SS*). (The
operator Kt and if2 are not compact but they like to think of
themselves that way.) We next show how to approximate the term
SXK2 by elements of the form [S*, V]. Let ε > 0 be given. Note
that

and thus \\K2 - F2\\ < ε for

and m sufficiently large. Thus \\SXK2 - SXF2\\ < ε\\X\\\\ S\\ and
SXF2 is an operator valued matrix which has at most m nonzero
columns. We next show how to approximate a single nonzero column
matrix. Assume that T^fά — 0 for j Φ 1. Fix n for moment and
set Yi - Σ ^ 1 (n - j)/n[S(S*S)-Ύ+1TS*s. Then S* Y1 -

- T

We wish to estimate the term on the right and we have yet to choose
n. It is easy to see that || [SCS*^)-1]^! ^ M for all j and of course
IliS^II ^ M. Let / = Σ ^ /i where /, 6 ^ and | | / | | = 1. Observe
that TS*'/* = 0 for k Φ j - 1. Thus

5 = 1

5 = 1

5 = 1

Thus \\[S*, ΓJ - Γ|| ^ M2 | |Γ| |»-1 / 2. Note that | |Γ | | ^ | |SZF 2 | | if Γ
is the first column of SXF2. For n sufficiently large (namely n >

) it is clear that ||[S , Y] - T\\ < efm. But the
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remaining columns of F2 may be treated in exactly the same way.
Combining these estimates we can choose Y so that [| [S*, Y] — SXF2\\ <
e There still remains the term KXXS to be dealt with. Choose Ft

such that IIULΊ — .FJI < e as before. Then the operator matrix KyXS
has only finitely many nonzero rows. Rather than approximating
FXXS by term [S*, Y] it is easier and clearly equivalent to approximate
S*X*F1 by terms of the form [S, Y]. Since S*X*Fλ has only finitely
many nonzero columns, we again consider the case when T has a
single nonzero column, the first. To approximate T, set

3=0 n

Then repeating the previous argument shows that \\[S, Zx\ — T\\ <^
n-1/2-\\T\\M\ Thus there exists an operator Z such that ||[S*, Z] -
FiXSW < e for n sufficiently large. Combining all the estimates we
see that there exists an operator L such that ||[S*, L] — W\\ <ε(4+| |X| |)
whence &{AS) c &(AS*)~. The argument to verify the reverse inclusion
is identical to the above and thus the proof is complete.

EXAMPLE. Let {/W}£U be orthonormal basis for Jg^ Set Tf% =
ajn+ί for n = 1, 2, ., where a% - j | - i J ^ n > Then T satisfies
condition 2 of Theorem 12 but Γ is easily seen to be not D-symmetric
by Lemma 2.

REMARK. In §3 we saw it was possible to estimate the size Y re-
quired to approximate W=AX— XA by terms of the form S* Y— ΓS*,
the estimate being given in terms of | |X|| and | |[S*Γ] - W\\. If SQ

is a shift operator with a3- = 1 for all but m of the α/s, then it is
again possible to make such estimates. Indeed the explicit nature of
the operators Y19 Y, Zιy Z in Theorem 12 reduces the estimation process
to routine bookkeeping which we will pursue no further.

COROLLARY. The ampliation of the Bergman shift is D-symmetric.

5. Normal derivations. Before proceeding to the next theorem
we will need two lemmas of a nonoperator theoretic nature.

LEMMA 13. Let E be an uncountable compact set in the plane
and let S1 be the unit circle. Then there exists a continuous map f
of E onto S1.

Proof. By first projecting E onto one of the coordinate axes, we
may assume E is an uncountable compact subset of the reals. If E
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contains an interval then the lemma is trivial. If not, then E is the
union of a countable set and a perfect set. Since the perfect set
contains no intervals it is a Cantor set and the result now follows
from Theorem 3-28 (page 126) of [9].

LEMMA 14. Let M — {zly , zk} be a set of distinct points in the
unit disc D. Let multiplicities n19 , nk be preassigned where 1 <J
n3- <; y 0̂ for j = 1, , k. Assume that n3 = ^ 0 for j — 1, « , p
where p^3 and further that the convex hull of {zly «, zp} contains
a neighborhood of 0. Then there exists a sequence {ζ3) such that

( 1 ) Each ζ, e M.
( 2 ) There are precisely n0- of the ζ/s equal to z3 .
( 3 ) |Σf=iζil ^ 2 / o r JV= 1,2, . . . .

Proof. Since the lemma is intuitively obvious we present only
a sketch of the proof.

1. We can choose either three or four points from the set
{zlf , Zp) so that the convex hull of these three or four points
contains a neighborhood of 0. Call these points guide points.

2. Note that, beginning with any point μ in D we can choose
a finite sequence of guide points X19 , λw such that | μ + Σ<U λ* I ̂  2
for q = 1, ••-, m and {μ + ΣίU^O is in any preassigned quadrant.
(If there are only 3 guide points this requires a certain amount of
pulling and hauling, but it is all elementary.)

3. Let {μt} be any sequence of points which satisfies conditions
(1) and (2) in the conclusion of the lemma.

4. Now to define the ζ's. Start with ζx = μλ. Next select a
sequence of guide points Xlf •••, Xm as in 2, so that {μι + Σ Γ i i ^ ) is
in the quadrant opposite μ2. Set ζ2, •• ,ζ m i + i equal to Xί9 * ,λ m i .
Set ζm i + 2 = μ2. Next select a set of guide points which move the point

rnχ + 2

into the quadrant opposite μz and continue on in this manner, thus
achieving the desired goal.

THEOREM 15. Let Abe a normal operator with no point spectrum,
and let N be an arbitrary normal operator. Then W*NWe &(dA)~
for some unitary W if and only if Oe We{N){ — f\Ke^W{N-\- K)~).

Proof. Assume that Ne&(AA)~. Choose a XoeC and an ortho-
normal sequence {/„} such that || (A — λo)/Λ || —> 0. By slightly modifying
the argument given in [21], we can show that (Nfnj, fnj) —> 0 as n5 ~> 0
for some subsequence {/*•}. This proves that 0eXe(N).
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Now assume that Oe We(N). Since A has no point spectrum,
σ{A) must be uncountable. Using Lemma 13, choose a continuous
function h: σ{A) —> C such that h(σ(A)) = S1 (the unit circle). Then
h(A) — V is unitary. Hence V = U + K where U is the bilateral shift
and K is compact by the Berg-von Neumann theorem. Note that

" Z) &(Δvγ by [10] page 118 or [1]. Since &{ΔAY also contains
by [23] corollary to Theorem 3, it follows that &(ΔAY

mD&(Δuγ.
Thus it suffices to show that &(AnY contains a unitary copy of N.
Let ε > 0 be given. Since 0 e We(N), we can choose normal operator
iVΊ such that

(1) HiNΓ-iVilKe
(2) iS/Ί = ΣΓ=-oo λ*i(°, ^ ) ^ i

where the λ̂  's take on only finitely many values.
(3 ) We(N^ contains a neighborhood of 0.

Since we are only looking for a unitary copy of Nu we may assume
U is defined by Uφk — φk+ί for k = 0, ± 1 , . We now set

where

a0

Je-l

3=0

= 0

k

— Σ ^i

for k

for k

' ^ 1

< o

and

Then (XU - UX)φh = (αfc+ι - αfe)% = λfĉ fc for A? = 0, ± 1 , .. . The
"operator" X just defined does precisely what we want but it is not
clear that X is bounded. However, if we first rearrange the λ/s
(we are only interested in a unitary copy of iVΊ) along the lines
of Lemma 14 (treating the forward half and the backward half
separately and adjusting multiplicities) then in fact | |X|| <̂  2HAΓJI.
The proof is complete.

COROLLARY 1. Let A be a normal operator with σp(A) — 0 . Let
T be a pure isometry. Then &(ΔAY contains an operator unitarίly
equivalent to T.

Proof. We know that &{ΔAY => &{AVY where U is the bilateral
shift. We will show that &{ΔVY contains a unitary copy of V,
where V is the unilateral shift. The general case is then obvious.
First we set
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F* 0

F V

where F is a one dimensional operator. By modifying the techniques
of the theorem it is easy to see that &(ΔV)~ contains a unitary copy
of V (let 5 = diag (1/2, -1/2,1/2, -••) and consider VB - BV) and
&(ΔV*Y contains a unitary operator W. Since &(Δu)~ ~D 3ίΓ by [23],
and V ®W is unitarily equivalent V mod J%Γ (see [5]) it follows that

)~ contains V, from whence the general case follows.

COROLLARY 2. Let W be a pure ίsometry. Let N be a normal
operator. Then &(ΔW)~ contains a unitary copy of N if and only
if Oe We{N). Moreover &(ΔW)~ contains a unitary copy of every
pure isometry.

Proof. Observe that {W}f contains no trace class operators and
hence &(AW)~ ~D 3ίΓ by [23]. The rest of the proof follows as above
and we omit it.

REMARK. Let A be normal. The first part of the proof of the
theorem can be modified to show that if T$Jk?{J%f) and We(T) Φ
{0}, then &(ΔA)~ does not contain the set

{W*TW:W unitary} .

In particular, if N is a noncompact normal operator, then &(ΔA)~
does not contain all unitarily equivalent copies of N for any A normal.

In Theorem 15, the condition σp(A) — 0 , implies that the spectrum
of A is uncountable. This hypothesis is not completely gratuitous as
the next example shows.

EXAMPLE. Let E =
2 0
0 - 1

any unitary W.
0 c

Let N =

B 0

y on Sίf^Sίf (i.e., E is a projection).

Then Oe We(N) but we claim W*NWϊ &{ΔE)- for

Indeed &(ΔE) is closed and if A 6 &(ΔE) then A =
0 £If we assume A is self adjoint then A =

Z> 0
B 0 Let U =

Then 0 - Z ) , whence σ(A) = —σ{A). Since N

does not enjoy this last property we conclude that

6. Irreducible D-symmetric operators* An operator Tβ
is essentially normal if T*T — TT* is compact. Joel Anderson has
shown that the unilateral shift of infinite multiplicity is D-symmetric
and this seems to be the only known example of a /^-symmetric operator
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which is not essentially normal. Of course it is far from reducible.
(The shifts in Theorem 12 are also examples but they are mildly
disguised versions of Anderson's example.) In this section we wish
to present an example of an irreducible D-symmetric operator which
is not essentially normal, the first such to the best of our knowledge.

Before getting to the example itself we will need one lemma.

LEMMA 16. Let Tάe £?(£έf) for i = l, ,n. Assume that ||Ti||<^
M for each j . Assume also that there exist mutually orthogonal
subspace βg?l9 , βg?n c 3ίf such that T^gtff = 0 for j = 1, , n.
If Γ = ΈU Tj then 11 Γ|| ^ n1/2M.

Proof. Let / e ^ T where | | / | | = 1. Then / = g © Σ;=i
where /3 e ^ and \\fj\\ = 1. Thus

Tf\\= _
3=1

[ n ~]ι/2Γ n Ί 1 .

V π . 2 V I T.f W2

2-ι a ό \ \ 2u I 1 άJi 11
^ n1/zM.

EXAMPLE 17. Let {en}SU be an orthonormal basis for £ίf and
define S as follows

(2en+1 for ft = 2k k = 1, 2, -
n |Λ_M/9Ϊ _1\ J* Qfc ^ ^ Ofc + 1

The operator S is reminescent of the operators in §4; it is a shift
operator and 2"11|/1| ^ | |S f c/| | ^ 2 | | / | | for all / e J T and k = 1,2, •••.
Thus S is similar to the unilateral shift, which ensures its irreducibility.
It is easy to see S is not essentially normal. It is clear that S does
not commute with a trace class operator and hence R{AS)~ Z) 3£~ by
[23]. It remains to show S is ^-symmetric. Let SX — XS = TF
and let ε > 0 be given. Without loss of generality assume | |X|| = 1.
We wish to find a Y such that ||[S*, Y] -W\\ < ε. We start with
-SXS. Thus

[S*, -SXS] = TF + (1 - S*S)XS - SX(1 - SS*) .

We next show that SX(1 - SS*) e Λ(^)" . Note that (1 - SS*)en --=
anen where

an =

1 for n = 0
- 3 for n = 2fc + 0 k = lf 2,

χ _ 2-w*-i> f o r 2

fc + i < n ^
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It is easy to see that 11 - 2~i2/2k-1) \ £ 2-2~\ Fix m = 2fc° (to be chosen
later) and set

K = projection on {elf , em}

P = projection on {en: n = 2k + 1, k ^ kQ}

and

Note that #, K, P are orthogonal and || (1 - SS*)E\\ ̂  2m"1. Set R =
(1 - SS*)XS. Then R = RK + RE + RP. The term i2if is compact,
hence in R(ΔS*)~~; \\RE\\ <£ 4m"1 so this term can be ignored. It remains
to show RPe R(ΔS*)~. Choose n so large that Snι/2 < ε and fix m > n.

Set

Then

Note that HtSίS^-ψH ^ 4 for all i . We wish to estimate the term
on the right. It can not be handled as in Theorem 12, since every
summand has an infinite number of nonzero columns. Observe how.
ever that PS*set = 0 for i Φ 2k + 1 - j . Thus we set

&?i = spfo: i - 2k + 1 - j for k ^ fc0}

and

for j - 1, 2, . ., n .

It is easy to see that Tό\^L = 0 and 115Γ,-11 ̂  8. The Jg^'s are
orthogonal since |2fel — 2k*\> n for A?!, fe2 > kQ by our choice of k0.
Thus it follows from Lemma 10 that

Σ. < Sn1/2

whence ||[S*, FJ - J8P|| ^ 8n1/2 < ε. This shows that SX(1 - SS*) e
R(ΔS)~. The term (1 — S*S)XS can be handled in the same way (see
the proof of Theorem 12 for additional details). This completes the
proof that We R(ΔS*)~ whence R{AS)~ c R(ΔS*)~. The reverse inequality
is proved in exactly the same way.

REMARK. Let {eJSU be an orthonormal basis for έ%f and define
T as follows
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2en+1 for n = 2*, k = 1, 2,
w k for

Then T is a somewhat more presentable version of S. Since T does
not commute with a trace class operator, R{AT)~ ZD^^bγ [23]. Clearly
T - Se J ^ Thus R(Δτy = Λ(4s)~ and hence is D-symmetric. One
might wonder why we did not start with T in the first place since
it is the more attractive candidate. Unfortunately T is not power
bounded and hence the proof above can not be applied directly.

APPENDIX. We wish to define decomposable operator and to do
so we must first define spectral maximal subspace. However we never
use the special property of spectral maximal subspaces as opposed
to those of ordinary subspaces so the reader may skip this if he
desires.

DEFINITION. A subspace <%f of 3ίf is a spectral maximal subspace
for T if

(1) ^ is invariant for T
and

(2) If %/ is any other invariant subspace for T with σ(T\ ̂ /) c
σ(T\<£f). Then ^

DEFINITION. An operator Te £?(3ίf) is decomposable if for every
open cover {GJΓ of σ(T) there exist spectral maximal subspaces
such that

σ(T\^)dGi for i = l,-* ,n

and
Further information on decomposable operators may be found in

[6]. I am grateful to M. Radjabalipour for a suggestion concerning
the next

THEOREM. Let Abe a decomposable operator and T an arbitrary
operator in £?{ί%f). Assume there exists an open cover {Ga} of
σ(A) Π p(T) where Gaczσ(A) Π p(T) for each a, and maximal spectral
subspaces Jί?a such that σ(T\J?fa)c:Ga and V£fa = ^ Then the
equation YA = TY has only the solution Y = 0.

Proof. Assume YA = TY and fix an g?a. Thus σ(A\<£?a) = Fa
Ga c p(T). Let u e J?fa. Set /(λ) == Y(A - λ)"1^ for λ e F' and observe
that / is analytic on F'. Set g{X) = ( Γ - X)~ιYu and observe that
gr is analytic for Xep(T).
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Claim, f and g coincide on F'Γ\ p(T). For ζeF'Πp(T) note
that (Γ - ζ)[/(ζ) - flr(ζ)] = [(Γ - ζ) Γ](A - Q-'u ~Yu = Yu~Yu = 0.
Since ζep(T) it follows that f(Q — g{ζ). Thus # has a bounded
analytic extension to the entire plane. Since g vanishes at o o ^ must
be identically zero whence Yu = 0. Since α was arbitrary, and V<Sfa =

it follows that Γ = 0.

EXAMPLE. Note that in the context of the previous theorem it
does not suffice to merely assume that σp(T) |Ί σ(A) = 0 . Let {/Jϋ*,
be an orthonormal basis for 3ίf. Let A be the bilateral shift; thus

a 1 1 i Let

and

Then AX = XT although the point spectrum of T (and Γ*) does not
overlap o (A).
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