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WORD EQUATIONS IN A BAND OF PATHS

JAMES NELSON, JR. AND MOHAN S. PUTCHA

In this paper we introduce a multiplication of paths
which yields an idempotent semigroup. We study the pro-
perties of this band and solve all word equations in this
band.

Multiplying paths in a topological space by concatenation is a
classical idea in algebraic topology. However, in R", identifying up
to homotopy trivializes all paths. There are many ways of obtaining
associativity with less identification. Looking only at the images of
the paths in R", yields an inverse semigroup (cf. [6]). Lesser
identifications lead to semigroups which locally resemble free semi-
groups [4, 5].

1. Preliminaries. Throughout this paper, R,, R, Z* will denote
the sets of nonnegative reals, reals and positive integers, respec-
tively. If S is a semigroup, then S' =S if S has an identity ele-
ment; St = S U {1} with obvious multiplication if S does not have an
identity element. For basic notions of semigroups, see [1].

We will let 27 denote the set of all strictly increasing continu-
ous self-maps ¢ of [0,1] with ¢(0) =0 and ¢(1) =1. Let ne Z*+
remain fixed throughout this paper and let _#Z denote the set of all
rectifiable, continuous functions f from [0,1] into R* such that
f(0) = 0 and f is not constant on any subinterval of [0,1]. If fe_z
then let I(f) denote the length of f. If f,ge _« thenlet fxge _#Z
be defined by

(2x) , 0<z=<1/2

f*g(x): f(1)+g(2x_1)’ ]_/2§x§1-

For f,ge . #, define f =g if g = fop for some e 2. Note that
if f =g, then I(f) = Il(g9). Intuitively, considered as a function of
time, we are interested in the way our path is traced but not the
speed. = is an equivalence relation on _#Z Let # = _#/=. The
operation * defined above remains well defined on .#Z and (_# *) is
a cancellative semigroup [4]. (Note that in [4], * was not used to
denote this operation.) If fe_ then let f denote the equivalence
class of f and define I(f) = I(f). Then I(f) is well defined. Let
fe # TFor ac(0,1], define g(a) = I(fi,.1) Where fy, .1 denotes the
path from 0 to a (cf. [4]); g(0) =0. By the usual arguments of
analysis, ¢ is continuous. So for any Be (0, I(f)), there exists ae
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(0,1] such that I(fipm) =B. Let &# = _Z* and set I(1)=0. It
follows from the above that for any ae€ <&, ac|0, l(a)], there exist
b, ce &% such that a = b=¢, I(b) = a, l(¢) = l(a) — a. Also note that
for any a,be . <Z, l(a*b) = l(a) + I(b). Let a,b,c,de & such that
axb=cxd, l(a) =1(c). Then by [4], a =¢ and b = d.

We now define a new operationon <Z. Let a,bec <Z. First assume
la) < U(b). Let a = a,*a,, b =0b,+b, where l(a,) = l(a,) = I(b,)). Then
define ab = a,*b,. Next assume I(b) < l(a). Let a = a,xa,, b = b, b,
where [(a,) = I(b,) = l(b,). Then define ab = a,*b,. From now on
when we talk about <7, it is to be understood that we are talking
about <# with respect to the operation just defined. Visually we
can think of the paths colliding and exactly half of the smaller path
and an equal part of the larger path destroying each other. Appli-
cations, outside of mathematics, of this and similar models will be
developed at a later date.

THEOREM 1.1. <& 1is a band (tdempotent semigroup) with
identity 1. For any a, b€ <7, l(ab) = max. {l(a), I(b)}. For any a € <7,
B, = {blbe &Z, l(a) = U(b)} is the rectangular band component of a.
R,, with reversed order, is the maximal semilattice image of <&
and 1 is the corresponding homomorphism.

Proof. First we show that <& is associative. Let a,d, cc .
We will show (ab)c = a(be). First assume Il(a) = I(b) = l(c). There
exist a,, a,, b, b,, bs, ¢, ¢, ¢;€ & such that a = a,*a,, b =0b, xb,* b,
€= ¢, % ¢, ¢y Uay) = Uay) = Ub,) = Ue,), Uby) = I(c,) and I(b, * b,) = 1(bs).
Then ab = a, * b, x b, and (ab)c = a, * b, * ¢;. Also be = b, x b, * ¢, and
albe) = a, xby*¢;. So a (be) = (ab)e. Next assume l(a) < l(c) Z 1(b).
There exist a,, a,, by, by, bs, ¢, ¢;€ <& such that ¢ = a,*a,, b = b, * b, * b,,
¢ = ¢ * 0y, la) = Ub) = Ua), Ubs) = l(e,) = l(c.). Then ab = a,*b,*b,
and (ab)e = a, * b, x¢,. Alsobc = b, xb,*c,and a (be) = a, xb, *¢c,. So
(ab)e = a(be). This takes care of the case when a has smallest length.
The case when ¢ has smallestflength is dual. So we are left with the
case when b has smallest length. By right-left duality, we can
assume (b)) < l(a) < l(¢). There exist a,, a,, as, by, b, ¢, ¢, ¢;€ && such
that ¢ = a, x @, * a3, b = b, * by, ¢ = ¢, * ¢, * €3, Uay) = Uaz * a5) = (e, * ¢,)
and I(b,) = I(by) = l(¢,) = l(ay). Then ab = a, * a, x b, and (ab)ec = a, * ¢,.
Also, bc =b,*x¢c,x¢, and a (be) = a, *¢;. So (ab)e = a(be) and & is
associative. It is clear that a*=a for all a€.<# and so & is a
band. It is also clear that Il(ab) = max {l(a), [(b)} for all a,be Z.
Let b, ce <#,. Then I(b) = l(¢). There exist b, b,, ¢,, ¢, € <& such that
b=1>b,+b,, ¢ =c xc, and I(b,) = I(b;) = l(e,) = l(c;). So be = b, x ¢, and
beb = b, b, = b. So each <Z, is a rectangular band.

Conversely if R is any subrectangular band of B containing a
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and if be R, then bab = b so I(b) = max {l(a), I(b)}, and hence I(b) =
I(a). Similarly aba = a implies I(a) = I(b), so I(b) = l(a) and R < B,.

LEMMA 1.2. Let a,b,cc <& such that I(b) < l(a) and 1(b) < l(c).
Then abc = ac.

Proof. By symmetry, assume l(a) <I(c). There exist a,, a,, b,, b,,
ey, €y C€F such that a =a,*a,, b =0,%b,, c=¢,*x¢%¢; la) =
lle, * ¢;) = U(ay) and I(b) = I(b;) = l(c,). So bc = b, *¢, *¢c, and a (ab) =
a, *c;. Also, ac = a,*¢;. So a(be) = ac.

LEMMA 1.3. Let a,b,ce < such that la) Z1U0b) < lc) and
ac = be. Then ab = b and there exists a’' € <& such that l(a) = l(a')
and ¢ = a'be.

Proof. Let a=a,*ay, b=0,%b,xb;, ¢ =c¢,%¢,*¢c, With l{a,) =
la,) = U(b,) = U(e,), U(bs) = l(c,) and I(b,*b,) = I(b;). Then ac = a,*c,*c,
and bc = b, *b,*¢c;. So a,=b, and b, =¢,. Thus, ab =a,*b, *xb, =
by*b,xb,=b. Let a’ =e¢, *a, Then I(a) =1(a') and a'b = ¢, = b, * b,.
So a’be = ¢, x b, x¢; = ¢, * €, * ¢; = c.

Following is the right-left dual of Lemma 1.3.

LEMMA 1.4. Let a,b,ce<Z such that l(a) Z10b) = l(c) and
ca =cb. Then ba =b and there exists o' € <& such that l(a) = l(a’)
and ¢ = cba’.

LeEMMA 1.5. Let a, b, c€ & such that abc = b. Then for de <7,
the following are equivalent.

(1) ade =0b and I(d) = 1(b).

(2) d=a'be’ for some a’, ¢’ € & with l(a) = l(a’) and l(c) = I(c’).

Proof. First note that l(a) < I(b) and I(c) < I(b).

1) =(2). By Lemma 1.2, ad = aded = bd. Similarly de¢ = db.
By Lemmas 1.3 and 1.4, there exists a’, ¢’ € & such that l(a) = I(a’),
lie) =1(") and d = a’bd = db¢’. So d = a’bdbc’ = a'bc’.

(2) = (1). Clearly I(d) =1(b). By Lemma 1.2, adc = aa'bc’'c =
abc = b.

LEMMA 1.6. Let a,b,c,de <Z such that U(b) = l(a), l(c) = l(d)
and abcd = be. Then ab =b and c¢d = c.

Proof. Since l(bc) = U(d), abc = abedbe = be. So (ab)be = b(be).
Since I(ab) = I(b) < l(bc), Lemma 1.3 implies that (ab)b = b. So ab = b.
The other assertion is proved dually using Lemma 1.4.
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LEmMmA 1.7. Let a,, a, b, b,, ce && such that l(c) = l(a), Ua,),
(b)) Ub,) and aca, = b,cb,. Then

(i) If Ua) = U0b) and U(b,) = Uaz), then a;b,ab. = b,a,.

(ii) If Ua) £ Ub,) and la,) < U(b,), then a,bb.a, = b;b,.

Proof. a,ca,c = b,che and so by Lemma 1.2, a,c = bec. Similarly
ca, = cb,.

(i) By Lemmas 1.3 and 1.4, a,b, = b, and a,b, = a,. So a.b,a.b, =
b.a,.

(ii) By Lemmas 1.3 and 1.4, a,b, = b, and b,a, = b,. So a,bb,0, =
b.b,.

LEmMA 1.8. Let a,, a, b, b€ & such that 1(b,) = l(a.), l(ay) =1(b,)
and ab,ab, = ba,. Then for cc€ <&, the following are equivalent.

(1) aca; = beh,, le) = U(b,) and l(c) = Uas).

(2) ¢ = abdab; for some ai, by, d e F with l(a) = lay), 1(b;) =
(b, Ud) = 1), Ud) = Ua).

Proof. (1)=(2). a.ca,c =Dbecbe and so a,c = be. Similarly
ca, = ¢b,. By Lemmas 1.8 and 1.4, there exist ai, b, <& such that
la,) = Uay), (b)) = I(by) and ¢ = a;b,c = casb;. So ¢ = a;b,cazd;.

(2) = (1). By Lemma 1.6, a,b, = b, and a;b, = a,. By Lemma 1.2,
a.ca, = a,a.b,daba, = a,b,da, = b,da,. Also b,cb, = b,a;b,dab:b, = b,dasb, =
bda,. So a,ca, = bch, Clearly l(c) = I(b,), l(c) = l(a,).

LEMMA 1.9. Let a, a, b, b, <& such that 1(b,) = l(a,), (b)) =
la,) and a.bb,a, = bb,. Then for c e B, the following are equivalent.

(1) aca, = bed, and l(c) = U(b,), Ue) = U(by).

(2) ¢ = abdba; for some d, a;, a,€ & with l(a) = lay), l(a,) =
Uay), Ud) = U(b) and U(d) = 1(b.).

Proof. (1)=(2). a,cac =>becbe and so a,c =be. Similarly
ca, = cb,. By Lemmas 1.3 and 1.4, there exist ai, a; such that
¢ = ab,c = cbyay, l(a) = l(a;) and l(a,) = l(a;). Then ¢ = a;b,ch.a;.

(2) = (1). By Lemma 1.6, ab, =b, and b, =0b,, Then by
Lemma 1.2, a.ca, = a,a:b,db,aia, = a,b,db,a, = b,db,. Also b,ch, =
b,a:b,db,asb, = bdb,. So a,ca, = bcb,. Clearly, l(c) = I(b,) and Il(c) =
1(b,).

2. Word equations. If I" is a nonempty set, then let & =
& (I') denote the free semigroup on I". If ' ={X, -+, X}, w=
wX, -, X)eF*and a, ---, a,c &, then let w(a, ---, a,) be the
element of <# obtained by replacing X, ---, X,, in w by a,, ---, a,
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respectively; if w = 1, then w(a, -+-, a,) = 1. For introduction to
word equations in free semigroups, see [2, 3].

DEFINITION. By a word equation in variables X, ---, X,, we
mean {w, w,} Wwhere w, = w/(X, -+, X,), w,=wy,(X, -+, X,)e€
F (X, ++-, X,)t. It is not necessary that each X, appears in w,w,. By
a solution of {w,, w,} in <&, we mean (a,, +--, a,,) Wherea,, ---, a,, € &
and w,(a, *+, a,) = Wya, *++,a,). A solution (a, --+,a,) iS an
ordered solution if I(a,) < l(a,) < -+ < la.w).

ReMARK 2.1. In the above situation, note that the solutions of
{w,, w,} are exactly all the ordered solutions obtained by relabeling
the X,’s in the m! possible ways. So we will concentrate on obtaining
the ordered solutions of word equations.

THEOREM 2.2. Let me Z*, m = 2. Let w,w,e6 F =7 (X,,+++,X,).
Suppose w, = u,X,u, for some u, u, €. * such that X, does not
ocecur 1IN U, U, W, and X,_, occurs in w,w, Let v, = UWMU,.
Consider the word quation {v, v,} in variables X, «-+, X,_,. Let
@y, =+, @p_y) be an ordered solution of {v, wy} im <& Set a =
Uy(Qyy =0y Q) O=We(Ayy =) Apuy)y C=Uy(0y, =+, Cpy). Let o', c' € F
such that la) = la") and le) = U(). If a, = a’be’, then (a, ---,
Ay, ) 18 an ordered solution of {w;, w,}. Moreover, every ordered
solution of {w,, w,} in <& is obtained in this manner.

Proof. Let (a, +--, a,) be an ordered solution of {w, w,}. Let
a = U@y, ** %y Apr)y b= Wy(ay, +++, py), ¢ = U@y, +++, a,_). Then
aac = b. Clearly then, abc = aaa,.cc = aa,c =b. So (a, -+, Gp_,)
is an ordered solution of {v, w,}. New it follows from Lemma 1.5,
that a,, has the prescribed form. The converse also follows from
Lemma 1.5.

In what follows, if wes# (X, - -+, X,)',, then let 6w)=
max {i¢| X; appears in w}; (1) = 0.

THEOREM 2.3. Let me Z*, m =2. Let w,w, €6 & = .F (X,,+++,X,).
Suppose w, = u, X, Uy, W, = v,X,v, for some u, Uy, v, v,€.F * such
that X, does mot appear in U, u,0,0,.

(i) Suppose O(u,) = 0(v,) and 0(v,) =< 0(w,). Let f, = uvuw, and
fo = vu,. Consider the word equation {f,, fa} in variables X,,-++, X,._,
and let (a, +++, @&, be an ordered solution of {f, fo} in Z. Set
A = U@y, o00, Qnoy)y A = Us(@y, 00, @), Bi=v(ay, o0, @) and
B, = v)a,, +++, @4n_,). Let A}, B;,, De & such that l(4;) = l(A), U(B;) =
By, (D) = la,_,). Set a,= ABDA,B,. Then (@, *+*, Gp_y, &) 18
an ordered solution of {w, w,}. Moreover, every ordered solution of
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{w, w.} in Z is obtained im this manner.

(ii) Suppose 6(u,) < 0w, and 6(uy) < 0(v,). Let f, = uvvus,
fo = v,0,. Comsider the word equation {f,, f3} in variables X, -+, X,,_,.
Let (a, «++, a,_,) be an ordered solution of {f, fo} in <&. Set A, =
U(@sy * o0y Umes)y Az = Us(@y, *+ 2, Qpey)y B, =vi(ay, +++, @) and B, =
V@, ***, An_y). Let Aj, A;, De & such that 1(A]) = I(A), l(4;) = 1(4,),
D) = l(a,,_). Set a, = AB.DB,A;,. Then (a, +++,Qpn_y, @,) 1S aN
ordered solution of {w, w,}). Moreover, every ordered solution of
{w,, w,} in < is obtained in this manner.

Proof. Suppose (a,, +--, a,) is an ordered solution of {w,, w,} in
B Let A, = uy(ay,++, Qny)y Az = Us(@yy v, Quy)y By = 0,(0yy0 22, @py)
and B, = v,(a, ***, @n_y). So Aa,A, = Ba,B,.

(i) We have U(4) =UB) = Uan), UB)=1U4)=lan). By
Lemma 1.7(1), A,B,4.B, = B,A4,. So (a, -+, &,_,) is an ordered solu-
tion of {f,, fo}. That a, has the required form, follows from Lemma
1.8. The converse also follows from Lemma 1.8.

(ii) We have [l(4) =IB) = la,), UA) =UB) =lan). By
Lemma 1.7(ii), A.B,B;A, = B,B,. So (&, *+-, a,_,) is an ordered solu-
tion of {f,, fz}. That a, has the required form, follows from Lemma
1.9. The converse also follows from Lemma 1.9.

THEOREM 2.4. Let me Z*, m =2, w,, w,€ ¥ =% (X, -+, X,,).

(i) Suppose w, = u, X, u, X, u; for some u,, u, u; €. * such that
X,, does not occur in w,u,w,. Let f, = u, X, Uy, fo = w,. Thentheordered
solutions of {w,, w,} in <& are exactly the same as the ordered solu-
tions of {fi, f}.

(ii) Suppose w, = u X, u,X,u;,, w,= v,X,0.X,v; for some
Uy, Uy, Uy Vs, Vg, V3 € F ' such that X, does mot occur im u,uw,v,. Let
fi = w, X4, fo = v,.X,v;. Then the ordered solutioms of {w, w,} in
F are exactly the same as the ordered solutions of {f., fa}.

(iii) Suppose w, = U, X, U, X, U5, W, = v, X, 0, for some u, U, U,
v, V,€.F ¢ such that X, does mot occur in wuw,v,. Let f, = u, X, us,
fo = v.X0;,. Then the ordered solutions of {w,, w.} in & are exactly
the same as the ordered solutioms of {f., fa}.

Proof. Let a,, -+-,a,€ <% such that l(a) < --- < l(a,). Then
in all cases fiay, -, an) = wlay, -+, a,) and fia, -, Q) =
wz(an M) a/m)-

REMARK 2.5. Let {w, w,} be a word equation in variables
X, -, X,. If w, or w,=1, the solutions are obvious. So assume
w, #1, w,#= 1. If m =1, the solutions are again obvious. So let
m = 2. We claim that the ordered solutions of {w, w,} can be
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described in terms of ordered solutions of a certain word equation
in m — 1 variables. If some X; does not appear in w,w,, then {w,, w,}
can itself be considered as a word equation in m — 1 variables and
our claim holds trivially. Otherwise either {w,, w,} or {w,, w.}
satisfies Theorems 2.2, 2.3 or 2.4 and our claim still holds. Thus
given any word equation, we can completely describe all its solutions
in 2.

ExamMPLE 2.6. Consider the word equation {BCBA, CABAC} in
variables A, B, C. There are six ways of ordering A, B, C. Finding
the ordered solutions for all these equations (using the theorems of
this section) and simplifying, we see that following is the list of all
solutions in <# of the above word equation.

(1) A=a
B=1b%
C = beba ,

where a, b, ¢ € .

(2) A = c¢'bac
B=c¢b
C=c
where a, b, ¢, ¢’ € <7, l(c) = l(c') < I(b) = la).
(3) A = c¢'babe
B=b
C=bc
where a, b, ¢, ¢’ € &, I(b) < l(c) = () £ la).
(4) A =ac
B = caba’
C=c¢
where a, a’, b, c€ <7, l(c) < l(a) = l(a") < 1(b).
(5) A=a
B = c¢bea’
C=ca

where a, o', b, c € 7, l(a) = l(a') < l(c) < I(b).

3. Concluding remarks. Instead of starting with the semi-
group of paths, we can start with semigroup of designs around the



196 JAMES NELSON, JR. AND MOHAN S. PUTCHA

unit disc of [5] and analogously define a new idempotent, associative
multiplication. Then the results of this paper remain true for that
band. More generally, let E be any band with an identity element.
Let 2 be its maximal semilattice image and [ the corresponding
homomorphism. Consider 2 with the order given by ¢ < f if and
only if ef = f. If 2 is linearly ordered and if Lemmas 1.2, 1.3 and
1.4 are true for &, then all of §2 remains true for #.
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