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PM-NORMALITY AND THE INSERTION OF
A CONTINUOUS FUNCTION

ERNEST P. LANE

Spaces in which each regular closed subset is an inter-
section of a sequence of closed neighborhoods are investigated.
This property is shown to be equivalent to each of the fol-
lowing: Each regular closed subset is a zero set of a con-
tinuous function. Each normal lower semicontinuous function
defined on the space is a limit of an increasing sequence
of continuous functions. The space satisfies the streng C
insertion property for normal semicontinuous functions.
Separation properties of Xx I, which are weaker than nor-
mality, are related to the insertion of a continuous function
between two comparable functions defined on X.

In greater detail, the following conditions are shown to be equi-
valent: (i) Each regular closed subset is an intersection of a sequence
of closed neighborhoods. (I.e., each regular closed subset is a regular
G;.) (ii) Each regular closed subset is a zero set of a continuous
function. (iii) For each normal lower semicontinuous function f de-
fined on the space and for each real number », {xe X: fx) < 7} is a
zero set of a continuous function. (iv) If g and f are real valued
functions defined on X such that ¢ is normal upper semicontinuous,
f is normal lower semicontinuous and g < f, then there exists a con-
tinuous function 7% defined on X such that ¢ < h < f and such that
for any point x for which g(x) < f(x), then g(x) < h(x) < fx). (v)
Each normal lower semicontinuous function on X is a limit of an
increasing sequence of continuous functions. Any space that satisfies
one of these equivalent conditions is a weak cb-space and has disjoint
regular closed subsets separated by disjoint open sets.

1. pm-normal spaces. A subset B of a space X is a regular
G, in case B is an intersection of a sequence of closed sets whose
interiors contain B. A space is mildly normal in case disjoint regular
closed subsets are separated by disjoint open sets. Since it turns
out that any space where each regular closed subset is a regular G,
is mildly normal, as will be noted below, it is convenient to make
the following definition: A topological space X is pm-normal (for
perfectly mildly normal) in case each regular closed subset of X is
a regular G,.

The abbreviations lsc [respectively, usc] for lower [respectively,
upper] semicontinuous and nlsc [respectively, nusc] for normal lower
[respectively, normal upper] semicontinuous are used throughout the
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remainder of the paper. The upper and lower limit functions of f,
which are denoted by f* and f,, respectively, are defined as follows.
For each 2 in X, let

f*(x) = inf {sup,.» f(¥): N is a neighborhood of x}
and
f«(x) = sup {inf,.y f(¥): N is a neighborhood of 2} .

The function f is nlse if and only if f = (f*). and f is nusec if and
only if f = (fy)*.

THEOREM 1.1. Consider the following conditions:

(i) A space X is pm-normal.

(ii) FEach regular closed subset of X is a zero set.

(iii) For each mnlsec function f and for each real number v,
{xe X: flx) £ r} is a zero set.

(iv) Each nlse function defined on the space is a limit of an
increasing sequence of continuous functions.

(v) A space X is mildly normal.

(vi) Each countable regular open cover of X admits a locally
finite partition of unity subordinate to it.

(vil) A space X is weak cb.
Then (i), (ii), (ii), and (iv) are equivalent, (i) implies (v), (i) implies
(vi), and (vi) implies (vii).

Proof. (i) = (v). If F and K are disjoint regular closed sub-
sets, then by (1), F =Ny, 4, and K = ;- B, where A, and B, are
closed and Fcinf A, and Kcint B, for each n. Since

[Ne-.cl(int A)]N K = @ and [Ny, cl(int B,)] N F = @, it follows
from Lemma 2.6 of Zenor [16] that there exists an open set G that
contains F' such that (c1G)N K = @. Thus X is mildly normal.

(i) = (ii). If D is a regular closed set, then by (i), D = Ny, F,
where each FE, is a closed set such that DcCint F,. Since D and
X — int E, are disjoint regular closed sets and since (i) implies that
X is mildly normal by the above proof, it follows from Corollary 3.3
of Lane [6] that D and X — int E, are completely separated. Since
there exist zero sets Z, such that D < Z, C inf E, and since D = (N, Z.,
then D is a zero set.

(ii) = (iii). If fis nlsc and if # is a real number, then by Theorem
3.2 of Dilworth [1], {xe X: fx) < r + 27"} is a union of regular closed
sets for each natural number n. Thus cl{zre X:fx) <r + 27"} is a
regular closed set; since

freX:flx) = r}=Niacl{re X flo) <r + 277,
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it follows from (ii) that {xe X: f(x) < r} is a countable intersection
of zero sets. Thus {xe X: f(x) < r} is a zero set.

If condition (iii) is satisfied, Tong’s proof [15] that each lsc
function on a perfectly normal space is a limit of an increasing
sequence of continuous functions is trivially modified to show that
(iv) is valid. The proof that (iv) implies (i) is elementary and is
omitted.

(i) = (vi). If (i) is satisfied, then any countable regular open
cover of X is a countable cozero cover of X. By Lemma 5.2.4 of
Engelking [3], this cover has a countable locally finite refinement
consisting of cozero sets. By Theorem 1.2 of Morita [13], this locally
finite cozero cover has a locally finite partition of unity subordinate
to it.

That condition (vii) is an immediate consequence of condition (iv)
follows from Theorem 3.1 of Mack and Johnson [11].

It is straightforward to show that any open subspace of a pm-
normal space is pm-normal. Since any closed subset of a perfectly
normal space is a zero set and hence a regular G, set, it follows that
a perfectly normal space is pm-normal. But a c¢b-space need not be
pm-normal. The closed ordinal space [0, 2] satisfies conditions (v) and
(vi) of the above theorem but is not a pm-normal space. The fol-
lowing example shows that a pm-normal space need not be perfectly
normal: Let X consist of concentric circles C, and C,. A basic open
set about a point x on the inner circle C, consists of an arc on C,
centered at = together with the projection of this arc on the outer
circle C,; a basic open set about a point y on the outer circle is an
arc on G, centered at y. If F is a closed subset of X and if y is in
F NG, then the radial projection ¢ of ¥ onto C, must be in F. If
F is a regular closed subset of X and if 2 is in F N C,, then the
radial projection y of x onto C, must be in F. It is easy to see that
a closed subset of X need not be a zero set while each regular closed
subset of X is a zero set. Consequently X is pm-normal but not
perfectly normal.

2. Strong C insertion. It is convenient to use the terminology
of Lane [7] throughout the remainder of the paper. The following
definitions are repeated here for convenience. A property P defined
relative to a real valued function on a topological space is a C property
provided any constant function has property P and provided the sum
of a function with property P and a continuous function also has
property P. If P, and P, are C properties, then: (i) A space X hasg
the weak C imsertion [respectively, C insertion] property for (P, P,)
if and only if for any functions g and f on X such that g < f [re-
spectively, g < f1, ¢ has property P,, and f has property P, then
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there exists a continuous function # on X such that g < h < f [re-
spectively, g <h < f]. (ii) A space X has the strong C insertion
property for (P, P,) if and only if for any funections ¢ and f on X
such that g < f, g has property P, and f has property P, then
there exists a continuous function # on X such that ¢ <& < f and
such that for any = in X for which g(x) < f(x) then g(x) < h(x) <
f(x). The following simple relationship between these concepts is
established.

PROPOSITION 2.1. Let P, and P, be C properties and assume that
the space X satisfied the weak C imsertion property for (P, P,). The
space X satisfies the strong C imsertion property for (P, P,) if and
only if X satisfies the strong C insertion property for (P, continuous)
and for (continuous, P,).

Proof. Assume that X satisfies the strong C insertion property
for (P,, continuous) and for (continuous, P,). If ¢ and f are func-
tions on X such that g < f, g satisfies property P,, and f satisfies
property P,, then since X satisfies the weak C insertion property for
(P, P,) there is a continuous function ¥ on X such that ¢ <k < f.
Also, by hypothesis there exist continuous functions s, and h, on X
such that ¢ £ h, <k and if g(x) < k(x) then g(x) < h(x) < k(x) and
such that & < h, < f and if k(x) < f(x) then k(x) < h,(x) < flx). If a
function h is defined by h(x) = (ho(x) + h,(2))/2, then % is continuous,
g =< h < f, and if gx) < f(x) then g(x) < h(x) < f(xr). Hence X satisfies
the strong C insertion property for (P, P,). The converse is obvious
since any continuous function must satisfy both properties P, and P,.

The following result was announced in Lane [5].

THEOREM 2.2. The following conditions are equivalent:

(i) The space 1s pm-normal.

(ii) The space has the strong C insertion property for (nusc,
continuous) [respectively, (continuous, nlsc).

(iii) The space has the strong C insertion property for (musc,
nlsc).

Proof. In order to see that (i) implies (ii), let ¢ and f be fune-
tions defined on a pm-normal space X such that ¢ < f, ¢ is nuse,
and f is continuous. Since f — ¢ is nlse, it follows from Thorem 1.1
that

A={xeX: (f— g = 0}

is a zero set. Thus there exists a continuous function » mapping
X into [0, 1] such that p~'(0) = A. Since X — A is a cozero subset
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of the weak cb-space X, it follows from Proposition 3.2 of Mack and
Johnson [11] that X — A is a weak cb-space. Thus, as noted in Lane
[7], the space X — A has the C insertion property for (nusc, con-
tinuous). Thus there is a continuous function % defined on X — A
such that g(z) < u(x) < f(x) for all 2 in X — A. Let v be a function
defined on X by

v(x) =0 if z€d

— (@) _ ; _

v(x) REy s w———my (flx) —ulx) if zeX—A.
Then v is a continuous function defined on X. If » = f — v, then h
is a continuous function on X, g < h < f and if g(x) < f(z), then
g(x) < h(x) < f(x). Thus X satisfies the strong C insertion property
for (nusc, continuous). (This proof uses a technique due to Michael
[12]. It is also possible to construet a proof of this implication based
on Theorem 3.1 of Lane [7].)

Assume that X satisfies condition (ii). If F' is a regular closed
subset of X, and if f=1 on X, g=1o0on Fand g =0 on X — F,
then, g < f, ¢ is nuse, and f is continuous. By (ii) there is a con-
tinuous function 2 on X suchthat g < A < fand0 <h <lon X — F.
Since FF= Ny, {xeX:hix) =1 —n"'}, F is a zero set. Thus X is
mildly normal and consequently X satisfies the weak C insertion
property for (nuse, nlse) (by Corollary 2 of Lane [8]). In view of
Proposition 2.1, condition (iii) is satisfied. The proof that (iii) implies
(i) is straightforward and is omitted.

Michael [12] proved that a space satisfies the strong C insertion
property for (usc, lsc) if and only if the space is perfectly normal.
This result was obtained later as a corocllary to Theorem 3.1 of Lane
[7]. Itis a trivial observation that strong C insertion for (use, lsc)
and strong C insertion for (use, continuous) [respectively, (continuous,
Isc)] are equivalent in a perfectly normal space. It therefore should
have been observed that Corollary 3.8 on page 189 of Lane [7] is an
immediate consequence of Michael’s result. It appears, however,
that the observation made in Proposition 2.1 is useful in the proof
of condition (iii) of Theorem 2.2. In the situation where f is nlse
and ¢ is nuse, neither the technique used by Michael [12] nor Theorem
3.1 of Lane [7] applies since f — g need not be nlse. It was observed
in Corollary 3.3 on page 183 of Lane [7] that a space X satisfies the
strong C insertion property for (use, nlsc) [respectively, (nusc, lsc)]
if and only if X is almost normal and if each closed subset of X is
an intersection of a sequence of regular open sets. By Corollary 2
of Zenor [16], these properties of X are seen to be equivalent to X
is perfectly normal. Hence this result is also a corollary of Michael’s
result. In summary, the strong C insertion properties for (i) (use,
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Ise); (ii) (use, nlse); (iii) (use, continuous) are equivalent.

3. Cinsertionand X x I. The following equivalences are known:
(i) The space X satisfies the C insertion property for (use, lsc) if and
only if X x I is normal. (ii) The space X satisfies the C insertion
property for (use, continuous) [respectively, (continuous, lsc)] if and
only if X X I is 0-normally separated. (iii) The space X satisfies the
C insertion property for (nuse, continuous) [respectively, (continuous,
nlsc)] if and only if X x I is weakly d-normally separated. The
equivalence (i) was proved independently by Dowker [2] and by
Katétov [3] by proving that each of the two properties is equivalent
to X is normal and countably paracompact. Condition (ii) follows
from Mack [9] and [10] by observing that each of the two properties
is equivalent to X is a cb-space. Similarly, (iii) follows from Mack
[10] and from Mack and Johnson [11] by observing that each of the
properties is equivalent to X is a weak cb-space. The following
results are an attempt to understand the relationship between C
insertion for the space X and separation properties for X x I by
discovering a direct relationship.

LemmA 3.1. If f is a function from X into the interior of I,
let
Ly={&,)e X x [0 =t < f(w)}
and
Us={x, ) e X X L. flx) =t < 1} .

(i) If f is continuous, then L; and U; are zero sets in X X I.

(ii) If f is lsc [respectively, usc], then U, [respectively, L;] is
closed in X X I.

(ili) If f is mlsc [respectively, nuscl, then Uy [respectively, Ly]
18 regular closed in X X I.

The proof of the lemma, which is elementary, is omitted. This
observation and certain results concerning weak C insertion properties
of the space X are utilized to obtain the following propositions.

THEOREM 3.2. If X x I is mildly normal, then X satisfies the
C insertion property for (nusc, nlsc).

Proof. If g and f are functions on X such that g < f, ¢ is nuse,
f is nlse, let

F=1r@ + £ +1]/2

and
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g =1l +lgh+1)/2.

Then § and f map X into (0,1), § < f, g is nusc, and £ is nlse. By
Lemma 3.1, L; and Uy are regular closed subsets of X x I. Since
X x I is mildly normal and since L; and U; are disjoint, these sets
are completely separated. If F' is a continuous function from X x I
into I such that F =0 on L; and F =1 on U;, define a function &
from X into (0, 1) as follows:

b(x) =sup{tel: Flz,t) < 1/2} .

Then F(x, b(x)) =1/2, § < b < f, and since b is the upper boundary
function of the closed subset

{(xz,t)e X X I F(x, t) < 1/2},

b is usc. _
If a function k£ from X into I is defined by

E(x) = inf {t: F(x, t) = 1/2}

then, as above, k is Isc. Also, § <k <b < f. Since k is Isc, b is
use, and & < b, it follows that & < ((k)*). < b. Since ((k)*).)")« =
((B)*),, the function d defined by d = ((k)*)* isnlse. Andg<d < f.
Since —d is nuse, —§ is nlsc, and since —d < —§, then by exactly
the same argument as used above, there is a nlsc function —7 de-
fined on X such that —d < —% < —§. Since X x I mildly normal
immediately implies that X is mildly normal, then X satisfies the
weak C insertion property for (nuse, nlsc) by Corollary 2 in Lane
[8]. Thus there is a continuous function % on X such that % < & < d.
If

h(z) = 2h(x) — 1)/ — | 21(x) — 1)),

then & is a continuous function on X with ¢ < h < f. Thus X has
the C insertion property for (nuse, nlse).

It is straightforward to see that if X satisfies the C insertion
property for (nuse, nlse), then X is mildly normal and a weak cb-
space. It would be interesting to know if the converse of this is
valid or if the converse of Theorem 3.2 is true. Shchepin [14] gave
an example of a mildly normal space X such that X X I is not mildly
normal.

Since an almost normal space satisfies the weak C insertion
property for (usec, nlsc) [respectively, (nuse, lsc)], it is possible to use
the result of Lemma 3.1 and the technique of the proof of Theorem
3.2 to establish the following result. The details of the proof are
entirely analogous and are omitted.
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THEOREM 3.3. If X X I is almost normal, then X satisfies the
C insertion property for (usc, mlsc) [respectively, (nuse, lsc)].

The author is indebted to the referee for suggestions that led to
the improvement of the paper. In particular, the proof of Theorem
3.2 was significantly simplified.

Added in proof. Reference should have been given to Robert
L. Blair’s paper “Spaces In Which Special Sets Are z-Embedded,”
Canad. J. Math., 28 (1976), 673-690; the concept of a pm-normal
space was investigated and was termed an O, space.
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