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ifO-EQUIVALENCES AND EXISTENCE OF
NONSINGULAR BILINEAR MAPS

KEE Y U E N LAM

We show how to use homotopy theoretic methods to
construct maps between various truncated projective spaces
that induce isomorphisms in KO cohomology theory. We
then use these maps to establish the existence of new
families of nonsingular bilinear maps.

l Introduction. Bilinear maps /: Ra x Rb -» Rc with the non-
singular property that f(x, y) = 0 implies x = 0 or y = 0 have been
of interest for several reasons: (1) they generalize the multiplication
map of the classical division algebras over R; (2) they provide
estimates for the geometric dimension of vector bundles over real
projective spaces [10], and are hence instrumental in the study of
immersions of such spaces into Rn; (3) those maps with the addi-
tional property that | f(x, y)\ = | x | | y | can sometimes be used to
produce essential harmonic maps between Euclidean spheres, in the
sense of Eells and Sampson [5]. See [14] and [9, Theorem 4.2].

Furthermore, it has been realized for some time that there is
an interesting relationship between nonsingular bilinear maps and
stable homotopy theory [8], [9]. The purpose of this article is to
further explore that relationship. Whereas [9] deals with known
bilinear maps and their implications in homotopy theory, the present
paper describes, in § 5, how homotopy theory could in turn be used
to establish the existence of new families of nonsingular bilinear
maps. These new families are distinct from the classical examples
of Hurwitz and Radon [7], and yet exhibit the same "Clifford peri-
odicity" phenomenon which is characteristic of the Hurwitz-Radon
family.

Since the Hurwitz-Radon family can be used to produce essen-
tial harmonic maps between Euclidean spheres, it would be interest-
ing to ask whether there exist families of nonsingular bilinear maps,
occurring in the same dimension ranges as the ones established in this
paper, that will yield further examples of essential harmonic maps.

The main homotopy tools employed in the paper are certain
maps between truncated projective spaces called ifO-equivalences.
Roughly, a iΓO-equivalence is a map inducing an isomorphism in
iΓO-cohomology. The methods in §§ 3, 4 for constructing i£O-equiva-
lences follow closely the techniques of [6, § 4]. Such constructions
might have some independent interest, and could perhaps be read on
their own right.

145



146 KEE YUEN LAM

2* Some homotopy lemmas* A finite connected CW complex
X in which all cells apart from the base point occur in dimensions
between m and n is written X = XI,. A typical example is the
real truncated protective space P£ = Pn/Pm-1. We call XI stable if
n <̂  2m — 1, in which case XI is a suspension. We say that X is
2-torsion, if Hq(X; Z) is a 2-torsion group for all q. We shall also
need the following standard notations:

= the mod 2 Steenrod algebra;
= the subalgebra of j ^ generated by Sq1;

φ(n) = the number of integers in the interval [1, n] congruent
to 0,1, 2 or 4 modulo 8.

LEMMA 2.1. Suppose X — X% is a stable 2-torsion complex and
that H*(X; Z2) is free over J^J. // /: JSΓ—• X can be factored into
a composite fp f2f19 where p > φ(n — m) and each ft is a map
X—>X with induced homomorphism f* = 0 on H*(X; Z2), then f is
homotopic to zero.

Proof. Since ΪΪ(X; Z2) is J^-free, one can apply Adams' vanish-
ing theorem [1, Thm. 2.1] to conclude that

Ext'J(β*(X; Z2), Z2) = 0 for s > φ(t - s - m) .

This means, in particular, that if

V ΊP TP ΊP , ΊPΛ. = £Lt0 < IlJ1 < S2J2 < < J2JS <

is a modified Postnikov tower over X modelled on a minimal
free resolution of H*(X; Z2), as explained in [13, Chapter 18], then
each λ>invariant of dimension <; n is located in H*(ES; Z2) for some
s <; φ(n — m). On the other hand, the hypothesis on ft allows one
to prove inductively on p that fp- -f2fx lifts to Ep. If p > φ(n — m),
then all subsequent ^-invariants will have dimension exceeding
w(=dimX), and hence constitute no further obstruction to lifting
Λ /2/1 arbitrarily high into the tower. Since the connectivity of
Es eventually increases beyond any bound as s —> 00, such lifting is
enough to imply / ~ 0.

COROLLARY 2.2. Let c be the identity map of X where X is
as in Lemma 2.1. Then the order of c, considered as an element
in the track group [X, X], is a divisor of 2φ{n~m)+1.

COROLLARY 2.3. Let kc denote k times the identity map c in
the track group [X, X]. If X is as in Lemma 2.1, and n
then 16* - 0.
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It goes without saying that by taking a closer look into the
Postnikov tower of an individual X, it is sometimes possible to
improve upon Corollary 2.2. A typical example is given by

PROPOSITION 2.4. If X is the truncated protective space P%+5,
where m ^ 9 is congruent to 1 modulo 4, then 8c = 0.

The proof is practically the same as Lemma 2.1, except that
in the present case, Exts>'(.ff *(P™+5; Z2), Z2) has somewhat better
vanishing properties than enunciated by Adams' vanishing theorem.
Alternatively, it is a routine exercise to write down a Postnikov
tower for PΓ+δ explicitly [13], and to check that & = (20(20(20 lifts
arbitrarily high into that tower.

Many of Toda's results in [15] on the "order of the identity
class" of a suspension space are straightforward consequences of the
above results.

3* Construction of ίΓO-equivalences•

DEFINITION 3.1. A map g: Y-+ Z between two connected
complexes is called a KO-equivalence if g*: K0(Z) -> K0(Y) is an
isomorphism.

NOTATION 3.2. If L is a skeleton of a truncated protective
space P£, the collapsing map from PI to P%/L will always be denoted
by c. The inclusion map L-+ P£ will be denoted by ί, if, i", j , etc.,
or by an unmarked arrow.

THEOREM 3.3. Let m be odd and n be even. If m + 9 <Ξ n ^
2m — 10, then there exists a KO-equivalence g: PZXl —> PZ such that
the composition

( * \ p % + 8 G v Όn+8 9 Γ>n %

 > Έ>n+8
\ ) -L m -L m+S -^ m •£ m

is equal to IQc.

Proof. Note that the hypotheses on m and n guarantee that
all complexes appearing in (*) are 2-torsion and stable, and that
their mod 2 reduced cohomology rings are J^0-free. If we make
16̂ : P^+8 -> PZ+8 cellular, and then collapse the ^-skeleton of both its
domain and range to a point, we get a map P^i8 —> P^tί which,
being 16 times the identity, is trivial on account of Corollary 2.3.
It follows that one can homotopically deform 16̂  into a map
g0: PZ+8 -> PZ- Since m + 7 < n by hypothesis, we can further
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assume that throughout the course of the deformation, P%+Ί stays
within P*. It follows that the composite

P
m+7 ^ s p»+8 &0 v pn

is just a deformation of P™+7 ~> PΓ+7 Λ P£, which is trivial by Coro-
llary 2.3. Hence gQ factors through the cofiber PZtl of i, and the
resulting map is taken as g in (*).

The KO groups of the complexes occurring in (*) are finite
cyclic and 2-torsion. Since i* is onto and cokernel c* has order 16,
and {igc)* is multiplication by 16, g* must be an isomorphism in
KO theory. This concludes the proof.

REMARK 3.4. If m and n satisfy the hypothesis of the theorem,
so would ra + 8 and n + 8. Hence there is an infinite sequence of
jKΌ-equivalences

REMARK 3.5. It is possible to use 27, (r >4), rather than 16r, to
construct ϋΓO-equivalences between truncated projective spaces. The
approach is similar.

4* Further construction of i£O-equivalences• The method of
§ 3 can sometimes be adapted in order to construct a jKΌ-equivalence
PZXl-^PZ, even if m and n do not satisfy the technical condition
m + 9 <; n imposed in Theorem 3.3. However, a case by case
presentation of such adaptations will be inelegant and unnecessary.
For if n — m = 1, 3, 5 or 7, PZ+l is homeomorphic to Σ8P% [4]. Now
Adams and Luz have a unified procedure for constructing ifO-equi-
valences ΣNX —> X when X is a suitable 2-torsion finite complex and
N is a suitable power of 2 [2], [11]. Such a procedure applies
nicely when X — PZ with n — m ^ 7 , m odd, w even, provided that
m is not too small.

In this section we therefore confine our efforts to show how the
ideas developed in § 3 can be used to prove Theorem 4.1 below.
This theorem has previously been obtained by Adams in [2, § 12],
but we believe that it is of some interest to compare the two diffe-
rent proofs.

THEOREM 4.1. For any odd integer m ^ 9 there is a KO-equi-
valence g: PZ+i-+PZ+ί.

Proof. For m = 1 (mod 8) and m > 9, we construct g by imita-
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ting the proof of Theorem 3.3. Thus we "compress" 16r. P I + 9 -»
P™+9 into a map g0: P™+9 -> PΓ+1, using a cellular homotopy. The
following two lemmas imply that gQ can be choosen such that its
restriction to PΓ+7 is trivial.

LEMMA 4.2. For m = 1 (mod 8) cmcϊ m > 9, the compression
map g0 can be chosen such that

is α trivial composite.

LEMMA 4.3. Assume m = 1 (mod 8) and m > 9. 2%ew α
/: PJ + 7 —> PΓ+1 is trivial if and only if its composition with the
inclusion map P™+1 —> P™+7 is trivial.

Postponing the proofs of these lemmas to the end of the section,
we now form the cofiber map g: P™££ —> PΓ+1 induced by gQ. As in
Theorem 3.3, g is a JSΓO-equivalence. In fact, it is not difficult to
see that g is at the same time a ifί7-equivalence and a KSP-equi-
valence.

The case m = 9 was excluded from the above, because P^+ 9

fails to be stable when m = 9. To handle this case, begin with a
jδΓO-equivalence g:Pg-+P}?, and consider its restriction g':S2δ-*P$.
The Freudenthal theorem allows one to desuspend g' into a map
g"\ S17 -> P9

10. But it is not hard to show that ττ17(P9

10) is a direct
sum of four copies of Z2, so that g" extends to a map g: P}? —> P9

10.
The eight-fold suspension Σ8g: P2

2

5

6 —> PA8 agrees with g on the bottom
sphere S25, and must therefore be a ZO-equivalence because r̂ is
such. By Bott periodicity, g is also a ZO-equivalence.

We conclude by remarking that, in case the odd number k is
not congruent to 1 (mod 8), a i£O-equivalence Pί+i —> Pί+1 can still
be constructed by suitably suspending one of the previously con-
structed i£O-equivalences g: Plί8

9 -> PΓ+1, with m = 1 (mod 8).

REMARK 4.4. For a comparison between these ZO-equivalences
and those constructed by Adams in [2, § 12], the following observa-
tion is pertinent. While our construction involves a number of
technical homotopy lemmas, it avoids Toda brackets and e-invariant
considerations. Moreover, it falls into the general construction
pattern of § 3, and yields i£O-equivalences g: P™t£ -> P ί + 1 with the
special property that

pmm+9
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is exactly equal to 16̂ .

It is now time to prove Lemmas 4.2 and 4.3. The proof of
4.2 is based on the factorization 16̂  = (2c)(Sc). Consider the follow-
ing homotopy commutative diagram

m+3 2c ~m+3

Sc ^m+9 2c , ^m+9

Here, gx exists because 8̂  followed by the collapsing map c: P%+9 —>
P^tϊ is trivial (cf. Proposition 2.4). There are two obstructions to
compressing 2c into the map g2. The first is (2r)*#, where x gene-
rates Hm+2(P2+*; Z2). This obstruction obviously vanishes. The
second obstruction is the functionalization of Sq2 on x with respect
to 2c. This vanishes because of indeterminacy.

We now pick g0 = g2gx to be our compression of Voc, and proceed
to show that ig2gxi

r is trivial. To this end, notice that there is an
alternative way to factorize ig%g$', as given in the following com-
mutative diagram:

m+7

Since the two ways of going around the big square become homo-
topic when composed with i", the big square itself is homotopy
commutative for dimensional reasons. The dotted map h exists
because P ί + 8 is obtained from P%+7 via an attaching map of order
2 (cf. [6, p. 58, bottom diagram]). Commutativity now gives ig&fi —
hίo($ή = (20(8r) = 16*, which is therefore trivial by Theorem 2.1.

The proof of Lemma 4.2 can be accomplished by showing that
the corresponding dual statement is true. The Spanier-Whitehead
duals of P™+7 and P ί + 1 can be taken as P}+7 and Pi$l respectively,
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where t + m + 8 is a large power of 2 (see [4]), so that t = 7 (mod
8) in the present context. From the hypothesized triviality of the
composite

P t+7 C . p t + 7 *** . T)t+7

we must now argue for the triviality of Df, the dual of /. It
suffices to show that Df lifts arbitrarily highly into the modified
Postnikov tower

Pιί + 7 . TP . τp . rp
t < ϊij^ < Jjjz < Jjjz <

over Pt+r. The following lists all the Λ -invariants of dimension
<̂  t + 7 arising in this tower, together with their defining relations,
compare [12, p. 60]. (We use a subscript to indicate the dimension
of a ^-invariant.)

(0) primary ^-invariant:

the generator xt e H\Pt

t+7; Z2)

( 1 ) k-invariants in H*(Eΰ Z2):

kt+2: Sq*Sqιxt - 0 ,

kt+i: Sq'Sq'Xt = 0 ,

kt+δ: Sq*Sq*xt - 0 ,

kt+7: Sq8xt = 0

( 2 ) fc-invariants in ίί*(ί72; Z2):

/ct+3: Sq%+2 = 0

κt+i: Sq%+i + Sq2Sq%+2 = 0 ,

κt+7: Sq%+i + Sq%+2 = 0

( 3 ) λ -in variant in H*(EΛ; Z2):

+3 = 0 .

With this list, it is no longer difficult to check that if any of these
fc-invariants constitute an obstruction to trivializing Df, then it is
actually an obstruction to trivializing (Df)c. In this way Lemma
4.3 is obtained.

5* Existence of nonsingular bilinear maps* It has been
remarked by M. Mahowald that ZΌ-equivalences can be used to
estimate the geometric dimension of vector bundles over projective
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spaces, via a procedure which is also known to J. F. Adams. Speci-
fically, consider the following diagram:

pn+8k pn+8 pn BO{d)

( # ) V \c \, ZS

itt

where m, n are fixed integers, the g's are ifO-equivalences, ζ repre-

sents the generator of KO(PZ), and d is the geometric dimension

of ζ, that is, the smallest integer for which a lifting ζ of ζ into

BO{d) exists. According to the computation of [3], KO{Pl) is cyclic
of order 2φ{m>n), where φ(m, n) = φ(n) - φ(m - 1). It follows that
ζgkc = ζ(g g)c can be interpreted as a stable vector bundle over

Pn+8k ^ p r e s e n t e d by (2*ι*+Bk)/2*{m n))ξ = 2fh+^m'1)ξ9 where ς denotes
the Hopf line boundle. This stable bundle has geometric dimension
^d, due to the existence of ζ. As long as 2φim~~1) > n, the fact can
be re-stated as:

( t ) 2ik+φ{m~ι]ξ over Pn+8k has a t least 2*k+φ{m~ι) - d everywhere
independent sections.

Notice that d depends on m and n alone, and is independent of k.

To convert existence of sections into existence of nonsingular
bilinear maps, we invoke the result of [8], which asserts that given
(t), there is a (large) power of 2, say JV0, such that for any positive
multiple qN0, a nonsingular bilinear map Ra x Rc~d —> Rc exists with
a = 8k + n + 1 and c = 2*k+φ{m~1) + qNQ respectively. Letting k run
through 0, 1, 2, , I and picking N to be the maximum of the
NQ's so incurred, we obtain

THEOREM 5.1. Let m, n be fixed integers satisfying 2φ{m~1] > n,
such that there exists a sequence of KO-equivalences

/or every I > 0 £/^rβ is α power of 2, denoted by N, corres-
ponding to which there exists a family of nonsingular bilinear
maps

^ . it/ X JΓC > -Π- ,

Jfc = 0, 1, * , i . Here d depends only on m and n, and is
given by (#) above.
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Let a = Sk + n + 1, c = 2ik+*{m~i) + N and b = β - d. The
numerical features of the family φk: R

a x Rb -> i2°(0 <Lk<Ll) becomes
striking if we recall that the classical Hurwitz-Radon maps consti-
tute a nonsingular family

?V. Ra x Λ' > Rr

where α = 8fc + 2% β = Ύ = 24&+% with ε = 0,1, 2 or 3 and & arbit-
rary. This family has the "Clifford periodicity" in that as β and
7 are multiplied by 16, a increases by 8. If, by ignoring the con-
stants N and d, we introduce a' = 8k + n + 1, δ' = 24;b+ίi{w~1), c' =
2**+*ίm""1} and call (α', δ', c') the essential ranges of the family
{&}o£*sι> then we can summarize Theorem 5.1 above by saying that
the essential ranges of {φk} exhibit the same Clifford periodicity as
the dimension ranges (α, βf 7) of Hurwitz-Radon maps.

As an illustration let us specify diagram (#) to the case m = 9
and n = 10, using the J^O-equivalences g constructed in § 4. Using
7T9(J5O(7)) = 2 2 0 2̂> it is not difficult to show that the generator
ζ:P 9

1 0->5O lifts (optimally) to BO(7). Consequently we take d = 7
in (#) to obtain

Special case 5.2. For even/ ί > 0 t/tβrβ is a power of 2, denoted
by N, corresponding to which there exists a family of nonsingular
bilinear maps

φh^: R8h+S x R*ih+N~7 > R*h+N

for h = 1,2, . . . , ί .

Here for simplicity we have introduced h to stand for k + 1 in
Theorem (5.1).
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