# ON A THEOREM OF MURASUGI 

C. McA. Gordon and R. A. Litherland

1. Let $l=k_{1} \cup k_{2}$ be a 2 -component link in $S^{3}$, with $k_{2}$ unknotted. The 2 -fold cover of $S^{3}$ branched over $k_{2}$ is again $S^{\mathbf{3}}$; let $k_{1}^{(2)}$ be the inverse image of $k_{1}$, and suppose that $k_{1}^{(2)}$ is connected. How are the signatures $\sigma\left(k_{1}\right), \sigma\left(k_{1}^{(2)}\right)$ of the knots $k_{1}$ and $k_{1}^{(2)}$ related? This question was considered (from a slightly different point of view) by Murasugi, who gave the following answer [Topology, 9 (1970), 283-298].

Theorem 1 (Murasugi).

$$
\sigma\left(k_{1}^{(2)}\right)=\sigma\left(k_{1}\right)+\xi(l) .
$$

Recall [4] that the invariant $\xi(l)$ is defined by first orienting $l$, giving, an oriented link $\bar{l}$, say, and then setting $\xi(l)=$ $\sigma(\bar{l})+L k\left(\overline{k_{1}}, \bar{k}_{2}\right)$, where $\sigma$ denotes signature and $L k$ linking number.

In the present note we shall give an alternative, more conceptual, proof of Theorem 1, and in fact obtain it as a special case of a considerably more general result.

The idea of our proof is the following. If $l=l_{1} \cup l_{2}$ is a link, partitioned into two sublinks $l_{1}$ and $l_{2}$, then the 2 -fold branched covers over $l_{1}, l_{2}$, and the whole of $l$, are all quotients of a $\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2}$ cover branched over $l$. After possibly multiplying by 2 , the diagram consisting of these branched covers bounds a corresponding diagram of 4 -manifolds, and the signatures of the various links involved are expressible in terms of the signatures of these 4-manifolds (and the euler numbers of the branch sets); see e.g., [3]. The result is then a consequence of a relation among these 4-manifold signatures (Lemma 1).

This more general setting requires that we consider links in 3 -manifolds other than homology spheres; in $\S 2$ we discuss the signature in this context. (It becomes necessary to prescribe a particular 2 -fold branched cover. However, we sacrifice some generality inasmuch as we restrict ourselves to oriented, nullhomologous links: it would otherwise be necessary to prescribe a framing of the link as well.) In §3 we set up the diagram of covering spaces, and in $\S 4$ derive the relation between the signatures of the manifolds therein. Section 5 contains some consequences of this, including the appropriate generalization of Theorem 1.

All manifolds of dimensions 3 and 4 are to be oriented; manifolds of dimensions 1 and 2 are oriented only when this is explicitly
stated, and those of dimension 2 need not even be orientable. We make no assumptions on the connectedness of our manifolds. If $\bar{l}$ is an oriented link, we denote the underlying nonoriented link by $l$.
2. Let $\bar{l}=\bar{k}_{1} \cup \cdots \cup \bar{k}_{m}$ be an oriented link in a closed 3 -manifold $M$, and suppose $\bar{l}$ is null-homologous. Let $W$ be a 4 -manifold and $F$ a surface in $W$ such that $\partial(W, F)=(M, l)$. Let $F^{\prime}$ be (the image of) a section of the normal $S^{1}$-bundle of $F$ in $W$, with $\partial F^{\prime}=l^{\prime}=k_{1}^{\prime} \cup \cdots \cup k_{m}^{\prime}$, say. Orient $l^{\prime}$ to obtain $\bar{l}^{\prime}=\bar{k}_{1}^{\prime} \cup \cdots \cup \bar{k}_{m}^{\prime}$ by requiring $\bar{k}_{i}^{\prime} \sim \bar{k}_{i}$ in a tubular neighborhood of $k_{i}$, and define $\bar{e}(F)=-L k\left(\bar{l}, \bar{l}^{\prime}\right)$. (Note that this is well-defined as $\bar{l}, \bar{l}^{\prime}$ are both null-homologous in $M$.)

Now let $p: \tilde{M} \rightarrow M$ be some 2 -fold covering of $M$ branched along $l$, and suppose that $p$ extends to a 2 -fold covering $\widetilde{W} \rightarrow W$ branched along $F$. Then

$$
\sigma(\bar{l}, p)=\sigma(\widetilde{W})-2 \sigma(W)+\frac{1}{2} \bar{e}(F)
$$

depends only on $\bar{l}$ and $p$. (If $\left(W_{1}, F_{1}\right)$ and $\left(W_{2}, F_{2}\right)$ are two pairs as above, apply the $G$-signature theorem [1] to the resulting involution on the closed 4-manifold $\widetilde{W}_{1} U_{0}-\widetilde{W}_{2}$, together with Novikov additivity and the fact that the euler number of the normal bundle of $F_{1} \cup F_{2}$ in $W_{1} \cup-W_{2}$ is equal to $\bar{e}\left(F_{1}\right)-\bar{e}\left(F_{2}\right)$.)

We remark that if $M$ is a homology sphere, $p$ is unique, and $\sigma(\bar{l}, p)$ is just the signature of $\bar{l}$. Again, we may take $l$ to be the empty link; $-\sigma(\phi, p)$ is the $\alpha$-invariant [2] of the nontrivial covering translation of $\widetilde{M}$.
3. Let $l_{1}, l_{2}$ be disjoint links in a 3 -manifold $M$, and write $l=l_{1} \cup l_{2}$. Let $\alpha: H_{1}(M-l) \rightarrow \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2}$ be a homomorphism which sends each meridian of $l_{1}$ (resp. $l_{2}$ ) to the nontrivial element of the first (resp. second) $\boldsymbol{Z}_{2}$. Let $W$ be a 4-manifold and $F_{1}, F_{2}$ disjoint surfaces in $W$ such that $\partial\left(W, F_{1}, F_{2}\right)=\left(M, l_{1}, l_{2}\right)$. Write $F=F_{1} \cup F_{2}$, and suppose there exists a homomorphism $\beta: H_{1}(W-F) \rightarrow \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2}$ such that $\alpha=\beta i_{*}$, where $i: M-l \rightarrow W-F$ is inclusion. (We shall discuss this assumption later.)

Let $\widetilde{W} \rightarrow W$ be the branched covering associated with $\beta$. The covering translations induce a $Z_{2} \oplus \boldsymbol{Z}_{2}$-action on $\widetilde{W}$. Let $g_{1}$ generate the second $Z_{2}$ factor, $g_{2}$ the first, and let $g_{3}=g_{1} g_{2}$ be the remaining nontrivial element. Setting $W^{(i)}=\tilde{W} /\left(g_{i}\right), i=1,2$, 3 , we have the following commutative diagram of 2 -fold branched coverings.


Here $q_{i}$ is branched over $F_{i}, i=1,2$, and $q$ is branched over $F$. If $F_{1}^{(2)}$ and $F_{2}^{(1)}$ are the inverse images of $F_{1}$ in $W^{(2)}$ and $F_{2}$ in $W^{(1)}$, then $q_{1}^{(2)}, q_{2}^{(1)}$ are branched over $F_{1}^{(2)}, F_{2}^{(1)}$ respectively. Finally, $\widetilde{q}$ is unbranched.

Now suppose that $l_{1}$ and $l_{2}$ can be oriented to obtain nullhomologous links $\bar{l}_{1}$ and $\bar{l}_{2}$ respectively. Let $\bar{l}=\bar{l}_{1} \cup \bar{l}_{2}$. There are induced orientations of $l_{1}^{(2)}=\partial F_{1}^{(2)}$ and $l_{2}^{(1)}=\partial F_{2}^{(1)}$, giving null-homologous links $\bar{l}_{1}^{(2)}$ and $\bar{l}_{2}^{(1)}$ in $\partial W^{(2)}$ and $\partial W^{(1)}$ respectively.

Writing $p$ 's instead of $q$ 's to denote the restrictions of these coverings to the appropriate boundaries, we have the equations

$$
\begin{align*}
& \sigma\left(\bar{l}_{1}, p_{1}\right)=\sigma\left(W^{(1)}\right)-2 \sigma(W)+\frac{1}{2} \bar{e}\left(F_{1}\right)  \tag{i}\\
& \sigma\left(\bar{l}_{2}, p_{2}\right)=\sigma\left(W^{(2)}\right)-2 \sigma(W)+\frac{1}{2} \bar{e}\left(F_{2}\right) \tag{ii}
\end{align*}
$$

$$
\begin{align*}
& \sigma(\bar{l}, p)=\sigma\left(W^{(3)}\right)-2 \sigma(W)+\frac{1}{2} \bar{e}(F)  \tag{iii}\\
& \sigma\left(\bar{l}_{1}^{(2)}, p_{1}^{(2)}\right)=\sigma(\widetilde{W})-2 \sigma\left(W^{(2)}\right)+\frac{1}{2} \bar{e}\left(F_{1}^{(2)}\right) \tag{iv}
\end{align*}
$$

$$
\begin{equation*}
\sigma\left(\bar{l}_{2}^{(1)}, p_{2}^{(1)}\right)=\sigma(\tilde{W})-2 \sigma\left(W^{(1)}\right)+\frac{1}{2} \bar{e}\left(F_{2}^{(1)}\right) \tag{v}
\end{equation*}
$$

$$
\begin{equation*}
\sigma(\phi, \widetilde{p})=\sigma(\widetilde{W})-2 \sigma\left(W^{(3)}\right) \tag{vi}
\end{equation*}
$$

We now consider the question of the existence of a suitable homomorphism $\beta$. Suppose $H_{1}\left(W ; \boldsymbol{Z}_{2}\right)=0$. Then (see $[3, \S 1]$ ) the cohomology exact sequence of the pair $(W, W-F)$, together with duality, gives an exact sequence

$$
\begin{gathered}
0 \longrightarrow H^{1}\left(W-F ; \boldsymbol{Z}_{2}\right) \longrightarrow H_{2}\left(F, \partial F ; \boldsymbol{Z}_{2}\right) \longrightarrow H_{2}\left(W, \partial W ; \boldsymbol{Z}_{2}\right) \\
H^{\circ}\left(F ; \boldsymbol{Z}_{2}\right) .
\end{gathered}
$$

The existence of $\beta: H_{1}(W-F) \rightarrow \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2}$ taking a meridian of $F_{i}$ to the nontrivial element of the $i$ th $Z_{2}, i=1,2$, is then seen to be equivalent to the condition that $\left[F_{i}, \partial F_{i}\right]=0 \in H_{2}\left(W, \partial W ; Z_{2}\right)$, for $i=1$, 2. (In particular, the assertion $H^{1}\left(W-F ; Z_{2}\right) \cong H^{0}\left(F ; Z_{2}\right)$ in [3, p. 353] is incorrect.)

Now suppose, in addition, that $H_{1}\left(M ; \boldsymbol{Z}_{2}\right)=0$. Then $\beta$ will automatically satisfy $\alpha=\beta i_{*}$. But $\beta$ will not in general exist, for it is clear that if $\left[F_{i}, \partial F_{i}\right]=0 \in H_{2}\left(W, \partial W ; \boldsymbol{Z}_{2}\right), i=1,2$, then $L k_{Z_{2}}\left(l_{1}, l_{2}\right)=0$. However, this condition is also sufficient; that is, given links $l_{1}, l_{2} \subset M$ such that $H_{1}\left(M ; \boldsymbol{Z}_{2}\right)=0$ and $L k_{L_{2}}\left(l_{1}, l_{2}\right)=0$, there exist $W, F_{1}, F_{2}, \beta$ as above. To see this, let $W$ be any 4 -manifold with $\partial W=M$ and $H_{1}\left(W ; \boldsymbol{Z}_{2}\right)=0$, and let $E_{1}, E_{2}$ be connected surfaces in $W$ with $\partial E_{i}=l_{i}$ and $\left[E_{i}, \partial E_{2}\right]=0 \in H_{2}\left(W, \partial W ; Z_{2}\right), i=1,2$. (For example, we could obtain $E_{i}$ by starting with a connected surface in $M$ bounded by $l_{i}$ and pushing its interior slightly into $W$.) We may assume that $E_{1}$ and $E_{2}$ intersect transversally in points in int $W$. Since $L k_{z_{2}}\left(l_{1}, l_{2}\right)=0$, there will be an even number of such intersection points, and these may be removed, a pair at a time, by adding a tube to (say) $E_{1}$ along an arc in $E_{2}$ connecting the two points in question.

Remark. Section 5 contains equations, derived from (i)-(vi) above, involving link signatures and linking numbers. Since both are additive under disjoint union, these equations will still be valid if we only assume $\partial\left(W, F_{1}, F_{2}\right)=k\left(M, l_{1}, l_{2}\right)$, the disjoint union of $k$ copies of $\left(M, l_{1}, l_{2}\right)$, for some $k>0$. Moreover, we have just seen that this weaker assumption is always satisfied (with $k=2$ ) if $M$ is a $Z_{2}$-homology sphere. For notational simplicity, however, we shall continue to take $k=1$, without further comment.
4. To deduce relations between the link signatures on the left of equations (i)-(vi), we must find relations between the quantities on the right. The main ingredient is the following.

Lemma 1.

$$
\sigma(\tilde{W})=\sum_{i=1}^{3} \sigma\left(W^{(i)}\right)-2 \sigma(W)
$$

Proof. If $G$ is a finite group and $N$ is a $G$-manifold, then a standard transfer argument shows that

$$
\begin{equation*}
\sigma(N)=|G| \sigma(N / G)-\sum_{g \in G=\{12} \operatorname{sign}(g, N) \tag{*}
\end{equation*}
$$

Applying this to the $\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2}$-manifold $\widetilde{W}$, we have

$$
\begin{equation*}
\sigma(\widetilde{W})=4 \sigma(W)-\sum_{i=1}^{3} \operatorname{sign}\left(g_{i}, \widetilde{W}\right) \tag{1}
\end{equation*}
$$

For $i=1,2,3, W^{(i)}=\tilde{W} /\left(g_{i}\right)$ has an action of $\left(\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2}\right) /\left(g_{i}\right) \cong \boldsymbol{Z}_{2}$, generated by $h_{i}$, say. Applying (*) again, we get

$$
\begin{equation*}
\sigma\left(W^{(i)}\right)=2 \sigma(W)-\operatorname{sign}\left(h_{i}, W^{(i)}\right), \quad i=1,2,3 \tag{2}
\end{equation*}
$$

By the proof of the proposition on page 415 of [2]

$$
\operatorname{sign}\left(h_{i}, W^{(i)}\right)=\frac{1}{2} \sum_{j \neq i} \operatorname{sign}\left(g_{j}, \tilde{W}\right)
$$

Hence

$$
\begin{equation*}
\sum_{i=1}^{3} \operatorname{sign}\left(h_{i}, W^{(i)}\right)=\sum_{i=1}^{3} \operatorname{sign}\left(g_{i}, \tilde{W}\right) \tag{3}
\end{equation*}
$$

The result now follows from equations (1), (2) and (3).
We also need

Lemma 2.

$$
\begin{aligned}
& \bar{e}\left(F_{1}^{(2)}\right)=2 \bar{e}\left(F_{1}\right), \quad \bar{e}\left(F_{2}^{(1)}\right)=2 \bar{e}\left(F_{2}\right), \\
& \bar{e}(F)=\bar{e}\left(F_{1}\right)+\bar{e}\left(F_{2}\right)-2 \operatorname{Lk}\left(\bar{l}_{1}, \bar{l}_{2}\right) .
\end{aligned}
$$

(Note that Lk $\left(\bar{l}_{1}, \bar{l}_{2}\right)$ is well-defined, since $\bar{l}_{1}$ and $\bar{l}_{2}$ are both nullhomologous.)

Proof. To prove the first statement, let $V_{1}$ be an oriented surface in $M$ with $\partial V_{1}=-\bar{l}_{1}$. Let the inverse image of $V_{1}$ in $\partial W^{(2)}$ be $V_{1}^{(2)}$, a 2 -fold branched cover (possibly disconnected) of $V_{1}$. Let $\bar{l}_{1}^{\prime}$ be the (oriented) boundary of a section of the normal 1-sphere bundle of $F_{1}$; its inverse image $\bar{l}_{1}^{(2)^{\prime}}$ in $\partial W^{(2)}$ is the boundary of a corresponding section for $F_{1}^{(2)}$. Then

$$
\bar{e}\left(F_{1}^{(2)}\right)=\bar{l}_{1}^{(2) \prime} \cdot V_{1}^{(2)}=2 \bar{l}_{1}^{\prime} \cdot V_{1}=2 \bar{e}\left(F_{1}\right) .
$$

Similarly, $\bar{e}\left(F_{2}^{(1)}\right)=2 \bar{e}\left(F_{2}\right)$. Finally, we may assume that $\bar{l}_{1}^{\prime}$ does not meet $l_{2}$, and is homologous to $\bar{l}_{1}$ in $M-l_{2}$. Extending in the obvious way the notation already introduced, we then have

$$
\begin{aligned}
\bar{e}(F) & =\left(\bar{l}_{1}^{\prime} \cup \bar{l}_{2}^{\prime}\right) \cdot\left(V_{1} \cup V_{2}\right) \\
& =\bar{l}_{1}^{\prime} \cdot V_{1}+\bar{l}_{2}^{\prime} \cdot V_{2}+\bar{l}_{1}^{\prime} \cdot V_{2}+\bar{l}_{2}^{\prime} \cdot V_{1} \\
& =\bar{e}\left(F_{1}\right)+\bar{e}\left(F_{2}\right)-2 L k\left(\bar{l}_{1}, \bar{l}_{2}\right) .
\end{aligned}
$$

5. From equations (i)-(iv), together with Lemmas 1 and 2, one easily obtains

$$
\sigma\left(\bar{l}_{1}, p_{1}\right)+\sigma(\bar{l}, p)+L k\left(\bar{l}_{1}, \bar{l}_{2}\right)=\sigma\left(\bar{l}_{2}, p_{2}\right)+\sigma\left(\bar{l}_{1}^{(2)}, p_{1}^{(2)}\right) .
$$

Now suppose $M=S^{3}$ and $l_{2}$ is the unknot. Then $\partial W^{(2)}$ is also $S^{3}$, and $\sigma\left(\bar{l}_{2}, p_{2}\right)=0$, so the above equation becomes

$$
\sigma\left(\bar{l}_{1}^{(2)}\right)=\sigma\left(\bar{l}_{1}\right)+\sigma(\bar{l})+L k\left(\bar{l}_{1}, \bar{l}_{2}\right) .
$$

If, further, $l_{1}$ has only one component, then

$$
\sigma(\bar{l})+L k\left(\bar{l}_{1}, \bar{l}_{2}\right)=\xi(l)
$$

so we obtain

$$
\sigma\left(\bar{l}_{1}^{(2)}\right)=\sigma\left(l_{1}\right)+\xi(l) .
$$

Theorem 1 is the special case in which $l_{1}^{(2)}$ has only one component.
Remark. Using equations (i), (ii), (iii) and (vi) we obtain instead the relation

$$
\sigma(\phi, \widetilde{p})+\sigma(\bar{l}, p)+L k\left(\bar{l}_{1}, \bar{l}_{2}\right)=\sigma\left(\bar{l}_{1}, p_{1}\right)+\sigma\left(\bar{l}_{2}, p_{2}\right) .
$$

If $M=S^{3}$, this can be written as

$$
\sigma(\phi, \widetilde{p})+\xi(l)=\xi\left(l_{1}\right)+\xi\left(l_{2}\right) .
$$

## Referencet

1. M. F. Atiyah and I. M. Singer, The index of elliptic operators III, Ann. of Math., (2), 87 (1968), 546-604.
2. F. Hirzebruch, Free involutions on manifolds and some elementary number theory, Symposia Mathematica (Instituto Nazionale di Alta Matematica, Roma) Vol. V. Academic Press (1971), 411-419.
3. L. Kauffman and L. Taylor, Signature of links, Trans. Amer. Math. Soc., 216 (1976), 351-365.
4. K. Murasugi, On the signature of links, Topology, 9 (1970), 283-298.

Received April 17, 1978.
The University of Texas
Austin, TX 78712

