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TOPOLOGICAL MEASURE THEORY FOR COMPLETELY
REGULAR SPACES AND THEIR PROJECTIVE COVERS

ROBERT F. WHEELER

This paper investigates the relationships among tight,
r-additive, and <7-additive Baire measures on a completely
regular Hausdorff space X and its projective cover E(X).
The most interesting questions arise in the σ-additive case,
and lead to the following definitions: the space X has the
weak (resp. strong) lifting property if for each <7-additive
measure on X, some (resp., every) pre-image measure on E(X)
is σ-additive. It is shown that every weak cb space has the
strong lifting property, while the Dieudonnέ plank fails
even the weak lifting property. Also, if X is weak cb,
then X is measure-compact if and only if E(X) is measure-
compact.

Some applications to extensions of measures on lattices
and to strict topologies on spaces of continuous functions
are given. A relationship between the lifting properties
mentioned above and conventional use of the term "lifting"
in measure theory is indicated.

A topological space is said to be extremally disconnected if the
closure of every open set is again open. Such a property seems
remote from the topological settings usually encountered in analysis;
for example, a metric space with this property must be discrete.
Nonetheless, the property of extremal disconnectedness occurs with
surprising frequency in many basic results of modern analysis. Here
are some of them:

(1) The lattice C(X) of continuous real-valued functions on a
completely regular space X is Dedekind complete if and only if X
is extremally disconnected.

(2) A Boolean algebra is complete if and only if its Stone
space is extremally disconnected.

(3) If X is a compact Hausdorff space, then C(X) with the
supremum norm is isometrically isomorphic to a dual Banach space
if and only if X is hyperstonian (i.e., extremally disconnected, and
the union of the supports of the normal measures on X is dense in
X).

This paper is concerned with Baire measures on completely
regular spaces. The critical fact which motivates the work is that
for each completely regular Hausdorff space X, there is an extremal-
ly disconnected space E(X), called the projective cover or absolute
of X, and a perfect irreducible map /c of E{X) onto X. We can
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observe at once that (1) f —> f ° K is an isometric embedding of
C*(X) in C*(E(X)); and (2) the adjoint £* of this embedding maps
M(E(X)), the space of finitely-additive Baire measures on E(Xf) onto
M(X).

A principal focus of topological measure theory is the delineation
and study of certain subspaces of M{X) - notably the tight measures
(Mt)9 τ-additive measures (Mτ) and σ-additive measures (Mσ). For
example, a space X is said to be measure-compact if Ma(X) — Mτ(X)9

and one seeks purely topological conditions for this to occur; it is
known that the Lindelδf property is sufficient, and realcompactness
is necessary.

The plan of attack in this paper is to relate corresponding
spaces of measures on X and its protective cover: for example,
Mτ(X) and Mτ(E(X)). There is a basic reason for doing this: in
extremally disconnected spaces, the Baire sets have a relatively
simple structure. For example, the zero-sets of continuous real-
valued functions are precisely the countable intersections of clopen
sets. This suggests that a topological formulation of measure-
compactness (and other concepts of similar type) may be easier to
obtain for extremally disconnected spaces than in the general setting.
Then, via the correspondences mentioned above, the results could
be extended to all completely regular spaces.

We summarize the principal results of the paper as follows: for
Mt and Mτ there is an exact correspondence between X and E(X)f

in the sense that ιc*~\Mt(X)) = Mt{E{X)), and κ*~\Mt(X)) =
Mt(E(X)). The situation is much more interesting and complicated
for Mσ, and we are led to the following definitions:

DEFINITION 1. X has the weak lifting property (WLP) if for
each μeMt(X), lveMϊ(E(X)) with Λ;*V = μ.

DEFINITION 2. X has the strong lifting property (SLP) if for
each μeMi(X), every pre-image of μ in M+(E(X)) is in Mΐ{E(X))
(i.e., κ*-\Mϊ(X)) = M+(E(X))).

We find examples of (1) a space which fails the WLP and (2)
a space which has the WLP but fails the SLP. These examples
emphasize the almost realcompact spaces introduced by Frolik [10]
and recently studied by Kato [18]. The notion of a weak cb space,
introduced by Mack and Johnson [25] in their study of the lattice
completion of C(X), is characterized in a new way, leading to the
principal positive result of the paper: If X is weak cb, then X has
the SLP. As a corollary, if X is weak eb, then X is measure-
compact if and only if E(X) is measure-compact.

The major question raised and left unresolved by this paper
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seems to be: if X is realcompact, must X have the weak (or strong)
lifting property? In investigating this problem we find a relation-
ship between the lifting properties defined above and the conven-
tional use of the term "lifting" in measure theory, via the density
topology on the real line.

As applications of our results, we analyze a recent paper by
Sultan [39] on extensions of measures in our setting, and also ex-
amine the relationships among the various strict topologies on C*(X)
and C*(E(X)).

In closing this introductory section, several general remarks
seem to be in order:

(1) The relationship between normal measures on X and E{X)
has been studied by Lacey and Hebert [22], Flachsmeyer [9], and
others, and a very complete and satisfying theory has been obtained.

(2) Rosenthal [32] has obtained strong results on measures on
extremally disconnected compact spaces; his work has been extended
and simplified by Kupka [21] and others. It was in the course of
studying these results that the author came to feel that E{X) should
play a significant role in the study of measures on X.

(3) Recent developments in topological measure theory have
tended to stress the embedding of X as a subspace of its Stone-
Cech compactification βX. In this paper the emphasis is reversed,
since X is the range, rather than the domain, of the map ιc.
Nonetheless, the equality E{βX) = βE{X) allows us to make good
use of the basic X vs. βX theory.

Finally, the author thanks Grant Woods for a number of very
helpful conversations about protective covers.

1* Notation and preliminary remarks* A basic reference for
topological measure theory is Varadarajan [43]. We shall also refer
to more recent work of Knowles [19], Moran [28, 29], Mosiman
and Wheeler [30], and Sentilles [35]. Throughout the discussion X
denotes a completely regular Hausdorff space, and C*(X) is the
space of bounded continuous real-valued functions on X. If μ e M(X),
then μ is (a) σ-additive, if μ(Zn) —> 0 for every decreasing sequence
(Zn) of zero-sets with empty intersection; (b) r-additive, if the cor-
responding result holds for nets of zero-sets which decrease (com-
patibly with the partial order) and have empty intersection; (c) tight,
if for every ε>0 there is a compact subset K of X with μ*(X—K) < ε.
As usual, Ma(X), Mτ(X), and Mt(X) denote the collections of σ-
additive, r-additive, and tight measures on X. It is well-known
that MtaMτ<zMσ.

Each μeM(X) gives rise (via the identification of C*(X) and
C*(βX)) to a corresponding regular Borel measure v on βX. A non-
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negative measure μ is c-additive (resp. r-additive) if and only if
the corresponding v vanishes on all zero-sets (resp. compact sets)
ot βX-X [19].

A map /: X —> Y is said to be perfect if / is continuous, closed,
and onto, and f\y) is compact for all y e Y. Also, / is said to be
irreducible if the image of every proper closed subset of X is a
proper subset of Y.

The projective cover (or absolute) of X is an extremally discon-
nected space E(X) and a perfect irreducible map tc of E(X) onto X.
The construction of the absolute has been extended to successively
larger classes of spaces by Gleason [12], Strauss [38], and the
Russian school [31]. Some of the deepest results on extremally
disconnected spaces can be found in Efimov [8]. The author has
found the most valuable single reference in obtaining a working
knowledge of projective covers to be a sequence of papers by Grant
Woods and co-authors [46-50]. Relying on these sources for details,
we collect here the basic results about E(X) that we need.

A subset F of X is regular closed if F — clx int x F. The family
RC(X) of regular closed subsets of X is a complete Boolean algebra
[36] under the operations: V« Fa = c\x (U Fa), A« Fa = clx int* (Γ)« Fa),
Ff = clx (X — F). The map F-* c l^ F is a Boolean isomorphism of
RC(X) onto RC(βX). Let S be the Stone space of RC(βX), interpreted
as the set of ultrafilters of regular closed subsets of βX. Note that
"filter" here is in the Boolean sense: F, Ge^^FΛGej?: Let
λ: RC(βX) —> clop (S) be the canonical correspondence between regular
closed subsets of βX and clopen subsets of S. There is a natural
map R\ S —> βX which sends each ultrafilter of regular closed sets
to its limit in βX. Then S is extremally disconnected and K is
perfect and irreducible, so S — E(βX).

Now let T = ic-χX) c S. Then T is dense in S, so T is extremal-
ly disconnected, and βT = S [11, 6M], If K = ϋ\ T, then /c is perfect
and irreducible, so T = E(X). It follows that βE{X) = E(βX).

We have then the commutative diagram:

clop E{X) ^ z = = = ί clop E{βX)
DE(X)

λ\ \λ
I F->t\βjrF II

where each connecting map is a Boolean isomorphism. Intuitively,
E{X) is the set of all ultrafilters of regular closed subsets of X
which converge to a point of X; K sends each such ultrafilter to its
limit. If FQeRC(X), then λ(F0) = feeE(X): Foep} is clopen in E(X).



TOPOLOGICAL MEASURE THEORY 569

Then κ(X(F0)) = Fo, but X(F0) £ /c~\F0) in general. The reason for
this is as follows: if x e X, pe E(X), and Λ (P) = x, then p must
contain all regular closed sets F for which x e int x F. However, if
xeF0 — intA î o, then xeF'o. Choosing an ultrafilter pQ which refines
{F: x e int x F} U {F'o}, we have κ(pQ) = x, so p0 e /Γ\F0), but pQ ί X(F0).

The exact relationship here is: el£!aΊ(tc~\mtx F)) = intJΪ(Z)ΛΓ1(i'τ) =
X(F) c ιc~\F) [22]. The inclusion is an equality if and only if F is
clopen. The reader may find it instructive to consider the following
example: X = TV, the one point compactification of N, E(X) = βN,
K: E(X) —> X sends each integer to itself and βN — N to oo, î 7 =
{evens} U{00} eRC(X). Then A -^int^ F) = {evens} ̂ X(F) = c\βN {evens}S
fc~\F) = {evens} U {/SiY - ΛΓ}.

The following result (essentially Lemma 2.4 of [48]) will be
very useful: if (CJ is a decreasing sequence of clopen sets in E(X),
then

4 cn) = ή <a).

/c is not an open map, but it is closed and irreducible, so if U
is a nonempty open subset of E(X), then {x e X: ιz~\x) c U} — X —
κ(E(X) — U) is a nonempty open subset of X.

2. X vs. E(X). There are many properties which X and E(X)
always have in common. We list some of them.

THEOREM 1. For the following topological properties P, X has
P if and only if E(X) has P: (a) compact (b) σ-compact (c) Lindelof
(d) countably compact (e) locally compact (f) paracompact (g) coun-
tably paracompact (h) metacompact (i) pseudocompact (j) k-space (k)
separable (1) countable chain condition (m) dense in itself.

Proof, (a)-(g): [13]; (h): X metacompact =» i?(X) metacompact
is an easy exercise [7, p. 254]; proofs of the converse can be found
in [17] and [51]; (i): [48]; (j): [2]; (k): follows from the irreducibility
of fc; (1): follows from the last sentence of the previous section; (m):
if xQ is an isolated point of X, then there is a unique ultrafilter p
of regular closed sets converging to x0, and fc~\x0) = {p} is clopen
in E(X). Conversely, if p is an isolated point of E(X), with κ(p) = x,
then {x} is a regular closed set, so x is an isolated point of X.

Let us remark that (a)-(h) and (j) are valid for any perfect map
/:X->Γ.

There is one more property which belongs in Theorem 1, and
which plays an important role in the sequel. A space is almost
realcompact [10] if every ultrafilter of regular closed sets such that
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countable subfamilies have nonempty intersection is fixed. It is
known that realcompact implies almost realcompact, but not con-
versely [18]. Almost realcompactness is preserved by closed sub-
sets and by products, from [14], every X admits an "almost-
realcompactification" aX, with XczaXavXczβX. This construction
has been examined in detail by Woods [50], If f: X-+Y is perfect,
then X is almost realcompact if and only if Y is almost realcompact
[10]. But for extremally disconnected spaces, it is not hard to show
that realcompactness and almost realcompactness are equivalent.
Thus X is almost realcompact if and only if E{X) is realcompact
[5].

This is important for the following reason: suppose X is almost
realcompact but not realcompact, e.g., the Dieudonne plank [37, p.
108; 18]. Thus X 5 vX, so E(X) = vE{X) £ E(vX). Thus the V
analogue of the "/S" identity βE(X) = E(βX) fails. Also, if p e vX-X,
then p gives rise to a σ-additive measure δ(p) on X (explicitly,
δ(p)(Z) = 1 or 0 according as p e elβx Z or not), but there is no
obvious candidate for a σ-additive measure on E(X) which is a pre-
image of δ(p). This is the first hint that interesting measure-
theoretic pathology may arise when we consider the relation between
X and E{X).

Now we turn to one-way implications between X and E(X).

THEOREM 2. If X has P, then E(X) has P, but not conversely:
(a) realcompact (b) topologically complete (complete in the finest com-
patible uniform structure) (c) measure-compact (Mσ = Mτ) (d) strong-
ly measure-compact (Mσ = Mt).

Proof. All of these follow from a lemma of Herrlich and van
der Slot [14]: If /: S—• T is continuous and onto, and AczS, BaT
with f~ι(B) = A, then A is homeomorphic to a closed subspace of
Sx B. Merely let S = E(βX)9 T = βX, f = K, B = X, A = E(X).
Now use the fact that each of the four properties is preserved by
closed subsets and products with compact spaces (see [29] and [30]).

The Dieudonne plank is a counter-example to all four converses
(see §3). However, we will show (Theorem 6, Corollaries) that if X
is weak cb, then properties (c) and (d) can safely be transferred to
Theorem 1; it is well-known [5] that this is true for (a).

THEOREM 3. If E(X) is normal or collectionwise normal, then
so is X.

Proof. This is not difficult to show. The space [0, ωt) is a
counter-example to both converses [45].
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3* S p a c e s of m e a s u r e s . T h e m a p s tc: E(X) —» X a n d tc: βE(X) —>

induce linear maps £*: M(E(X)) -> Λf(JSΓ) and H*ι M(βE(X))->
M(βX) defined by, for example, **/*(/) = JM(/°*)»

 f o r e a c h feC*(X).
In view of the natural identification between M(X) and M(βX)9 and
M(E(X)) and M{βE{X))> /c* and £* are essentially the same map.

A word of caution is in order concerning the interpretation of
functionals as measures (see §3 of [30]). If μeMσ(E(X)), then
tc*μ(B) = μ(κr\B)), for each Baire set B in X. Unfortunately, this
desirable result may fail if μ is only finitely-additive (see §4). Also,
we shall think of members of M(βE(X)) and M(βX) as compact-
regular Borel measures, and then ϋ*μ(B) = μ{ic~\B)) for each Borel
set B in βX.

Now let Mz denote Mt, Mτ, or Mσ. It is known [30, Th. 3.1]
that κ*(M8(E(X))) c MZ(X), and we are concerned with the question:
Is /c*-χM,(X)) = M.(E(X))Ί Unfortunately, the answer is almost
always no, and for a very trivial reason: if, say, x e βX — X, and
p, q are distinct members of ic~\x) c βE{X) — E(X), then μ = δ(p) —
δ(q) (a difference of point functionals) is not τ-additive, yet tc*μ — 0.
To avoid this difficulty, we shall be concerned only with nonnega-
tίve measures, and regard tc* as a map from M+(E(X)) to M+(X).

LEMMA, K* is a surjection.

Proof. Since f->f°κ is an isometric embedding of C*(X) into
C*(E(X)), the Hahn-Banach theorem tells us that if μ e M+(X), 3λ e
M(E(X)) with ||λ|| - | |^|| and X(f°κ) = μ(f)VfeC*(X). A standard
argument shows that λ is nonnegative, so λ e M+(E(X)) and /c*λ = μ.

THEOREM 4. (a) ιc*-\Mϊ(X)) = Mΐ(E(X)); (b) κ*-\Mt(X)) -
Mt(E(Z)).

Proof. Let μ e Mi(X), where z = t or τ. We may think of μ
as a regular Borel measure on βX. Let v be a regular Borel measure
on βE(X) with iz*v = μ.

(a) z = t: There is a sequence (Kn) of compact subsets of X
with /i(/3X — Kn) < 1/nVn. Then each ic~\Kn) is a compact subset
of E(X), and v{βE{X) — ΛT^JBΓJ) < 1/w, so i; corresponds to a tight
measure on E{X).

(b) « = τ: We have μ(L) - 0 for all compact LaβX - X [19,
Th. 2.4]. Then if Q is a compact subset of βE(X) - JS7(-XΓ), ic(Q) is
a compact subset of βX — X, so %>(Q) ^ v(^~^Q) = ̂ (̂ ζ>) — 0. Hence,
by an appeal to the same reference, v corresponds to a τ-additive
measure on βE{X).
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COROLLARY. X satisfies the condition Mt = Mτ if and only if
E{X) does.

Other proofs of these results can be found, at least implicitly,
in the work of Bauer [3, 4] and Topsoe [41]; these proofs rely on
nothing more than the fact that it is a perfect map. See also [20].

It would be nice if the argument of Theorem 4(b) also worked
for Mσ. Unfortunately it does not: there is no reason to suppose
that if Z is a zero-set in βE(X) — E(X), then tc(Z) is a zero-set in
βX — X. However, we can make the following observation: Suppose
X has the property

(*) If Z is a zero-set of βE(X), with Z a. βE{X) - E(X), then
there is a zero-set W of βX with ic(Z)aWc:βX - X.

Then it will be true that ιc*-\Mϊ(X)) = Mt(E(X)). The technique
of Theorem 4(b), combined with Theorem 2.1 of [19], yields the
result, since v(Z) ^ v{κ~xκZ) ^ v{κ~\W)) = μ(W) = 0.

We will show that X has (*) if and only if X is a weak cb
space. This concept was introduced by Mack and Johnson [25];
additional details can be found in the book by Alo and Shapiro [1].
For convenience we list several characterizations here.

LEMMA [25]. X is a weak cb space if and only if (1) every
lacally bounded lower semicontinuous function is bounded above by
a continuous function. (2) // (Fn) is a decreasing sequence of
regular closed subsets of X with empty intersection, there is a
decreasing sequence (Zn) of zero-sets with Zn~D FnVn and ΠΓ Zn = 0-
(3) Every countable increasing regular open cover of X has a locally
finite partition of unity subordinate to it.

There is a related concept, due to Home [15], of a cb-space.
Characterizations of eδ-spaces may be obtained in the preceding
lemma by deleting "lower semicontinuous" from (1) and "regular"
from (2) and (3); see [24]. A space is cb is and only if it is weak
cb and countably paracompact. Other relationships with standard
topological properties are summarized in the following diagram:

normal and countably paracompact

I
countably compact > cb > countably paracompact

i I
pseudocompact • weak cb

extremally disconnected
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A realeompact, even a measure-compact space need not be weak
cb (Michael's product space [27]). Conversely, a weak cb space need
not be realcompact (any pseudocompact, noncompact space). The space
Rc is weak cb and realcompact, but not measure-compact.

THEOREM 5. X has (*) if and only if X is a weak cb space.

Proof, (a) Suppose X has (*). We prove (3) of the preceding
lemma. Let (Z7Λ)Γ be an increasing regular open cover of X. Let
Fn = X — Un, and let L = ΠΓ cl^r Fn. Then L is a compact subset
of βX — X. Each Fn is regular closed in X, so c l^ i^ is regular
closed in βX, and X(clβx Fn) = CΛ is a clopen subset of E{βX).

Let Z = P!Γ CΛ. Then Z is a zero-set in E(βX), and certainly
κ(Z)<zL\ indeed, using the technique of [48, Lemma 2.4] one can
show that iz{Z) = L. Then Z a ic-\L) (Z βE(X) - E(X), so, from
(*), there is a zero-set W of /3X with ic(Z) = LaWaβX - X.
Then T — /3X — ΐ^is σ-compact locally compact, and ΠΓclΓ Fn = 0 ,
so {T — clΓi^w} is an open cover of T. Choose a locally finite (in T)
partition of unity (fa) subordinate to this cover. Then if ga = fa\X,
(ga) is a locally finite partition of unity in X, subordinate to
{(Γ - clτFn) Π X) = {Ϊ7J. Thus X is a weak cb space.

(b) Assume X is a weak cb space, and let Z be a zero-set of
βE(X), with ZczβE(X) - E{X). There is a decreasing sequence
(CJ of clopen subsets of βE(X) with flΓ Cn =

 z- Let ^(CΛ) = Dn

and D — ΠΓ Dn Then each D% is regular closed in βX, and (as in
part (a)) κ(Z) - ΰ c β l - X

Now let Fn = Z)n Π X; then (ί7,,) is a decreasing sequence in
RC(X) with empty intersection. From (2) of the lemma, there is a
decreasing sequence (Zn) of zero-sets with Zn Z) ̂ V^ and ΠΓ Zn — 0 .
Let Zn - / ί 1 ^ /n e C*(X). If Λ is the extension to βX, certainly
cl^x ZnczWn= f~X0). Let W = ΠT Wn. Then W is a zero-set of
/5X, and Wa βX - X. Hence ί(Z) = D = n cl^ f β c n <Aβz Zn c
ΠΓ WΛ - TFc/SX - X. This shows that (*) holds.

Recall the definitions of the strong and weak lifting properties
given in the introduction.

THEOREM 6. If X is measure-compact or weak cb, then X has
the SLP.

Proof. If X is measure-compact, the result is immediate from
Theorem 4b. If X is weak cb, then Theorem 5 and the remarks
following the definition of (*) yield the result.

COROLLARY 1. If X is weak cb, then X is measure-compact if
and only if E{X) is measure-compact.
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Proof. Theorems 2c and 6.

COROLLARY 2. If X is weak eb, then X is strongly measure-
compact if and only if E(X) is strongly measure-compact.

Proof. Theorem 2d, Theorem 4 (Corollary), and Theorem 6.

Several remarks are in order here.
(1) If X is weak cb, so is vX [25]; thus vX is measure-com-

pact if and only if E(yX) is measure-compact.
(2) Corollary 1 could be phrased: If X has the WLP, then X

is measure-compact if and only if E(X) is measure-compact. The
following is also valid: if E{X) is measure-compact, then X has the
WLP if and only if X has the SLP. For if μ e Mt(X) has a single
(7-additive pre-image v, then v is τ-additive, hence so is μ, and
therefore every pre-image of μ is τ-additive, by Theorem 4b. As
we shall see (Example 1 below), it is possible for E(X) to be
(strongly) measure-compact without X possessing the WLP.

(3) Let X be the Sorgenfrey plane. Then X is realcompact
and weak cb [25], but not measure-compact [28]. Hence E(X) is a
realcompact extremally disconnected space which is not measure-
compact.

EXAMPLE 1. A space which fails the WLP.

Let D be the Dieudonne plank. Thus D = [0, &)J x [0, ω0] —
{(#>!, α>0)}. Here [0, α)0] is topologized as usual (order topology), while
[0, ωx] is given the topology in which each a < ω1 is isolated, and
{(/S, ω1]}β<ωi is a base of neighborhoods of ωx. D has the subspace
topology arising from the product topology. Let p — (ωlf α>0).

Kato [18] has shown that (1) D is almost realcompact; (2) D is
not realcompact and (3) vΌ — D U {p} is Lindelof.

We will show that (A) μ = δ(p) is a σ-additive measure on D
with no pre-image in Mt(E(D)) and (B) E(D) is strongly measure-
compact, although D is not even realcompact.

In order to do this, we follow Kato in introducing an auxiliary
space D. Let G = [0, ωt) x [0, ωo]c:D, and let G be a copy of G.
Then the embedding i: G-^GdD extends to a map ψ: βG —> βD.
Since G is dense in D, ψ is onto. By [11, Lemma 6.11], ψ maps
βG - G onto βD - G. Now let D = f~\D) and Φ = ψ\D. Then
G C J D , and Φ maps D — G onto D — G (the right edge of D).

Now Φ is a perfect map, since it is the restriction of ψ to a
complete inverse image; since D contains a dense set of isolated
points, Φ is also irreducible. Consider the diagram
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E{D) -^-> D - ^ D .

Since ίc and Φ are perfect and irreducible, so is Φ o £; we deduce
that #(D) = £ 0 ) and K = Φ o £.

Proo/ 0/ (A). Suppose 3λ e Mi(E(D)) with £*λ = μ. Let v =
£*(X)eMϊ(D); then Φ*v = μ. Thus to establish (A), it is enough to
show that no such v can be found.

Suppose there were such a v. Let T = {(a, α>0): a < α>J be the
top edge of D, and let T = φ-\T)czD. Since T is a zero-set of A
with μ(T) = μ(Z?) = 1, we have f a zero-set of D, with v{T) =
v(-D) = 1. Since TaG, f and Γ are homeomorphic under Φ; each
is a discrete space of cardinal fc$1# But there is a critical distinction
between them: T is not C*-embedded in D, but f is C*-embedded
in D (because it is C*-embedded in G, hence in βG). It follows that
every subset of f is a zero-set of D. Thus v is defined on all sub-
sets of a set of cardinal #lf has total mass 1, and assigns measure
0 to all singletons. This contradicts a well-known result of Ulam
[42]. Hence no such v can exist.

Proof of (B). The only τ-additive measures on D are of the
form Σ Γ cnδ(xn), (xn) e D, Σ Γ I ^ I < °° bence MT(D) = Mt(D), and so,
by the Corollary to Theorem 4, E{D) has the same property. It
remains to show that E(D) is measure-compact, and, using the same
technique as in the proof of Theorem 2, it is enough to show that
D is measure-compact. We use the criterion of Moran [28, Th. 2.1].

Suppose μ e Miφ) and μ has empty support. Let L% = {(a, n):
a ^ <*>i) for each n. Then L% is a Lindelδf, clopen subset of D, and
so (Theorem l(c)) Φ~\Ln) is a Lindelof clopen subset of D. Thus
μ\Φ~\Ln) = OV̂ . Also, as in (A), μ| Γ is defined on all subsets and
vanishes on all singletons. Thus μ is the 0 measure, to complete
the proof.

REMARK. Let X be any almost realcompact, nonrealcompact
space. Then X fails the SLP. Indeed choose x0 e vX — X, and note
that, while x0 has pre-images in βE(X), none can lie in vE{X) — E(X).
Thus μ = δ(x0) G Mo(X), but none of the point-mass pre-images of μ
is σ-additive, so X does not have the SLP.

We conjecture that such a μ has no σ-additive pre-image of any
kind, so that such an X actually fails the WLP, as we have just
seen for the special case X — D.

EXAMPLE 2. A space which has the WLP but fails the SLP.
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Let X be the space obtained by joining the Dieudonne plank D
and the Tychonoff plank T along the edge {(ω,, n):ne N}. Then X
is completely regular Hausdorίf, and D and T are regular closed
subsets of X, each the Boolean complement of the other. The ultra-
filters of regular closed sets thus divide nicely into two classes,
those which contain D and those which contain T, and in fact E(X)
is the topological sum of E(D) and E{T) (cf. [48, Lemma 2.6]).

Let p = (α>i, α>o); then X U {p} is Lindelδf, and contains X as a
dense, C-embedded subspace, so vX = X{J {p}. Then μ — d(p) e
Mt(X), and it is easy to see that scalar multiples of μ are the only
purely σ-additive measures on X. Thus it is enough to show that
Λ;*"1^) contains both cr-additive and nonσ-additive measures. Now
D and T are both μ-thick (μ*D = μ*T=ΐ) and C*~embedded in X,
so μ induces measures μ1eMt{D) and μ2eMϊ(T); each is simply the
"point mass at p" in its own setting. By the lemma at the begin-
ning of this section, 3λx 6 M+(E(D)) with tctX, - μ19 and 3λ2 e M+(E(T))
with fc$X2 — μz. By Example 1 λx cannot be σ-additive. Since T is
pseudocompact, so is E(T), and therefore λ2 must be σ-additive
[43, p. 172]. Since each can be viewed as a pre-image of μ in
M+(E(T))9 the proof is complete.

Isawata has defined a space X to be a weak cδ* space if when-
ever (Fn) is a sequence of regular closed sets in X with ΠΓ F% — 0
then ΓIΓ el,* I*7* = 0 . Hardy and Woods [49] showed that X is
weak c&* if and only if E(vX) — vE(X). An almost realcompact,
nonrealcompact space is never weak ci>*. At this point we sum-
marize our findings in a diagram:

normal and
countably paracompact

Pseudocompact weak cb

Lindelδf

SLP-* — — — realcompact

weak cb

EEMARKS. (1), (2), (6), and (8) are well-known, and each con-
verse is false. (3) and (7) are proved in Theorem 6; the disjoint
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union of MichaeΓs product space and the Sorgenfrey plane has the
SLP, but is neither weak cb nor measure-compact. (5) is trivial;
Example 2 shows that the converse fails. (9) is equally trivial, and
the converse fails (any pseudocompact, noncompact space). (4) can
be shown as follows: it is always true that vE(X)aE(vX). If pe
E(vX), then ic(p)evX, and so J ( φ ) ) - ^ ( « e I f f

+ ( I ) , Hence
(from the SLP) d(p)e Mϊ(E(X)), i.e., pevE(X).

The SLP (and hence the WLP) do not imply realcompactness (any
pseudocompact, noncompact space). The space of Example 2 has the
WLP, but is not weak cδ*. To see this, note that E{vX) is Lindelδf,
since vX has that property. However, vE(X) is the topological sum
of vE(D) = E(D) and vE(T) = βE(T). Since D is not Lindelof,
neither is E(D), and so vE(X) £ E(vX).

Since a zero-set of βX — X must actually lie in βX — vX, there
is a natural identification of Mσ(X) and Mσ(vX). This yields the
following proposition; we omit the proof.

THEOREM 7(a). If X has the WLP (or SLP), so does vX. (b) If
X is weak cb*, and vX has the WLP (or SLP), then so does X.

In view of these results, the principal open question appears to
be: Does realcompactness imply the WLP or the SLP? We know
that the WLP fails for the Dieudonne plank, but this is basically a
topological pathology: there is a point of vX — X with no pre-image
in vE(X) — E(X), simply because the latter set is empty. Failure of
the WLP for a realcompact space would be a true measure-theoretic
pathology. Such an example would be quite interesting; we mention
a possible candidate below.

EXAMPLE 3. Let X = [0, 1], endowed with the density topology
J7~d. A subset E of [0, 1] is open in this topology if and only if E
is Lebesgue measurable and has density one at each of its points;
see [34] and [40] for details. We shall need the the following facts:
(1) ^ d is finer than the usual topology ^ on X; (2) (X, J7~d) is
realcompact; (3) Every ^-continuous function is Baire class 1; hence
the ^-Baire sets are precisely the ^-Borel sets; (4) Every set of
Lebesgue measure 0 is .^-closed and discrete; (5) Let Jίf be the
σ-algebra of Lebesgue measurable sets, m = Lebesgue measure. Then
βE(X) is the Stone space of the reduced measure algebra ^f\m~1{^t)
(henceforth E(X) stands for E(X, J Q ) .

Now let C be the Cantor set, and, thinking of C as 2N, let μ
denote Haar measure on the Borel sets of C. From (3), we may
think of μ as a member of M+(X, J7~d). But it is easy to see, using
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(4), that spt μ = {xeX: if xe Z7G^>open), then μll > 0} is empty,
so μ is not τ-additive; hence (X, ̂ Q is not measure-compact.

We now ask: does there exist λ e Mϊ(E(X)) with Λ:*(λ) = μl
Intuitively it seems unlikely, since the measure algebra construction
suppresses sets like C. However, we now show that if £f admits a
Borel lifting of a certain type, then (X, ̂ ~d) has the WLP, so that
such a λ does exist.

For a discussion of the theory of lifting, see [16] or [26]. If
Ae£f9 let Θ(A) = {xeX: the density of A at x is 1}.

THEOREM 8. Suppose there is a lifting I: J*f -+ Jϊf such that
(a) θ(A)<zl(A)VAe£f and (b) each set l(A) is a ^Ό-Borel set. Then
(X, jTd) has the WLP.

Proof. The lifting I gives rise to a lifting topology J7\ on X
for which {l(A):Ae=£f} is a base. Condition (a) implies that ^ c
J7~d c J^7 o n X> ami condition (b) implies that each ^7-continuous
function is ^7-Borel measurable; hence the ^7-Baire sets coincide
with the J^-Borel sets and the ^-Baire sets.

From [16, pp. 58-61] we can deduce that there is a dense sub-
space Y of E{X) which is homeomorphic to (X, J?7). F consists of
exactly one point from each set tc~\x); explicitly, x corresponds to
the ultrafilter p = {Fe RC{X, ^ ) : x e \{F)}.

Now let μeMϊ(X, J?~d). There is a corresponding Baire measure
μ on YCLE{X). Define 7 on the Baire sets of E(X) by y(B) =
jδ(J5n Γ). Then 7 6 Mϊ(E(X)), and if 2? is'a Baire set in (X, ^ ) ,
Ί(/c-\D)) = μ(κr\D) Γ\Y) = μ(D). Hence Λ:*7 = j«, and so (X, J Q has
the WLP.

Thanks are due to Dennis Sentilles for some very helpful ideas
relative to this proof.

Assuming the continuum hypothesis, Siegfried Graf has shown
[52, Th. 9.2] that a lifting satisfying the conditions of Theorem 8
exists (see also [23] and [44]). Without the continuum hypothesis,
however, the question of existence of such a lifting seems to be
open.

4* Extension of measures* Up to this point we have treated
M+(E(X)) and M+(X) as distinct collections of measures connected
by the map Λ;*. Here is another point of view: if μeM+(X), then
μ induces a set function λ on {κΓ\B): B a Baire set in X} in the
obvious way: X(κΓ\B)) = μ{B). The question then becomes: does λ
have an extension to a zero-set regular measure v defined on all
Baire sets of E(X)Ί Call such a v a measure extension of μ.

We consider this problem in the context of a recent paper on
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extensions of measures by Sultan [39]. We record some relevant
terminology. A lattice £f of subsets of a set X is called a paving.
Sf is a delta paving if £f is closed under countable intersections;
^ is a normal paving if disjoint members of Sf are contained in
disjoint complements of members of .Sf. If i S ^ c i ^ are two lattices
of subsets of X, then ^ semiseparates £f% if whenever i e ^ ,
Be£f2, and 4 f l 5 = 0 , there exists a C e ^ such that BaC and
AnC = 0 . Finally, ^ is ^ c.6. if δ , | 0 in ^ implies there
exist (AJ in ^ with BnaAn[ 0 .

Now let JS^ - {ιr\Z)ι Z a zero-set of X), and let ^f2 = {W: W
a zero-set of i£(X). Then Sfi c ^ , and each is a delta-normal paving
of subsets of E(X). M+(X) corresponds to MR(&0, and M+(E(X))
corresponds to MR(£f£).

We now give topological characterizations of the semiseparation
and c.b. properties. Mack [54] has termed a space weakly d-normally
separated if each regular closed set and zero-set disjoint from it
are completely separated. He has shown that every weak cb space
has this property.

LEMMA. Suppose X is any completely regular space, and F, H
are disjoint closed subsets of X, with F a zero-set and H the inter-
section of a decreasing sequence of regular closed sets (an RCδ).
Then there is a regular closed set D with HaD and F (Ί D = 0 .

Proof. Let H — ΠΓ Hn, where each Hn is regular closed and
Hn => Hn+1Vn. Let A = Λ Γ 1 ^ ) , B = f[T λ(fl"Λ). Then A and B are
disjoint zero-sets in E(X), and so there is a clopen set C with BaC
and i f l C = 0 . Then D = ιc(C) is the desired regular closed set.

THEOREM 9. ^ semiseparates J?f2 [39] if and only if X is
weakly δ-normally separated.

Proof. Assume the topological condition, and let Ae£?l9

with A Π B = 0 . Let A = κ~\F), where F is a zero-set of X. Now
B is a countable intersection of clopen subsets of E(X), and so
ιc(B) = i ϊ is an J?C5 in X From the hypothesis and the lemma,
t h e r e i s a n f e C * ( X ) , f \ F = l, f \ H = 0. T h e n i f C - κ Γ \ Z ( J ) ) f

we have JScC and i f l C = 0 .
Conversely, suppose £fi semiseparates Sf%. Then for disjoint F

and if in I , Fa, zero-set and H regular closed, tc~1(F)ecSf1 and
X(H) 6 Sf% are disjoint, hence there is a zero-set Z oί X with λ(£Γ) 6
ΛΓXZ) and κ~\Z) Π ΛΓ^F) = 0 . It follows that F and H are com-
pletely separated.
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COROLLARY. The following are equivalent:
(1) X is weakly δ-normally separated.
(2) if μe M+(X), and v is any measure in M+(E(X)) with

κ*v = μ, then v is a measure extension of μ.
(3) if pe βX, and q is any point of βE(X) with ic(q) = p,

then δ(q) is a measure extension of δ(p).

Proof. (1) => (2): Theorem 9, and Lemma 4.4 of [39]. (2) => (3):
trivial, since (3) is a special case of (2). (3) => (1): Woods [55] has
shown that X is weakly δ-normally separated if and only if
cl^(z) κr\Z) = £-\&ιz Z) for each zero-set Z of X. If (1) fails,
choose a ZQ for which cl^ ( X ) fc~\Z0) £Ξ ΛT^CÎ X ZQ), and find a point q
in the second set, but not the first. Then, with ϋ{q) — p, we have
δ{p)(Z0) = 1, since p e c\βx Zo, but δ{q){tc-\Z0)) = 0. Thus δ(q) is not
a measure extension of δ(p).

EXAMPLE. Referring to Example 2, let Y be the space obtained
by deleting from X the top edge of the Tychonoff plank T, and let
U be the portion of T which remains. Then Y is not weakly δ-
normally separated (consider Z, the top edge of D, and U). As in
Example 2, vY = Y\J{p}, so δ(p) eMϊ(Y). E{Y) is the topological
sum of E(D) and E(U); choose qeβE(U) with ic(q) = p. Then
δ(p)(Z) - 1, but δ(q)(fc-\Z)) ̂  δ(q)(E(D)) - 0. Thus δ(p) is a σ-addi-
tive measure with a functional extension δ(g) which is not a measure
extension; δ(q) is (necessarily) only finitely-additive.

REMARK. For any X and any p e /SX, there is always at least
one qeβE(X) with ϊϊ{q) = p and <?(#) a measure extension of δ(p).
Indeed {fc'^Z): peclβx Z} is a ^ -filterbase on E'(X); any z-ultrafilter
which extends it corresponds to such a q.

Question. Is it true that for any X and μ e M+(X), there is
always at least one v e M+(E(X)) with /ε*(v) = μ and v a measure
extension of μl

THEOREM 10. ^ is JZ^ c.b. [39] if and only if X is a weak
cb space.

Proof. Assume X is weak cb, and let Bn [ 0 in J*f2. Let Bn =
Πi Cw> where each C%ji is clopen, and let Dn = f|i(i=i CmΛ. Then
DΛ I 0 , and so Λ;(i)J | 0 in RC(X). Choose a sequence (ZΛ) of zero-
sets of X with ZnZ)/c(Dn) and Zn{<Z>. Then with iln = /^(ZJ, we
have 5 π c AM and Aw | 0 .

The proof of the converse is left to the reader.
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In view of Theorems 9 and 10 and Mack's result that every weak
cb space is weakly δ-normally separated, Theorem 5.1 of [39] yields
another proof that every weak cb space has the strong lifting
property (Theorem 6).

5* Spaces of functions. As we have remarked, the map Φ:
C*(X) -> C*(E(X)) defined by Φ(f) = f°κ is an isometric embedding
of C*(X) as a norm-closed subspace of C*(E(X)). Since K is closed
and onto, it is a quotient map; hence g e C*(E(X)) is a member of
Φ(C*(X)) if and only if g\fc~\x) is constant for each xeX. It
follows that Φ(C*(X)) is actually a pointwise-closed subspace of
C*(E(X)).

We now investigate whether Φ is a topological embedding with
respect to the strict topologies β0, β, and βt [35] which can be
placed on C*(X) and C*(E(X)). As might be expected from §3, the
situation is as nice as possible for β0 and β, and somewhat complicat-
ed for βl9

THEOREM 11. Φ is a topological isomorphism of (C*(X), J7~)
onto a closed subspace of (C*(E(X)), J^~) for J7~ = βQ or β.

Proof, It is known [30] that Φ is .^continuous in either case.
(y = β0) Let U be a /S0-neighborhood of 0 in C*(X). We may
assume [35] that U = f)Γ {f\\\f\\Hi ̂  «<}> where each Hi is a compact
subset of X and 0 < at | oo. Let Lt = tc~\Hi). Then each L4 is
compact, and Φ{U)Ί>Φ{C*{X)) Π ΠΓί^lll^lU^ ^ α j , so Φ is open onto
its range.

C^~ = β) Let U be a /3-neighborhood of 0 in C*(X). We may
assume [35] that U = H°, where H is weak*-compact subset of
Af+(X). Now /c*-ι(H) = Q is weak*-compact in M+(E(X)), by Alaoglus,
theorem, and so, by Theorem 4b, Q is a weak*-compact subset of
M+(E(X))9 hence ,5-equicontinuous. Thus Φ(U) =) Φ(C*(X)) Π Q°, so Φ
is open onto its range.

We remark that (1) the Jf = /90 proof adapts easily to show
that Φ is an embedding of C(X) in C(E(X)) for the compact-open
topology; (2) If C*(E(X)) is /90 or /S-complete, so is C*(X). In the
/30-case this says, topologically, that if E(X) is a λ^-space, (i.e.,
every real-valued function which is continuous on compact subsets is
continuous), then so is X. Of course, this is trivial to prove
directly. The converse (X a A^-space ==* E{X) a A^-space) seems to
be open.

DEFINITION 3. X is ^-stable if Φ is a topological isomorphism
of (C*(X), βt) onto a closed subspace of (C*(E(X)), A).
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LEMMA [53, p. 156], If E is a locally solid vector lattice, F is
a linear subspace and sublattice of E, and μ is a positive con-
tinuous linear functional on F, then there is a positive continuous
linear functional X on E with X\F = μ.

THEOREM 12. SLP => βrstable ==> WLP.

Proof. That the SLP => ̂ -stable can be proved just as in the
^" — β case of the previous theorem. Now suppose that X is βt-
stable, and let μeMt(X). Then μ can be thought of as a /^-con-
tinuous linear functional on Φ(C*(X)), so by the Hahn-Banach
theorem, 3λ e MO(E(X)) with κ*x = μ. Since β1 is locally solid, the
lemma shows that we can choose λ to be nonnegative.

The first implication, at least, of Theorem 12 cannot be reversed.

EXAMPLE 2 (continued). The join X of the Dieudonne plank D
and the Tychonoff plank T is ^-stable, but fails the SLP.

Proof. We only sketch the argument. It is enough to show
that if H is a weak*-compact subset of ikfo

+(X), then there is a
weak*-compact subset Q of Mt{E{X)) with κ*(Q) = H. It is con-
venient to identify Mi(X) and M+(ι>X), because vX is a strongly
measure-compact Prohorov (or T-) space [30]; every σ-additive Baire
measure on vX is of the form ΣΓ cnδ(xn), where xn e vXin and
ΣΓ \vn\ < °° Then, by looking at "horizontal lines" in vX and using
[30, Th. 4.4] one can show that H lives on A U T U {p} = A U βT,
where A is a subset of D of the form [0, aQ] x [0, α>0], oίύ < ωγ. Then
H\A is a weak*-compact subset of Mi(D), and H\βT is a weak*-
compact subset of M+(βT), so each can be pulled back to a weak*-
compact subset of Ma(E{X)). The sum of these two pre-images
contains the desired pre-image of H.

We do not know an example of a space with the WLP which
is not /Si-stable.
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