GENERALIZATION OF A THEOREM OF McFADDEN

Indulata Sukla

McFadden's relation $|N, 1 /(n+1)| \subset|C, k|(k>0)$ is strengthened to $\left|N, p_{n}\right| \subset|R, \lambda(w), k|(k>0)$ for suitable $\left\{p_{n}\right\}$ and $\lambda(w)$.

1. Let $\left\{p_{n}\right\}$ be a sequence of complex numbers such that for $n>0$,

$$
P_{n}=p_{0}+p_{1}+\cdots+p_{n} \neq 0 .
$$

Let $\sum_{n=0}^{\infty} a_{n}$ be an infinite series with $\left\{s_{n}\right\}$ as its partial sums. We define the $\left(N, p_{n}\right)$-transform $\left\{t_{n}\left(s_{n}\right)\right\}$ of $\left\{s_{n}\right\}$ generated by the sequence $\left\{p_{n}\right\}$ by the formula

$$
\begin{equation*}
t_{n}\left(s_{n}\right)=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{n-v} s_{v} . \tag{1.1}
\end{equation*}
$$

Similarly, $\left\{t_{n}\left(n a_{n}\right)\right\}$ denotes the (N, p_{n})-transform of the sequence $\left\{n a_{n}\right\}$ generated by the sequence $\left\{p_{n}\right\}$. The series $\sum_{n=0}^{\infty} a_{n}$ is said to be summable $\left|N, p_{n}\right|$ if $\left\{t_{n}\left(s_{n}\right)\right\} \in B V$, i.e., $\sum_{n=1}^{\infty}\left|t_{n}-t_{n-1}\right|$ is convergent. (See [7], [5].) In the special case when $p_{n}=\binom{n+k-1}{k-1}$, ($k>-1$), summability $\left|N, p_{n}\right|$ is summability $|C, k|$.

Let $\lambda=\lambda(w)$ be a differentiable, monotonically increasing function of w in (A, ∞), where A is a finite positive number; and let $\mu(w)$ be its differential and let $\lambda(w)$ tend to infinity with w. For $k \geqq 0$, we write

$$
R_{\lambda}^{k}(w)=\sum_{n \leq w}\{\lambda(w)-\lambda(n)\}^{k} a_{n}
$$

The series $\sum_{n=0}^{\infty} a_{n}$ is said to be summable $|R, \lambda, k|$ if

$$
\begin{equation*}
\int_{A}^{\infty}\left|d\left[R_{\lambda}^{k}(w) / \lambda^{k}(w)\right]\right|<\infty, \tag{1.2}
\end{equation*}
$$

see [8], [9]. For $k>0, N<w<N+1(N=1,2, \cdots)$

$$
\frac{d}{d w}\left[R_{\lambda}^{k}(w) / \lambda^{k}(w)\right]=\frac{k \mu(w)}{\lambda^{k+1}(w)} \sum_{n \leqq w}\{\lambda(w)-\lambda(n)\}^{k-1} \lambda(n) a_{n}
$$

Hence, summability $|R, \lambda, k|$ is equivalent to the convergence of the integral

$$
\int_{A}^{\infty} \frac{\mu(w)}{\lambda^{k+1}(w)}\left|\sum_{n \leqq w}\{\lambda(w)-\lambda(n)\}^{k-1} \lambda(n) a_{n}\right| d w .
$$

If every series summable by the method P is summable by the
method Q, we write $P \subseteq Q$. If $P \subseteq Q$ and $Q \subseteq P$, we write $P \sim Q$. We now define a sequence of constants $\left\{c_{n}\right\}$ by the identity

$$
\left[\sum_{n=0}^{\infty} p_{n} x^{n}\right]^{-1}=\sum_{n=0}^{\infty} c_{n} x^{n}, \quad c_{-1}=0 .
$$

If, for $n=0,1,2, \cdots$

$$
p_{n}>0, \frac{p_{n+1}}{p_{n}} \leqq \frac{p_{n+2}}{p_{n+1}} \leqq 1
$$

we shall write $\left\{p_{n}\right\} \in \mathscr{M}$. We write

$$
\begin{aligned}
& d_{n}=c_{0}+c_{1}+\cdots+c_{n} \\
& e_{n}=d_{0}+d_{1}+\cdots+d_{n}
\end{aligned}
$$

We write $P(v), d(v), e(v)$ in place of P_{v}, d_{v}, e_{v} respectively when v is replaced by a more complicated expression. We let $\Delta f_{n}=f_{n}-$ f_{n+1}, for any sequence $\left\{f_{n}\right\}$.

The following inclusion theorems are known:

$$
|C, 0| \subset\left|N, \frac{1}{n+1}\right| \subset|C, k| \sim|R, n, k|,(k>0)
$$

The first one is due to Mears [6], the second one is due to McFadden [4] and the equivalence is due to Hyslop [3].

Our object is to prove that under certain conditions on $\left\{p_{n}\right\}$ and $\lambda(w)$,

$$
\left|N, p_{n}\right| \subset|R, \lambda(\omega), k|(k>0)
$$

2. We establish the following.

Theorem. Let

$$
\begin{gather*}
\left\{p_{n}\right\} \in \mathscr{M}, \tag{2.1}\\
P\left(v^{2}\right)=O\left(P_{v}\right), \tag{2.2}
\end{gather*}
$$

(2.3) $\quad \lambda(w)$ be an indefinite integral of some function $\mu(w)$,

$$
\begin{equation*}
(n+1)\left\{\frac{\lambda(n+1)-\lambda(n)}{\lambda(n+1)}\right\}=O(1) \tag{2.4}
\end{equation*}
$$

Then $\left|N, p_{n}\right|$ implies $|R, \lambda(w), k|$ for all $k>0$.
For the proof we require the following lammas.
Lemma 1 [1]. Let $\left\{p_{n}\right\} \in \mathscr{M}$. A necessary and sufficient condi-
tion for $\Sigma a_{n} \in\left|N, p_{n}\right|$ is

$$
\sum_{n=1}^{\infty} \frac{\left|t_{n}\left(n a_{n}\right)\right|}{n}<\infty
$$

Lemma 2 [1]. Let $\left\{p_{n}\right\} \in \mathscr{M}$. Then
(i) $c_{0}>0, c_{n} \leqq 0(n=1,2,3, \cdots)$
(ii) $\quad \sum_{n=v+1}^{\infty}\left|c_{n}\right| \leqq d_{v}$
(iii) $d_{n} \geqq 0$ and monotonic nonincreasing
(iv) $P_{n} d_{n} \leqq 1$
(v) $\quad P_{n} e_{n} \leqq(2 n+1)$.

For (i), (ii) see Hardy [2] Theorem 22, p. 68.
Lemma 3. Let $\left\{p_{n}\right\} \in \mathscr{M}$. Then for any fixed k with $0<k<1$, (2.2) is equivalent to

$$
\begin{equation*}
P_{v}=O(P(u)), \text { where } u=\left[v^{k}\right] \tag{2.5}
\end{equation*}
$$

Proof. If (2.2) holds, by successive application of (2.2) we see that for any fixed integer r,

$$
\begin{equation*}
P\left(v^{2 r}\right)=O\left(P_{v}\right) \tag{2.6}
\end{equation*}
$$

Choose r so that $2^{r}>1 / k$. Then if $u=\left[v^{k}\right], v \leqq(u)^{1 / k}<(u)^{2 r}$. So, since P_{v} is increasing, (2.5) follows from (2.6).

Conversely, suppose that (2.5) holds. Given any positive integer v, define v_{r} inductively (on r) by taking $v_{0}=v$ and defining $v_{r}(r>1)$ as the least integer greater than or equal to $v_{r-1}^{1 / k}$. Since $\left\{p_{n}\right\} \in \mu$ implies that

$$
\begin{equation*}
\frac{p_{r}}{p_{r-1}} \longrightarrow 1 \tag{2.7}
\end{equation*}
$$

as $r \rightarrow \infty$, we see that (2.5) is equivalent to

$$
\begin{equation*}
P\left(v_{1}\right)=O\left(P_{v}\right) \tag{2.8}
\end{equation*}
$$

By successive application of (2.8) we deduce that, for any fixed r,

$$
\begin{equation*}
P\left(v_{r}\right)=O\left(P_{v}\right) \tag{2.9}
\end{equation*}
$$

Choose r so that $(1 / k)^{r}>2$. Then $v_{r}>v^{2}$ so that (again since P_{v} is increasing) (2.9) implies (2.2).

For the proof of the theorem we require (2.5). The condition (2.2) is preferable to (2.5) because the former is simpler and independent of k.

Lemma 4. If (2.4) is satisfied then

$$
\frac{\lambda(n+1)}{\lambda(n)}=O(1), \text { as } n \longrightarrow \infty .
$$

This is obvious.
3. Proof of the theorem. It is enough to consider the case $0<k<1$. This implies the result for $k \geqq 1$. We can assume without loss of generality that $a_{0}=0$. Then by Lemma 1 and (1.2) it is enough to show that (2.4') implies

$$
\int_{1}^{\infty}\left|\frac{d}{d w}\left(R_{\lambda}^{k}(w) / \lambda^{k}(w)\right)\right| d w<\infty
$$

Now,

$$
n a_{n}=\sum_{v=1}^{n} c_{n-v} P_{v} t_{v}\left(v a_{v}\right) .
$$

Then

$$
\begin{gathered}
\frac{d}{d w} \frac{R_{\lambda}^{k}(w)}{\lambda^{k}(w)}=\frac{k \mu(w)}{\lambda^{k+1}(w)}\left[\sum_{n=1}^{[w]}\{\lambda(w)-\lambda(n)\}^{k-1} \frac{\lambda(n)}{n} \sum_{v=1}^{n} c_{n-v} P_{v} t_{v}\left(v a_{v}\right)\right] \\
\quad=\frac{k \mu(w)}{\lambda^{k+1}(w)}\left[\sum_{v=1}^{[w]} P_{v} t_{v}\left(v a_{v}\right) \sum_{n=v}^{[w]}\{\lambda(w)-\lambda(n)\}^{k-1} \frac{\lambda(n)}{n} c_{n-v}\right] .
\end{gathered}
$$

Then

$$
\begin{aligned}
& \int_{1}^{\infty}\left|\frac{d}{d w}\left(R_{\lambda}^{k}(w) / \lambda^{k}(w)\right)\right| d w \\
& \quad=O(1)\left[\int_{1}^{\infty} \frac{\mu(w)}{\lambda^{k+1}(w)} \sum_{v=1}^{[w]} v P_{v} \frac{\left|t_{v}\left(v a_{v}\right)\right|}{v}\left|\sum_{n=v}^{[w]}\{\lambda(w)-\lambda(n)\}^{k-1} \frac{\lambda(n)}{n} c_{n-v}\right| d w\right] \\
& \quad=O(1)\left[\sum_{v=1}^{\infty} v P_{v} \frac{\left|t_{v}\left(v a_{v}\right)\right|}{v} \int_{v}^{\infty} \frac{\mu(w)}{\lambda^{k+1}(w)}\left|\sum_{n=v}^{[w]}\{\lambda(w)-\lambda(n)\}^{k-1} \frac{\lambda(n)}{n} c_{n-v}\right| d w\right] .
\end{aligned}
$$

Thus it is enough to prove that uniformly in $v \geqq 1$,

$$
\begin{align*}
J(v) & =\int_{v}^{\infty} \frac{\mu(w)}{\lambda^{k+1}(w)}\left|\sum_{n=v}^{[w]}\{\lambda(w)-\lambda(n)\}^{k-1} \frac{\lambda(n)}{n} c_{n-v}\right| d w \tag{3.1}\\
& =O\left(\frac{1}{v P_{v}}\right)
\end{align*}
$$

Write $m=\min ([w], v+u)$. Let $a=v+u-1, b=v+u+1$.
Applying partial summation to the sum over the range $v \leqq n \leqq$ m, we see that the expression inside the modulus in (3.1) is equal to

$$
\begin{align*}
& \sum_{n=v}^{m-1} \Delta_{n}\left[(\lambda(w)-\lambda(n))^{k-1} \frac{\lambda(n)}{n}\right] d_{n-v}+(\lambda(w)-\lambda(m))^{k-1} \frac{\lambda(m)}{m} d_{m-v} \tag{3.2}\\
& \quad+\sum_{n=m+1}^{[w]}(\lambda(w)-\lambda(n))^{k-1} \frac{\lambda(n)}{n} c_{n-v} \\
& =\sum_{n=v}^{m-1}(\lambda(w)-\lambda(n))^{k-1} \Delta\left(\frac{\lambda(n)}{n}\right) d_{n-v} \\
& \quad+\sum_{n=v}^{m-1} \Delta_{n}(\lambda(w)-\lambda(n))^{k-1} \frac{\lambda(n+1)}{n+1} d_{n-v} \\
& \quad+(\lambda(w)-\lambda(m))^{k-1} \frac{\lambda(m)}{m} d_{m-v}+\sum_{n=m+1}^{[w]}(\lambda(w)-\lambda(n))^{k-1} \frac{\lambda(n)}{n} c_{n-v} .
\end{align*}
$$

Here the last term is to be omitted when $m=[w]$, i.e., when $w<b$. Hence

$$
J(v) \leqq J_{1}(v)+J_{2}(v)+J_{3}(v)+J_{4}(v),
$$

where $J_{1}(v), J_{2}(v), J_{3}(v), J_{4}(v)$ denote the expressions obtained by replacing the expression inside the modulus in (3.1) by each of the four terms on the right of (3.2). First,

$$
\begin{aligned}
J_{1}(v) & \leqq \sum_{n=v}^{a} d_{n-v}\left|\Delta\left(\frac{\lambda(n)}{n}\right)\right| \int_{n+1}^{\infty} \frac{(\lambda(w)-\lambda(n))^{k-1} \mu(w)}{\lambda^{k+1}(w)} d w \\
& =O(1) \sum_{n=v}^{a} d_{n-v} \frac{|\Delta \lambda(n)|}{(n+1) \lambda(n)}+O(1) \sum_{n=v}^{a} d_{n-v} \frac{\lambda(n)}{n(n+1) \lambda(n)} .
\end{aligned}
$$

Using (2.4) and Lemma 4,

$$
\begin{aligned}
J_{1}(v) & =O(1) \sum_{n=v}^{a} \frac{d_{n-v}}{n^{2}} \\
& =O(1) \frac{e(u-1)}{v^{2}}=O\left(\frac{1}{v P_{v}}\right),
\end{aligned}
$$

by Lemma 2(v) and Lemma 3. Next,

$$
\begin{aligned}
J_{2}(v) & \leqq \sum_{n=v}^{a} d_{n-v} \frac{\lambda(n+1)}{n+1} \\
& \times \int_{n+1}^{\infty} \frac{\left[(\lambda(w)-\lambda(n+1))^{k-1}-(\lambda(w)-\lambda(n))^{k-1}\right] \mu(w)}{\lambda^{k+1}(w)} d w .
\end{aligned}
$$

The inner integral can be evaluated and is equal to

$$
\begin{aligned}
& \frac{1}{k}\left[\frac{1}{\lambda(n+1)}-\frac{1}{\lambda(n)}\left\{1-\left(\frac{\lambda(n+1)-\lambda(n)}{\lambda(n+1)}\right)^{k}\right\}\right] \\
& \quad=\frac{1}{k \lambda(n)}\left[\left(\frac{\lambda(n+1)-\lambda(n)}{\lambda(n+1)}\right)^{k}-\left(\frac{\lambda(n+1)-\lambda(n)}{\lambda(n+1)}\right)\right] \\
& \quad=O\left(\frac{1}{n^{k} \lambda(n)}\right),
\end{aligned}
$$

by (2.4). Hence, by Lemma 4,

$$
\begin{aligned}
J_{2}(v) & =O(1) \sum_{n=v}^{a} \frac{d_{n-v}}{n^{k+1}}=O(1) \frac{e(u-1)}{v^{k+1}} \\
& =O\left(\frac{1}{v P_{v}}\right),
\end{aligned}
$$

by Lemma 2(v) and Lemma 3.
Suppose $N \leqq w<N+1$. Then,

$$
\begin{aligned}
J_{3}(v) \leqq & \int_{v}^{v+u}(\lambda(w)-\lambda(N))^{k-1} \frac{\lambda(N)}{N} d_{N-v} \frac{\mu(w)}{\lambda^{k+1}(w)} d w \\
& +\frac{\lambda(v+u)}{v+u} d(u) \int_{v+u}^{\infty}(\lambda(w)-\lambda(v+u))^{k-1} \frac{\mu(w)}{\lambda^{k+1}(w)} d w \\
& =J_{31}(v)+J_{32}(v) .
\end{aligned}
$$

Since

$$
\int_{v+u}^{\infty}(\lambda(w)-\lambda(v+u))^{k-1} \frac{\mu(w)}{\lambda^{k+1}(w)} d w=\frac{1}{k \lambda(v+u)}
$$

clearly

$$
J_{32}(v)=O\left(\frac{d(u)}{v+u}\right)=O\left(\frac{1}{v P_{v}}\right)
$$

by Lemma 2(iv) and Lemma 3.
Now,

$$
\begin{aligned}
J_{31}(v) & \leqq \sum_{\sigma=0}^{u-1} \int_{v+\sigma}^{v+\sigma+1}(\lambda(w)-\lambda(N))^{k-1} \frac{\lambda(N)}{N} d_{N-v} \frac{\mu(w)}{\lambda^{k+1}(w)} d w \\
& \leqq \sum_{\sigma=0}^{u-1} \frac{d_{\sigma}}{(v+\sigma) \lambda^{k}(v+\sigma)} \int_{v+\sigma}^{v+\sigma+1}(\lambda(w)-\lambda(N))^{k-1} \mu(w) d w \\
& \leqq \sum_{\sigma=0}^{u-1} \frac{d_{\sigma}}{(v+\sigma) \lambda^{k}(v+\sigma)} \int_{v+\sigma}^{v+\sigma+1}(\lambda(w)-\lambda(N))^{k-1} \mu(w) d w \\
& =O(1) \sum_{\sigma=0}^{u-1} \frac{d_{\sigma}}{(v+\sigma) \lambda^{k}(v+\sigma)} \frac{\lambda^{k}(v+\sigma+1)}{(v+\sigma+1)^{k}} \\
& =O\left(\frac{1}{v P_{v}}\right)
\end{aligned}
$$

by Lemma 4, Lemma 2(v), and Lemma 3. Hence

$$
J_{3}(v)=O\left(1 / v P_{v}\right) .
$$

Lastly,

$$
\begin{aligned}
J_{4}(v) & \leqq \int_{b}^{\infty} \frac{\mu(w)}{\lambda^{k+1}(w)}\left[\sum_{n=m+1}^{[w]}(\lambda(w)-\lambda(n))^{k-1} \frac{\lambda(n)}{n}\left|c_{n-v}\right|\right] d w \\
& =\sum_{n=b}^{\infty}\left|c_{n-v}\right| \frac{\lambda(n)}{n} \int_{n}^{\infty}(\lambda(w)-\lambda(n))^{k-1} \frac{\mu(w)}{\lambda^{k+1}(w)} d w \\
& =\frac{1}{k} \sum_{n=b}^{\infty} \frac{\left|c_{n-v}\right|}{n} \leqq \frac{1}{k} \frac{d(u)}{b} \\
& =O\left(1 / v P_{v}\right)
\end{aligned}
$$

by Lemma 2 (ii), (iv), and Lemma 3. Hence (3.1) is proved.
This completes the proof of the theorem.
By putting $p_{n}=1 /(n+1), \lambda(w)=w$ (integer) we get the inclusion $|N, 1 /(n+1)| \subset|R, n, k|, k>0$ due to McFadden [4].

My thanks are due to Prof. T. Pati for his suggestion and also to the referee for his valuable comments.

References

1. G. Das, Tauberian theorems for absolute Nörlund summability, Proc. London Math. Soc., (3), XIX, Part II, (1969), 357-384.
2. G. H. Hardy, Divergent Series, Oxford (1949).
3. J. M. Hyslop, On the absolute summability of series by Riesz means, Proceedings of the Edinburg Math. Soc., 5 (1936), 46-54.
4. L. McFadden, Absolute Nörlund summability, Duke Math. J., 9 (1942), 168-207.
5. F. M. Mears, Some multiplication theorems for the Nörlund means, Bull. Amer. Math. Soc., 41 (1935), 875-880.
6. -, Absolute regularity and the Nörlund means, Annals of Math., 38 (1937), 594-601.
7. N. E. Nörlund, Sur une application des function permutable, Lunds Universities Arsskrift (2), 6 (1919), No. 3.
8. N. Obrechkoff, Sur la sommation absolute des series de Dirichlet, Comptes Rendus, 186 (1928), 215-217.
9. Uber die sbsolute summierung der Disichletschen Reihen, Mathematische Zeischrift, 30 (1929), 375-386.

Received December 23, 1975 and in revised form September 6, 1978.
Sambalpur University
Jyoti Vihar, Burla
Sambalpur, Orissa
768017 (India)

