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GENERALIZATION OF A THEOREM OF McFADDEN

INDULATA SϋKLA

McFadden's relation \N, lKn+l)\a\C9k\(k>0) is streng-
thened to \N,pn\c:\R,λ(w),k\{k>0) for suitable {pn} and λ{w).

1* Let {pn} be a sequence of complex numbers such that for
n > 0,

P = Po + Pi + + Vn Φ 0 .

Let Σ?=o α* be an infinite series with {sn} as its partial sums.
We define the (JV, pn)-transform {tn(sn)} of {sj generated by the
sequence {pn} by the formula

(1.1) ί (O = - ^ Σ P.-A

Similarly, {tn(nan)} denotes the (N, pj-transform of the sequence

{nan} generated by the sequence {pn}. The series X^=o an is said to

be summable \N, pn\ if {tn(sn)}eBV, i.e., Σ?=i I<» — <n-iI is conver-

gent. (See [7], [5].) In the special case when pn = (n + ^ ~ 1 V

(k> — 1), summability | JV, p f t | is summability |C, k\.
Let λ = λ(w) be a diίferentiable, monotonically increasing

function of w in (A, oo), where A is a finite positive number; and
let μ(w) be its differential and let \{w) tend to infinity with w.
For k >̂ 0, we write

- Σ

The series ΣϊUα* is s a ί d to be summable |J2, λ, Λ| if

(1.2) \°°\d[RKw)/Xk(w)]\ < - ,

see [8], [9]. For & > 0, iV < w < N + 1 (N = 1, 2, •)

/-[ΛJ(w)Mw)] - ^ \ Σ {λ(w) - λ(Λ)}*-ιλ(Λ)αn .

Hence, summability | R, λ, k \ is equivalent to the convergence of
the integral

If every series summable by the method P is summable by the
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method Q, we write P C Q. If P £ Q and Q Q P, we write P~Q.
We now define a sequence of constants {cn} by the identity

If, for n = 0,1, 2,

Pn > 0,
f

Pn Pn+1

we shall write {pn} e ^f. We write

dn = c0 + c,. + + cn

eTO = cί0 + di + + dn .

We write P(v)9 d(v), e(v) in place of Pυ, dv, eΌ respectively when
v is replaced by a more complicated expression. We let Δfn =fn —
/ n + 1 , for any sequence {fn}.

The following inclusion theorems are known:

N, a\C,k\~ \R,n,k\, (k > 0) .

The first one is due to Mears [6], the second one is due to
McFadden [4] and the equivalence is due to Hyslop [3]

Our object is to prove that under certain conditions on {pn}
and λ(w),

\N,pn\c:\R,Mω),k\ (fc > 0) .

2. We establish the following.

THEOREM. Let

(2.1) {pje^f,

(2.2) P(v>) - O{PV) ,

(2.3) \(w) be an indefinite integral of some function μ(w),

(2.4) ( , +

iV, p f t | implies \R, λ(w), fc| /or αW & > 0.

For the proof we require the following lammas.

LEMMA 1 [1]. Let {pje^f. A necessary and sufficient condi-
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(ϋ) Σ£=,+i\c%\£dv

(iii) dn ^ 0 and monotonic nonincreasing
(iv) Pndn£l
(v) Pnen^(2n + 1).

For (i), (ii) see Hardy [2] Theorem 22, p. 68.

LEMMA 3. Lβί {pn} e ^ C . Tfcew /or any fixed k with 0 < k < 1,
(2.2) is equivalent to

(2.5) Pv - O(P(i*)), wfcere u - [vk].

Proof. If (2.2) holds, by successive application of (2.2) we see
that for any fixed integer r,

(2.6) P(v*r) - 0{Pv) .

Choose r so that 2r > 1/fc. Then if u = [v*], v ^ (u)1//b < (t6)2r. So,
since Pv is increasing, (2.5) follows from (2.6).

Conversely, suppose that (2.5) holds. Given any positive integer
v, define vr inductively (on r) by taking v0 = v and defining vr(r>ΐ)
as the least integer greater than or equal to v1^. Since {pn} e μ
implies that

(2.7) -& > 1 ,
3>r- l

as r—> oo, we see that (2.5) is equivalent to

(2.8) P(vd = O(PJ .

By successive application of (2.8) we deduce that, for any fixed r,

(2.9) P(vr) - O(Pυ) .

Choose r so that (l/k)r > 2. Then vr > v2 so that (again since Pv is
increasing) (2.9) implies (2.2).

For the proof of the theorem we require (2.5). The condition
(2.2) is preferable to (2.5) because the former is simpler and inde-
pendent of k.
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LEMMA 4. If (2.4) is satisfied then

This is obvious.

3* Proof of the theorem* It is enough to consider the case
0 < k < 1. This implies the result for k ^ 1. We can assume
without loss of generality that aQ = 0. Then by Lemma 1 and (1.2)
it is enough to show that (2.4') implies

i dw
dw < co .

Now,

Then

dw

Then

s;

= Σ cn_υPvtv{vav) .

Σ .

Σ

aw
dw

Σ

= 0(1) ΣtvPv1 tΛvav)l \
[ 1

Σ {X(w) - X(n)}k-1

n
dw

Thus it is enough to prove that uniformly in v S; 1,

(3.1) Jiv) = i(w) - Xin)}1*-1

n
dw

Write m = min ([w], v + u). Let a = v + u — 1, & = /y + w + l .
Applying partial summation to the sum over the range v ^ n ^

m, we see that the expression inside the modulus in (3.1) is equal to
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(3.2) Σ1 Δ(X(w) - λW)'"1 *M~k,_, + (X(w)-
m

Σ

= Σ
n

+ 1

Σ

Here the last term is to be omitted when m — [w], i.e., when w<b.
Hence

J(v) ^ J,(v) + Ja(v) + Jz(v) + J4(v) ,

where J^v), Jz(v), Jz(v), J^y) denote the expressions obtained by-
replacing the expression inside the modulus in (3.1) by each of the
four terms on the right of (3.2). First,

^ Σ <*„_.
n — v n JΛ + 1 Xk+1(w)

-dw

= 0(1) Σ ^ ' ^ ' + 0 ( 1 ) Σ d._,
^=^ (w + l)λ(%)

Using (2.4) and Lemma 4,

= θ(

by Lemma 2(v) and Lemma 3. Next,

n

X 1 : CίW
J«+i λ f c + 1 ( ^ )

The inner integral can be evaluated and is equal to

k LX(n 4- 1) X(n) \ \k LX(n + 1) X(n) I \ X(n + 1)

Γ/ X(n + 1) - λ(w) \* _ / λ(n + 1) - X(n)
L VA;λ(%)L\ λ(» + 1) / V X(n + 1)

\* _ / λ(n + 1) - X(n) \Ί
/ V X(n + 1) /J
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by (2.4). Hence, by Lemma 4,

by Lemma 2(v) and Lemma 3.
Suppose N<Lw <N +1. Then,

Since

Γ (Mw) - X(v + u))^J^\dw = X

}v+u Xk+1(w) kX(v

clearly

by Lemma 2(iv) and Lemma 3.

Now,

J«(v) S Σ

ΣΣ , , , , Γ

ΣVr^rτ
o=o (v + σ)Xk(v + <τ

1 d° χ k ( v + g

(v + σ)X"(v + σ) (v + σ + l)k

by Lemma 4, Lemma 2(v), and Lemma 3. Hence

J8(v)

Lastly,



GENERALIZATION OF A THEOREM OF McFADDEN 545

Jc n=b n ~~ k b

= O(l/vPv) ,

by Lemma 2 (ii), (iv), and Lemma 3. Hence (3.1) is proved.

This completes the proof of the theorem.
By putting pn = l/(n + 1), X(w) = w (integer) we get the inclu-

sion \N, V{n + l)\(z\R,n,k\,k> 0 due to McPadden [4].
My thanks are due to Prof. T. Pati for his suggestion and also

to the referee for his valuable comments.
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