MEASURES AS FUNCTIONALS ON UNIFORMLY CONTINUOUS FUNCTIONS

JAN K. PACHL

The space \mathfrak{M}_t of bounded Radon measures on a complete metric space is studied in duality with the space \mathscr{U}_b of bounded uniformly continuous functions. The weak topology has reasonable properties: the space \mathfrak{M}_t is \mathscr{U}_b -weakly sequentially complete, and every \mathscr{U}_b -weakly compact subset of \mathfrak{M}_t is pointwise equicontinuous on the set of 1-Lipschitz functions.

1. Introduction. Let (X, d) be a complete metric space and $\mathfrak{M}_{\iota}(X)$ the space of (bounded) Radon (=tight) measures on X. This space is usually studied in duality with the space $\mathscr{C}_{\iota}(X)$ of bounded continuous functions on X. It is known that the weak topology $w(\mathfrak{M}_{\iota}(X), \mathscr{C}_{\iota}(X))$ is sequentially complete, and there is a useful criterion (Prohorov's condition) for $w(\mathfrak{M}_{\iota}, \mathscr{C}_{\iota})$ -compactness [11].

In this paper we turn to the space $\mathscr{U}_b(X)$ of bounded uniformly continuous functions on X and to the weak topology $w(\mathfrak{M}_t(X), \mathscr{U}_b(X))$. The topologies $w(\mathfrak{M}_t, \mathscr{C}_b)$ and $w(\mathfrak{M}_t, \mathscr{U}_b)$ coincide on the positive cone \mathfrak{M}_t^+ ; thus our results say nothing new about positive measures. Obviously, the two topologies differ (on \mathfrak{M}_t) whenever $\mathscr{U}_b \neq \mathscr{C}_b$.

The main results are: (A) the topology $w(\mathfrak{M}_t, \mathscr{U}_b)$ is sequentially complete, and (B) a norm-bounded subset of \mathfrak{M}_t is relatively $w(\mathfrak{M}_t, \mathscr{U}_b)$ compact if and only if its restriction to the set

Lip (1) = { $f: X \to R \mid ||f|| \leq 1$ and $|f(x) - f(y)| \leq d(x, y)$ for $x, y \in X$ }

is equicontinuous in the compact-open topology.

The topology of uniform convergence on Lip (1) was discussed by Dudley [3]. Here we improve some of Dudley's results. For example, Theorem 6 in [3] says, in the present setup, that $\mu_n \to \mu$ uniformly on Lip (1) whenever $\mu \in \mathfrak{M}_t$, $\mu_n \in \mathfrak{M}_t$ for $n = 1, 2, \dots$, and $\mu_n(f) \to \mu(f)$ for each $f \in \mathscr{C}_b(X)$. Here we obtain the same conclusion, assuming only that $\mu_n(f) \to \mu(f)$ for each $f \in \mathscr{C}_b(X)$.

A reasonable generalization is to allow X to be an arbitrary uniform space and replace \mathfrak{M}_t by the space $\mathfrak{M}_u(X)$ of uniform measures on X (see [4] and the references therein). The results extend to the space $\mathfrak{M}_u(X)$, as well as to the space $\mathfrak{M}_F(X)$ of free uniform measures. Several previously studied spaces of measures can be described as \mathfrak{M}_u or \mathfrak{M}_F —see [5], [8]. To cover both \mathfrak{M}_u and \mathfrak{M}_F , in §2 we employ sets of Lipschitz functions more general than Lip(1).

As in similar situations studied before (e.g., [1], [10]), the goal

JAN K. PACHL

of the construction is to pass from $\mathfrak{M}_{\iota}(X)$ to the space $l^{1} = \mathfrak{M}_{\iota}(N)$. It should be noted, however, that the approach through partitions of unity ([10], [12]) seems to be barred, in view of the theorem by Zahradník [13] which says that there are metric spaces without a sufficient supply of l^{1} -continuous partitions of unity.

An earlier version of this paper was announced in [9].

2. Construction. The property of Radon measures we are chiefly interested in is their continuity on Lip(1) (or on more general sets of Lipschitz functions). In Lip(1), the compact-open topology agrees with the topology of pointwise convergence, and the latter will be easier to deal with.

Throughout this section, (X, d) will be metric space and h a Lipschitz function on X; that is, h maps X into the field R of real numbers and

$$|h(x) - h(y)| \leq d(x, y)$$

for $x, y \in X$. Put

$$\operatorname{Lip}(h) = \{f \colon X \to R \mid |f| \leq h \text{ and } |f(x) - f(y)| \leq d(x, y) \text{ for } x, y \in X\}$$
,

and denote by U the linear space spanned by Lip(h). Endow U with the topology of pointwise convergence (i.e., U is a topological subspace of R^x) and denote by \mathfrak{M} the space of the linear forms on U whose restrictions to Lip $(h) \subset U$ are continuous. Endow \mathfrak{M} with the norm

$$|| \mu ||_{d,h} = \sup \{| \mu(f) | | f \in \operatorname{Lip}(h) \}.$$

Needless to say, both U and \mathfrak{M} depend on h.

As Lip(h) is compact, the Ascoli theorem ([6], Ch. 7, Th. 17) gives the following precompactness criterion.

LEMMA 2.1. A subset of \mathfrak{M} is $|| \cdot ||_{d,h}$ -precompact if and only if it is equicontinuous on Lip(h).

The main idea in the proof of the following lemma is to choose as small functions in $\operatorname{Lip}(h)$ as possible and then use the fact that they cannot be made smaller. This is why it will be convenient to work with (nonnegative) functions in $\operatorname{Lip}(h)$ which are "small far from a finite set": say that $f \in \operatorname{Sm}(h)$ if and only if there is a nonempty finite set $F(f) \subset X$ such that

 $f = \inf \{g \in \operatorname{Lip}(h) \mid g \ge 0 \text{ and } g(y) \ge f(y) \text{ for every } y \in F(f) \}$.

Obviously $\operatorname{Sm}(h) \subset \operatorname{Lip}(h)$. The set F(f) is not unique (in fact, the

516

equality remains true when F(f) is replaced by any larger set); we fix arbitrarily, for each $f \in Sm(h)$, a nonempty finite set F(f) satisfying the above equality.

Notice that each $f \in \text{Sm}(h)$ can be described explicitly in terms of d and F(f):

$$f(x) = \max \{ (f(y) - d(y, x))^+ \mid y \in F(f) \}.$$

Note also that Sm(h) is pointwise dense in $\text{Lip}^+(h) = \{f \in \text{Lip}(h) \mid f \ge 0\}$; indeed, every nonnegative function in Lip(h) is the supremum of a subset of Sm(h).

The system of finite subsets of X is denoted by Fin(X).

When $Y \subset X$ and f is a function on X, write

$$||f||_{_{Y}} = \sup \{|f(y)| \mid y \in Y\}$$

and $||f|| = ||f||_x$.

LEMMA 2.2. Let $M \subset \mathfrak{M}$ and suppose that there is a t > 0 such that $|\mu(f)| \leq t ||f||$ for any $\mu \in M$ and any bounded $f \in U$. If M is not $||\cdot||_{d,k}$ -precompact then there are: an $\varepsilon > 0$, $g_k \in \mathrm{Sm}(h)$ and $\mu_k \in M, \ k = 1, 2, \cdots$, such that for each k we have 1° . $|\mu_k(g_k)| > 2\varepsilon$,

Proof. By 2.1, M is not equicontinuous on Lip (h) at 0. Every $f \in \text{Lip}(h)$ may be written as $f = f^+ - f^-$ with $f^+, f^- \in \text{Lip}^+(h)$, and Sm(h) is dense in Lip⁺(h). Hence M is not equicontinuous on Sm(h) at 0: there is a $\gamma > 0$ such that

$$\forall \delta > 0 \forall F \in \operatorname{Fin}\left(X\right) \exists f \in \operatorname{Sm}\left(h\right) \exists \mu \in M \colon ||f||_{F} < \delta \quad \text{and} \quad |\mu(f)| > 3\gamma \ .$$

Take such a $\gamma > 0$ and keep it fixed through the whole proof. To reduce the number of quantifiers, we drop δ : Put $\delta = \gamma/t$ and $g = (f - \delta)^+$ to get

 $(1) \quad \forall F \in \operatorname{Fin} \left(X \right) \exists g \in \operatorname{Sm} \left(h \right) \exists \mu \in M \text{: } || \ g \mid|_F = 0 \quad \text{and} \quad | \ \mu(g) | > 2\gamma \ .$

Now we distinguish two cases. Case II can arise only when h is unbounded.

Case I. Assume that there is a $r \ge 0$ such that for all $\mu \in M$ and $f \in \text{Sm}(h)$ we have $|\mu(f - f \wedge r)| \le \gamma$. (This is automatically satisfied when h is bounded.) Substituting this to (1) we get

(2)
$$\forall F \in \operatorname{Fin}(X) \exists g \in \operatorname{Sm}(h) \exists \mu \in M: ||g|| \leq r, ||g||_F = 0 \text{ and } |\mu(g)| > \gamma.$$

For $n = 1, 2, \cdots$ consider the statement

$$(\mathscr{S}_n) \ \forall F \in \operatorname{Fin}(X) \exists g \in \operatorname{Sm}(h) \exists \mu \in M : ||g|| \leq r/2^{n-1}, \ ||g||_F = 0 \text{ and}$$

 $|\mu(g)| > \left(\frac{1}{2} + \frac{1}{2n}\right) \gamma.$

Plainly (\mathscr{S}_n) does not hold for $2^n \ge 4rt/\gamma$; on the other hand, (\mathscr{S}_1) does hold by (2). Choose *n* such that (\mathscr{S}_n) is true and (\mathscr{S}_{n+1}) is not. With $\gamma = r/2^n$, $\gamma^* = (1/2 + 1/2n)\gamma$ and $\varepsilon = \gamma/4n(n+1)$ we have

$$(3) \quad \begin{array}{l} \forall F \in \operatorname{Fin}{(X)} \exists g \in \operatorname{Sm}{(h)} \exists \mu \in M: || \ g \ || \leq 2\eta \ , \quad || \ g \ ||_{\scriptscriptstyle F} = 0 \quad \text{and} \\ | \ \mu(g) \ | > \gamma^* \ , \end{array}$$

(4)
$$\exists F_{0} \in \operatorname{Fin}(X) \forall g \in \operatorname{Lip}(h) \forall \mu \in M: [0 \leq g \leq \eta, ||g||_{F_{0}} = 0] \\ \Rightarrow |\mu(g)| \leq \gamma^{*} - 2\varepsilon .$$

(The negation of (\mathscr{S}_{n+1}) gives only $\exists F_0 \forall g \in \mathrm{Sm}(h) \cdots$; however, $\{g \in \mathrm{Sm}(h) \mid g \leq \eta\}$ is dense in $\{g \in \mathrm{Lip}(h) \mid 0 \leq g \leq \eta\}$. Hence (4) follows.)

We are going to construct $g_k^* \in \text{Sm}(h)$ and $\mu_k \in M$ for $k = 1, 2, \cdots$ such that

 $egin{array}{lll} 1^{00}. & ||\,g_k^*\,|| \leq 2\eta \quad ext{and} \quad |\,\mu_k(g_k^*)\,| > \gamma^* \;, \ 2^{00}. & |\,\mu_j(g_k^* - g_k^* \wedge \eta)\,| \leq arepsilon \;\; ext{for} \;\; j < k \;, \;\; ext{and} \; 3^{00}. \;\; g_j^* \wedge g_k^* \leq \eta \;\; ext{for} \;\; j < k. \end{array}$

First use (3) to find $g_1^* \in \operatorname{Sm}(h)$ and $\mu_1 \in M$ such that $||g_1^*|| \leq 2\eta$ and $|\mu_1(g_1^*)| > \gamma^*$ (conditions 2° and 3° are empty for k = 1). For $k \geq 2$, when μ_j and g_j^* have been constructed for j < k, take a finite set $F \subset X$ such that $F \supset F_0$, $F \supset F(g_j^*)$ for j < k, and $|\mu_j(f)| \leq \varepsilon$ whenever $f \in \operatorname{Lip}(h)$, $||f||_F = 0$ and j < k. Use (3) to get a $g_k^* \in \operatorname{Sm}(h)$ and a $\mu_k \in M$ such that $||g_k^*|| \leq 2\eta$, $||g_k^*||_F = 0$ and $|\mu_k(g_k^*)| > \gamma^*$. Conditions 1° and 2° are obviously satisfied. As for 3°, put $f^* = (2\eta - g_k^*)^+ \land h$; then $f^* \in \operatorname{Lip}^+(h)$ and for $y \in F$, j < k we have $f^*(y) = 2\eta \land h \geq g_j^*(y)$. This together with $F \supset F(g_j^*)$ gives $f^* \geq g_j^*$. Now, if $g_k^*(x) > \eta$ for some $x \in X$ then $\eta > f^*(x) \geq g_j^*(x)$; hence $g_j^* \land g_k^* \leq \eta$.

Finally, put $g_k = g_k^* - g_k^* \wedge \eta$. Conditions 2°, 3° follow from 2°°, 3°°. As for 1°, we have

$$||\mu_{k}(g_{k})| \geq ||\mu_{k}(g_{k}^{*})| - ||\mu_{k}(g_{k}^{*} \wedge \eta)| > \gamma^{*} - (\gamma^{*} - 2arepsilon) = 2arepsilon$$
 ,

by (4).

This concludes the proof when h is bounded. In the general case we have to consider one more possibility:

Case II. Assume that the assumption made in Case I does not hold. Thus for every $r \ge 0$ there are a $\mu \in M$ and an $f \in \text{Sm}(h)$ such that $|\mu(f - f \land r)| > \gamma$. Put $\varepsilon = \gamma/2$.

Choose $\mu_1 \in M$ and $g_1 \in \text{Sm}(h)$ such that $|\mu_1(g_1)| > 2\varepsilon$. For $k \geq 2$, when μ_j and g_j have been constructed for j < k, take a finite set $F \subset X$ such that $F \supset F(g_j)$ for j < k and $|\mu_j(f)| \leq \varepsilon$ whenever j < k, $f \in \text{Lip}(h)$ and $||f||_F = 0$. Put $r_k = 2 \max \{h(y) \mid y \in F\}$ and use the assumption to produce a $\mu_k \in M$ and an $f_k \in \text{Sm}(h)$ with $|\mu_k(f_k - f_k \wedge r_k)| >$ 2ε . Put $g_k = f_k - f_k \wedge r_k$; condition 1° is satisfied. We have $f_k(y) \leq$ $h(y) \leq r_k$ for each $y \in F$, hence $g_k(y) = 0$. Thus $||g_k||_F = 0$ and 2° follows.

Finally, put $f^* = (r_k - f_k)^+ \wedge h$. Then $f^* \in \operatorname{Lip}^+(h)$, and for $y \in F$, j < k, we have

$$f^*(y) \ge (r_k - f_k(y)) \land h(y) \ge (r_k - h(y)) \land h(y) \ge h(y) \ge g_j(y)$$
 .

This along with $F \supset F(g_j)$ implies $f^* \ge g_j$. If $x \in X$ and $g_k(x) > 0$ then $f_k(x) > r_k$, hence $f^*(x) = 0$; this proves 3°, for $g_k \wedge g_j \le g_k \wedge f^* = 0$.

COROLLARY 2.3 Let $M \subset \mathfrak{M}$ and suppose that there is a t > 0such that $|\mu(f)| \leq t ||f||$ for any $\mu \in M$ and any bounded $f \in U$. If M is not $|| \cdot ||_{d,h}$ -precompact then there is a continuous linear map p: $\mathfrak{M} \to l^1$ such that $p(M) \subset l^1$ is not norm-precompact.

Proof. Produce μ_k and g_k as in 2.2, satisfying 1°, 2° and 3°. Define a linear map $q: l^{\infty} \to U$ by

$$q(\{z_k\}_{k=1}^\infty)=\sum_{k=1}^\infty z_k g_k$$

for every bounded real sequence $\{z_k\}_{k=1}^{\infty}$. Since the functions g_k are pairwise disjoint, the sum is well defined and, moreover, $q(z) \in 2 \operatorname{Lip}(h)$ whenever z is in the unit ball of l^{∞} . It follows that the transposed map $p = {}^t q$ maps \mathfrak{M} into l^1 and is continuous, with $|| p || \leq 2$. In order to show that p(M) is not precompact in l^1 , we prove that the infinite set $\{p(\mu_k) | k = 1, 2, \cdots\}$ is norm-discrete:

$$egin{aligned} &|| \ p(\mu_j) - p(\mu_k) \, || = \sup \left\{ \mid \langle p(\mu_j) - p(\mu_k), \, z
angle \mid \mid z \in l^\infty, \, \mid\mid z \mid\mid \leq 1
ight\} \ &= \sup \left\{ \mid \langle \mu_j - \mu_k, \, q(z)
angle \mid \mid z \in l^\infty, \, \mid\mid z \mid\mid \leq 1
ight\} \ &\geq \mid \mu_j(g_k) - \mu_k(g_k) \mid > arepsilon \end{aligned}$$

for j < k.

3. Results. Corollary 2.3 allows us to deduce the properties of $\mathfrak{M}_t(X)$ from those of l^1 . Let us recall the relevant facts about l^1 :

THEOREM 3.1. (a) The space l¹ is weakly sequentially complete.
(b) Every weakly convergent sequence in l¹ is norm convergent.

Hence every weakly countably compact set in l^1 is norm-compact.

Proof is in ([2], II-§2). The second assertion in (b) uses the theorem of Eberlein ([2], III-§2).

Let X be a complete metric space and h a Lipschitz function on X. The compact-open topology and the topology of pointwise convergence agree on Lip(h); this is the only topology on Lip(h) we consider. It is well known (see e.g., [4], [7]) that a bounded Radon measure on X can be characterized as a linear form on $\mathscr{U}_b(X)$ which is $|| \cdot ||$ -continuous and whose restriction to Lip(1) is continuous.

Define again the norm $\|\cdot\|_d = \|\cdot\|_{d,1}$ on $\mathfrak{M}_i(X)$ by

$$||\,\mu\,||_{d} = \sup \left\{ |\,\mu(f)\,|\,|\,f \in {
m Lip}\,(1)
ight\}$$
 .

THEOREM 3.2. Let X be a complete metric space. (a) The space $\mathfrak{M}_t(X)$ is $w(\mathfrak{M}_t, \mathscr{U}_b)$ sequentially complete.

(b) Let a set $M \subset \mathfrak{M}_{t}(X)$ be bounded on the unit $|| \cdot ||$ -ball in $\mathscr{U}_{b}(X)$. The following conditions are equivalent:

(i) M is relatively $|| \cdot ||_d$ -compact;

(ii) M is relatively $w(\mathfrak{M}_{i}, \mathcal{U}_{b})$ countably compact;

(iii) The restriction of M to Lip(1) is equicontinuous.

Proof. (a) Suppose that $\{\mu_n\}_{n=1}^{\infty}$ is a $w(\mathfrak{M}_t, \mathscr{U}_b)$ Cauchy sequence and $\{\mu_n \mid n = 1, 2, \cdots\}$ is not $||\cdot||_d$ -precompact. The sequence is bounded on the unit $||\cdot||$ -ball in $\mathscr{U}_b(X)$ by the Banach-Steinhaus theorem, and 2.3 produces a $p: \mathfrak{M}_t \to l^1$ such that $\{p(\mu_n) \mid n = 1, 2, \cdots\} \subset l^1$ is not precompact. As the sequence $\{p(\mu_n)\}_{n=1}^{\infty}$ is $w(l^1, l^{\infty})$ Cauchy, this contradicts 3.1. Hence $\{\mu_n \mid n = 1, 2, \cdots\}$ is $||\cdot||_d$ -precompact. It follows that the $w(\mathscr{U}_b^*, \mathscr{U}_b)$ limit of the sequence (in the algebraic dual \mathscr{U}_b^* of \mathscr{U}_b) is both $||\cdot||_x$ -continuous on \mathscr{U}_b and continuous on Lip(1), i.e., belongs to \mathfrak{M}_t .

(b) Obviously (i) \Leftrightarrow (iii) and (i) \Rightarrow (ii). If M is relatively $w(\mathfrak{M}_t, \mathscr{U}_b)$ countably compact but not $|| \cdot ||_d$ -precompact, then there is, again by 2.3, a $p: \mathfrak{M}_t \rightarrow l^1$ such that p(M) is relatively $w(l^1, l^{\infty})$ countably compact but not norm-precompact. This contradiction proves the implication (ii) \Rightarrow (i).

Now let X be a uniform space. The uniform structure of X is projectively generated by uniformly continuous maps into complete metric spaces; the UEB-topology in the space $\mathfrak{M}_{u}(X)$ is generated by the corresponding maps into the spaces of Radon measures ([4], [5]).

COROLLARY 3.3. Let X be a uniform space. (a) The space $\mathfrak{M}_u(X)$ is $w(\mathfrak{M}_u, \mathscr{U}_b)$ sequentially complete.

(b) The following properties of a set $M \subset \mathfrak{M}_{u}(X)$ are equivalent:

- (i) M is relatively UEB-compact;
- (ii) M is relatively $w(\mathfrak{M}_u, \mathcal{U}_b)$ countably compact;
- The restriction of M to any UEB set is equicontinuous. (iii)

Proof. (a) follows immediately from 3.2(a). In order to deduce (b) from 3.2(b), it is enough to realize that every $w(\mathfrak{M}_u, \mathcal{U}_b)$ bounded set is UEB-bounded and also bounded on the unit $|| \cdot ||$ -ball in $\mathcal{U}_{h}(X)$.

Thus the UEB-topology agrees with $w(\mathfrak{M}_{u}, \mathscr{U}_{b})$ on every relatively $w(\mathfrak{M}_u, \mathscr{U}_b)$ countably compact subset of $\mathfrak{M}_u(X)$. LeCam [7] proved that the two topologies agree on the positive cone $\mathfrak{M}^+_u(X)$.

In the same way as the sets Lip(1) generate the UEB-topology in $\mathfrak{M}_{\mathfrak{a}}(X)$, the general sets Lip (h) generate the UE-topology in the space $\mathfrak{M}_{\mathbb{F}}(X)$ of free uniform measures [8]. Thus 2.3 yields the following analogue to 3.3.

PROPOSITION 3.4. Let X be a uniform space. (a) The space $\mathfrak{M}_{\mathbb{F}}(X)$ is $w(\mathfrak{M}_{\mathbb{F}}, \mathscr{U})$ sequentially complete.

The following properties of a set $M \subset \mathfrak{M}_{\mathbb{P}}(X)$ are equivalent: (b)

- (i) M is relatively UE-compact;
- (ii) M is relatively $w(\mathfrak{M}_{\mathbb{F}}, \mathscr{U})$ countably compact;
- (iii) The restriction of M to any UE set is equicontinuous.

References

1. J. B. Conway, A theorem on sequential convergence of measures and some applications, Pacific J. Math., 28 (1969), 53-60.

 M. M. Day, Normed linear spaces, 2nd Edition, New York 1962.
 R. M. Dudley, Convergence of Baire measures, Studia Math., 27 (1966), 251-268. Correction: Studia Math., 51 (1974), 275.

4. Z. Frolík, Measure-fine uniform spaces I, Lecture Notes in Mathematics No. 541, 403-413; Springer-Verlag 1976.

5. Z. Frolík, J. Pachl and M. Zahradník, Examples of uniform measures, Proc. Conf. "Topology and Measure" (Zinnowitz 1974), Ernst-Moritz-Arndt-Universität Greifswald 1978. 6. J. L. Kelley, General Topology, Princeton 1955.

7. L. Le Cam, Note on a certain class of measures, unpublished.

8. J. Pachl, Free uniform measures on sub-inversion-closed spaces, Comment. Math. Univ. Carolinae, 17 (1976), 291-306.

9. – -, Compactness in spaces of uniform measures, Comment. Math. Univ. Carolinae, 16 (1975), 795-797.

10. M. Rome, L'espace M[∞](T), Publ. Dépt. Math. (Lyon) 9-1 (1972), 37-60.

11. F. D. Sentilles, Bounded continuous functions on a completely regular space, Trans. Amer. Math. Soc., 168 (1972), 311-336.

12. F. D. Sentilles and R. F. Wheeler, Linear functionals and partitions of unity in $C_b(X)$, Duke Math. J., **41** (1974), 483-496.

13. M. Zahradník, l₁-continuous partitions of unity, Czechoslovak Math. J., 26 (1976), 319-329.

Received April 12, 1978. Research supported in part by National Research Council of Canada.

UNIVERSITY OF BRITISH COLUMBIA VANCOUVER, B. C., CANADA V6T 1W5