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GENERAL PEXIDER EQUATIONS (PART II):
AN APPLICATION OF THE THEORY OF WEBS

M. A. McKlERNAN

Given open connected Ω, Ω^Rn and continuous T: Ω->
R, F: Ω-+R both strictly monotonic in each variable sepa-
rately. The equation h{T(xl9 •-, xn)}^F{f1{x1)i •,/„(&„)} for
the unknowns h: T(Ω)-*R and π: (flf ,/Λ): Ω->Ω can be
interpreted within the theory of webs (the "Gewebe" of
Blaschke-Bol). The web structure is then used to prove:
any continuous solution π is uniquely determined on Ω by
its value at two points of Ω; if a solution π is not continu-
ous on Ω, then π(ω) is dense in Ω for every open ω in Ω;
if a solution π is continuous at one point of Ω, it is con-
tinuous on Ω.

* Formulation of results* We consider the equation

h{T(xί9 ••-, xn)} = FlMxJ, , fn(xn)}

for given T, F, with h,f19 ••-,/* the unknowns. Specifically, we
assume given two sets Ω, Ω in Rn and two functions T: Ω —> R, F:
Ω —> R. Let Ωi and Ωt denote the projections of Ω and Ω onto the
ith coordinate axis; by a product mapping π: Ω —> Ω is understood
the restriction to Ω of a mapping (fu •••,/»): XχΩi-^Rn defined
by the n functions fi\Ωi-^Ωi. The above equation becomes h<>T =
Foπ with fc: Γ(ΰ) —> R and π\Ω —>Ω the unknowns.

The present note is self-contained in that Part I [2] served only
to indicate that the following hypotheses on T and F are not as
restrictive as one might at first suppose. For the moment we
assume only that:

(A.I) T is continuous and strictly monotonic in each variable
on Ω,

(A.2) F is strictly monotonic in each variable on Ω,
(A.3) Ω is open and connected.

THEOREM 1. With (A. 1,2, 3) assume that h°T = Foπ and
h°T — Foπ hold for two product mappiugs π, π on Ω. If π and π
are equal at the end points of some line segment iczΩ parallel to
a coordinate axis, then π and π coincide on a set dense in Ω.
Hence two continuous solutions must be identical on Ω if they agree
at the end points of such a line segment.

I n t h e e v e n t Ω = R% a s i n t h e c l a s s i c a l c a s e T(xlf •••,•&») = $! +
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• * + %n (and in other cases indicated in the proofs), any two points
may be chosen.

COROLLARY 1. Under the hypotheses of Theorem 1 and the
further assumption Ω — Rn, any two solutions π, π which coincide
at two distinct points of Rn must coincide on a set dense in Rn.
A continuous solution is uniquely determined by its value at two
points in Rn.

Throughout this note results are stated only in terms of the
mapping π since h is then uniquely determined by the equation
itself. It should be noted that for the above theorem, F need not
be continuous, no assumptions are made on Ω, and Ω need not be a
convex region in Rn. By strengthening the conditions on F and Ω
it is possible to generalize the following known result (for example
[5], p. 21):

if /: R—> R satisfies Cauchy's equation f(x + y) = f{%)+f{y) then
either f(x) = f(ϊ)-χ or else f(ω) is dense in R for every open ω.

Specifically we assume
(B.I) T, F continuous, strictly monotonic in each variable on

Ω, Ω respectively,
(B.2) Ω, Ω open and connected subsets of Rn.

THEOREM 2. With (B. 1, 2) assume fc°T = F<>π satisfied on Ω by
a product mapping π. Then either π is continuous on Ω or else
π(ώ) is dense in Ω for every open subset a) c Ω. Hence continuity
of π at one point implies the continuity of π at every point of Ω.

In terms of the component functions fif Theorem 2 implies the
following result.

COROLLARY 2. Under the hypotheses of Theorem 2, with π =
{fit '' * t fn)f if some ft is continuous at one point then all ft are
continuous on their respective domains. In the event Ω = Rn, it
suffices to assume some /« bounded in a neighborhood of some point
in order to conclude all ft continuous.

Before proceeding to the theory of webs and the proofs of the
above assertions, we mention the following additional corollary
although its proof depends on a result from Part I; under hy-
pothese weaker than (B.I) (B.2) it was shown that any continuous
solution π must be either constant or injective.

COROLLARY 3. As in Corollary 2, if some /< is continuous at
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one point, or in the event Ω = Rn if some ft is bounded in some
neighborhood of a point, then either all ft are constant or all ft

are continuous and strictly monotonic.

In the event F(uu , un) — ux + + un with Ω = Rn, some
of the above results are related to those of C. T. Ng [3], [4] since
now, if h, π and ht π are two solutions so also will h + h, π + π be
a solution.

For the most part it will suffice to prove these results in the
two dimensional case

h{T(x,y)} = F{f(x),g(y)}

with T defined on Ω C R\ F on Ω Q R2 and π = (/, g): Ω -> Ω. The
hypothesis (A.I), common to both theorems, allows us to interpret
Ω as a region covered by a Z-web (also called a Z-net by some
authors) in the sense of Blaschke-Bol [1]. Specifically, through each
point (x09 y0) of Ω there passes three curves: the coordinate curves
x = x0, y = y0 and the contour curve T(x, y) = T(x09 y0). Hence Ω is
covered by three families of curves and any two curves from
distinct families determine at most one curve from the third family
since T is strictly monotonic — "at most" since two such curves
need not intersect within Ω.

But x = x0, y = yOf and T(x, y) — T(x0, yQ) are then mapped into
the curves u = f(x0), v = g(y0) and the set of points satisfying
F(u, v) = h{T(xQ, y0)} respectively under the mapping π = (/, g).
Once hypothesis (B.2) is introduced these latter curves define a 3-
web on Ω and π becomes a web preserving mapping.

We now sketch the derivation of some elementary properties
of 3-webs in a form needed in the proofs of our theorems; a more
complete discussion appears in [1], pp. 1-15.

2* Elementary 3-web properties* We consider the two dimen-
sional case and in accordance with hypotheses (A.I) and (A.3) we
may assume without loss of generality

Ω an open connected subset of the plan R2, T: Ω —> R continuous,
strictly monotonic increasing in each variable.

The sketching of a few figures will help clarify the following
constructions and propositions.

By a square S in Ω is understood four points (xif y/) e Ω for
i, j = 1,2 where T(xlf y2) = T(x2f yt); a path is a sequence Su , Sn

of squares such that each Si A Si+1 has exactly two points; if all
the points lie on two horizontal lines, say St = {(#<_i, y0), (#*_!, yλ),
fa, Vo\ (χi, Vi)}t the path is denoted by
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(2.1) (l/o < 3/i; «o < < »») w h e r e T(xi+1, y0) = T(xt, yj

or

(2.2) (y0 <y1;x0> -•- > x«) w h e r e T(xi+1, yd = T f e , ί/0)

(and analogously if yQ > yx) and similarly if the points all lie on
two vertical lines. The path (2.1) is increasing horizontal, (2.2) is
decreasing horizontal; both initiate at x0 (more precisely (x0, y0) and
(x09 yL) are the initial points), terminate at xn (with (xn, y0), (xn, yt)
as terminal points), while x0, ---,xn are partition points of the
line segment [x0, xn] x {yQ} (or of [xn, xQ] x {y0}). Similarly, increas-
ing or decreasing vertical paths can be defined. All horizontal or
vertical paths are called rectilinear.

PROPERTY 1. If [a, b] x {yQ} c Ω then there exists an integer N
such that every n^ N determines a unique yγ > y0 and unique
partition points x0, , xn such that (y0 < yt; x0 = a < < xn — b)
is an increasing horizontal path, equivalently (y0 < yt; x0 = b> >
xn — a) is a decreasing horizontal path. For fixed yγ > y0, the
partition points xi are continuous, strictly increasing functions of
the end points a, 6. Similarly for {x0} x [c, d] c Ω and vertical
paths.

In the language of webs both (yQ < yγ\ x0 = a < < xn = b)
and (y0 < yύ xQ = b > > xn = a) define (in general equivalent) n-
partitionings of [a, b] x {y0}; the corresponding (xt, yo)'s are rational
points of [a, b] x {y0}. For given n ^ N the corresponding y1 > yQ

is unique but a path also exists for yί < y0 and these paths may
be distinct (unless closure conditions are assumed). Intuitively, as
ίi-^oo so also the corresponding y1-^yQ and \xi+1 — a J—>0; hence
the rational points on [α, b] x {̂ /0} ^^^ dense. For sufficiently large
w such rectilinear paths can be extended at both ends since [a, b] x
{yo}dΩ open. More specifically.

PROPERTY 2. Given a <c <b with [a, b] x {yQ}czΩ. Then for
arbitrary a, β satisfying a ^ a < β <* c and for sufficiently large
n, an increasing horizontal path exists of the form (y0 < yx\ xQ —
a< - <xn = β< '< xm) with both xm-1 and xm within the
open interval ]c, b[. Similarly for decreasing horizontal and for
vertical paths.

Rather than choosing large n, y1 can be chosen sufficiently close
to y0, thereby obtaining horizontal paths with | xt+ι — xi \ arbitrarily
small. However in this case the path cannot be assumed to parti-
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tion a given interval unless yx is judiciously chosen. In this case
Property 2 can be modified as follows.

PROPERTY 3. Given a < c <b with [a, b] x {y0} c Ω. Then
there exists a 3 > 0 such that for arbitrary yx e ]y0, y0 + 3[ and for
arbitrary a e [a, c], an increasing horizontal path exists of the
form (y0 <yί;x0 = a < < xm) with both xm_γ and xm within ]c, b[.
Similarly for decreasing horizontal and for vertical paths.

3* Proof of Theorem 1* For the moment consider the two
dimensional case Ω,ΩaR2 with T: Ω -> R, F: Ω -• R. Let ho T=Foπ
and h°T = F°π, two solutions with π,π product functions on Ω.
The hypotheses imply without loss of generality:

(A-l) T continuous, strictly monotonic increasing in each
variable,

(A-2) F strictly monotonic increasing in each variable,
(A-3) Ω open and connected.

LEMMA 1. If π,π coincide at two points of a square S, then
π, π coincide at all points of any path formed with S as member.

Proof. Since SiΛSi+1 always has two points it will suffice to
prove that if π = (/, g), π = (/, g) are equal at two points of S —
{(%i> Vί)\i9 3 = 1, 2}, then so also at the other two points. But if
π(tfi, yά) = π(xtf yj) for (i, j) = (1, 2) and (2,1), or for (i, j) = (1,1)
and (2, 2), then trivially /(&<) = f(xt) and g(yt) = g(yt) for i = 1, 2.
If for (i, j) = (1,1) and (1,2) (the other cases are similar) then
/to) = 7(Bi), ί/(l/*) = ff(l/i) for i = 1, 2 and hence only /(a?2) = f{x2)
remains. But T(xlf y2) — T(x2, yx) implies

F{f(pi\ #(#2)} = F{f{x2), g{yx)} and F{f(x1), g(y2)} = F{/(x2), (̂2/1)}

and since the left hand sides are equal, g(yj — g(yt) implies f(x2) =
f(x2) by (A-2).

In Lemma 1, equality is assumed at two points of one square;
for rectilinear paths a stronger result holds.

LEMMA 2. If % and It coincide at two points of a rectilinear
path, they coincide at all points of this path.

Proof. Given St = {(xif y,), (xif y2), (xi+1, y2), (xi+1, yd) with T(xi9

y2) = Γ(a?1+1, yλ), set π(xi9 yό) = (uu v5) and πix,, yό) = (ϋt, vό). Then as
above,



508 M. A. McKIERNAN

(10 F(uit v2) = F(ui+ίf vx) and (l x) F(ulf v2) = F(u2, vx) ,

^ ( δ , , v2) = JF(,δ+1, IΓx) and (2,) 2 ^ , v2)

Suppose first that π, π coincide at an initial point, say ut = v^ and
Vi = vt. Monotoneity and v2 ^ v2 implies (1J ^ (2X) and hence w2 ^
w2; but then (12) ξ (22) and hence w3 ^ ίί8 and by induction ut $ ΰt.
In this case π and π could never coincide again on the path. Simi-
larly, uλ — ΰγ with v2 = ^2 implies (1J = (2J; hence vt § v l t implies
u2 ^ ^ 2 and in turn (12) ^ (22) and inductively ut^ΰt. Again π, π
cannot be equal at any other point. Hence equality at two points
of this path implies equality at two points of one square, and by
Lemma 1, at all points of the path. A similar argument applies to
vertical paths.

LEMMA 3. If π, π coincide at two points of a line segment
[α, b] x {yQ} c Ω, then π, π coincide on a set dense in this line seg-
ment. Similarly for {xQ} x [c, d] c Ω.

Proof. Lemma 2 implies that if π, π coincide at two points of
an ^-partition so also at all points of this partition; if (xi9 yQ) and
(%i+if Vo) a r e t w o points of this partition, then π, π will coincide at
all rational points of [xi9 xi+ι] x {y0}. Hence if π, π coincide at two
partition points of a line segment, they coincide on a set dense on
this line segment. Suppose now that π, π are equal at (α', y0), (6', y0)
for a ^ α' < V ^ &, and consider [α', B] x {yQ} for b - δ <B ^b.
For sufficiently large n the ^-partitioning of [a', B] x {yQ} will satisfy
I xi+1 — xi I < 3/2 and by the continuity in Property 1 some B exists
in [δ — δ, b] such that (6', yQ) is a partition point of [a\ B] x {y0},
implying that π, π coincide on a set dense in [a', B] x {y0}. Since
δ > 0 is arbitrary, equality holds on a set dense in [α', 6] x {y0}.
Similarly for [α, 6'] x {y0}.

To prove the Theorem 1, note that Ω open and connected implies
that any two points of Ω can be joined by a polygon with sides
parallel to the axes. If π, π coincide at two points of some side,
then so also on a set dense on this side; however the adjacent sides
may not intersect at one of these points of equality, and hence a
"neighboring" polygon is required, as constructed below.

LEMMA 4. Given two perpendicular line segments llf l2 a Ω,
parallel to the axes and intersecting at a partition point of lt.
If π, π are equal at the end points of llf then they are equal on a
set dense in lt U l2.
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Proof. By Lemmas 2 and 3, the π and π are equal on any
^-partitioning of lt and since any partition point of l^ belongs to a
square on which π, π are equal, they will be equal at two points
of l2 provided the partition is sufficiently fine; this last restriction
can be satisfied by choosing lγ Λ k together with any other sufficiently
close partition point of ix.

In R2

9 the theorem follows by considering polygons formed by
line segments l19 l29 , ln parallel to the axes and replacing l2 by a
neighboring Ί2 through a rational point of l19 ϊ3 by Γ3 through a
rational point of Ί29 etc. Any two partition points of lγ can be
joined to within ε of any point in Ω by such a polygon—a path in
Ω. By considering any two variables in Rn

9 the theorem now
follows fairly easily by decomposing Ω into overlaping convex sets,
in particular ^-dimensional rectangles; consider the given line seg-
ment as one dimensional edge of an ^-dimensional rectangle within
ΩaRn, sides parallel to the coordinate hyperplanes. The above
argument implies π9 π equal on a set dense in each two-dimensional
"face" containing this edge. For product mappings, equality follows
on a set dense in this ^-dimensional rectangle, etc.

For Corollary 1 note that if π(a19 , an) — π(alf , an) and
π(b19 •_• , bn) = π(b19 , bn) ίoτ_ product mappings π = (f19 •, fn) and
π = (f19 , fn) then /^αj = fiiβi) and /^δj = ΛδJ; hence one need
only change one α̂  to a bt in π(al9 , an) = π(al9 , an) to obtain
equality at the end points of a line segment parallel to a coordinate
axis.

4* Preliminary lemmas for Theorem 2. We again consider
first the two dimensional case

(4.1) h{T(x, y)} - F{f(x), g(y)}

with T: Ω -» R9 F: Ω -> R and π = (/, g): Ω-+Ω. The hypotheses now
imply without loss of generality

(B.I) T, F continuous and strictly monotonic increasing in
each variable,

(B.2) Ω and Ω open connected subsets of the plane R2.
Let ΩX9 Ωx and Ωy9 Ωy denote the projections of Ω9 Ω onto the x and
y axes respectively. We again consider rectilinear paths

(4.2) (yQ < yx\ x0 < < xn) where T(xi+ί9 y0) = T(xi9 y,)

or

(4.3) (yQ <v»x*> --•> xn) w h e r e T(xί+19 yx) = T(xi9 y0) .
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Since now a 3-web is also defined on Ω, using the contour curves
of F, the concepts presented in §2 also apply to paths in Ω. The
significance of such paths lies in the following observation. For
the path (4.2), the equation h°T = Foπ implies F{f(xi+ι), g(yQ)} =
F{f(P<), 9(Vi)} and hence by (B.I), g(y0) ^ g(y,) implies f(xi+ί) ^ f(xt)
for all i while g(y0) = g(yt) implies f(xi+1) — /(#<) for all i. Similarly
for the path (4.3). In effect each path (y0 < yx\ x0 < < xn) in Ω
defines a path in Ω, with T replaced by F, of the form (g(yQ) $
ff(Vί)f f(χo) ^ ' * ^ /(#»))> assuming / not constant on #0, •••,&„.
The following lemmas are then clear.

LEMMA 1. Given [a, δ] x {y0} c Ω with /(α) < / ( δ ) . 2%ew TΓ

[a, 6] x {y0} onto a set dense in [/(a), f(b)]x{g(y0)}. Similarly
if /(δ) < /(a) awd for vertical paths {x0} x [c, cί] c i2.

This lemma states that every ^-partition of [α, b] x {τ/0} has as
image an ^-partition of [/(α), /(6)] x {̂ (̂ /0)}> or in the language of
webs, rational points on [α, b] x {y0} must map to rational points of
[fiβ\ /(&)] x {giVo)}* and the set of rational points on a line segment
is dense in that line segment.

LEMMA 2. For any solution π = (/, g), f is either constant or
strictly monotone on the partition points of any horizontal path.
Similarly for g on vertical paths.

The following lemmas are less trivial.

LEMMA 3. // either f or g is not monotone on Ωx, Ωy respec-
tively then both f and g are not monotone on any open interval in
their respective domains.

Proof. Suppose / monotone on some interval / and let ]α0, c[
be the union of all open intervals, containing /, on which / is
monotone. We prove ]α0, c[ — Ωx. If c e Ωx then (c, yQ) e Ω for some
y0 and so also [a, b] x {y0} c Ω for some a < c < δ. Choose 7, β with
c ^ Ύ < β ^ δ; then by Lemma 2, / will be monotone on any path
(Vo < Vit β > '- > 7 = xn> - - > xj where, by Property 2, the
Xn-t and xm can be made to lie within ]α, c[. Monotoneity is thus
extended to [c, δ] contradicting the fact that ]α0, c[ was maximal.
Hence c$Ωx and similarly for α0. With / not monotone it remains
to prove g not monotone on Ωy. Choose a < δ with [α, δ] x {y0} c Ω
for some yQ. Since / is not monotone on any interval, choose this
α, δ such that for some c with a < c < δ we have say f(a) < /(δ) <
f(c) (the other cases are similar). By partitioning [α, c] x {y0} and
[c, δ] x {y0}, Property 1 guarantees the existence of ylf y2 for the
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paths (y0 < yx; x0 = a < < xn = c) and (#„ < τ/2; ά0 = c < < xn =
6) where Tfo, 2/1) = Γ(a?<+1,2/0) and T(xίf y2) = T(α<+1, i/0) respectively.
But then &oΓ = Foπ implies JF{/(a?,), 0(1^)} - F{f(xi+ι), g(y0)} and
W(βi), 9(V2)} = F(f(xί+1), g(y0)} respectively. But since /(α) < /(c),
Lemma 2 implies /(&<) < f(xi+L) and by (B.I), g(yι)>g(yQ). Similarly
fφ) < f(c) implies /(&<) > f(xi+1) and hence g(y2) < g(y0), that is,
ί/d/2) < (̂2/o) < (̂3/i) B u t since ^ < a?<+1 so y, > y0 and since xt <
so also y2 > 2/0 implying g not montone.

LEMMA 4. Given any compact subset K c f l
ίfeere exists an e > 0 suc/i

v0) — -^(^OJ ^i) implies \ uλ — u0 \ > ε

whenever (ulf v0) and (u0, vλ) are in K.

Proof. If not, then convergent sequences {(uln, v0)}, {(uQn, vt)}
exist in K with \uln — uQn\ < 1/n, and with F{ulu, v0} = F{uon, v j .
The limit points (u, v0) and (u, v j then satisfy F{u, v0} = F{u, i J, a
contradiction.

Given any [α, 6] x {ί/0} c Ω, if / is not monotone on its domain
Ωx then by Lemma 3 it is not monotone on any sub-interval of
[α, &]. Hence it may be assumed that a and b were chosen such
that for some c

a < c < b and either (i) /(α) < f(b) < f(c) or

(ϋ) /(c) < /(α) < /(6) or (iii) /(c) < /(6) < f(a)

(or finally (iv) /(&) < /(α) < /(c) .

(4.4)

LEMMA 5. Assume (4.4) ̂ αίίώ /or some [α, δ] x {y0} c i2 α^cί let
ô — ̂ (2/o) ί'βί A denote the greatest lower bound (including — 00)

and B the least upper bound (including + 00) of f on [α, b]. Then
the following assertions hold:

(4.5) the image of [a> b] x {y0} is dense in [A, B] x {v0}, and
(4.6) neither (A, v0) nor (B, v0) can belong to Ω.

Proof. The case (4.4i) is proved in detail, (4.4iii) is outlined
and the other cases are similar. Recall that for any increasing path
(VQ < Vύ #o < < Xn)t ^ e relation T(xi} yj = T(xi+1, y0) and hence
F{f(xt), g(vd) = F{f(xi+1), g(y0)} holds; however for decreasing paths
(Vo < ί/2; 0̂ > > x») these relations become T(xif y0) = T(xi+1, y2)
and hence F{f(xi)J g(y0)} = F{f(xi+1), g(y2)}.

Case (4.4i) /(α) < f(b) < f(c).
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By Property 1 the paths (y0 < yx; x0 = a < < xn = c) and
(Vo < 2/2; #o — & > * * > #» — c)> f ° r all ^ ^ AT, uniquely determine 2/1
and 2/2. For w sufficiently large the corresponding y1 and y2 will
satisfy |y< — yo\ < δ where d > 0 is as in Property 3. Repeated
applications of Property 3 permit the construction of sequences
a19 a2, and bu δ2, as follows (where m may denote different
integers each time it appears):

(li) (Vo < Vΰ 0̂ = a* < " - c < < xm = bj for some b, e ]c, b[,

(2J (Vo < 2/2; ̂ 0 = &i > > %m = «i) for some ax e ]α, c[,

(1*) (l/o < 2/iJ α*-i < < ^m = h) for some 6fc 6 ]c, b[,

(2k) (2/0 < 2/2; δ* > > ^m = αfc) for some ak e ]α, c[.

By (lχ), ^{/(a?,), flr(»!)} = F{f(xi+1), g(y0)} and since / ( α ) < / ( β ) by
hypothesis, Lemma 2 implies all /(&<) < f(xt+i), and in turn ^(T/J >
0(2/0) But then the same argument applied to (lfc) yields f(xt) <
/(a?<+1) and in turn f{ak^) < f(bk) for k = 1, 2, . Since #2 is
defined by (2/0 < 2/2; &o = & > •••>»» = c), implying F{f(xt), g(y0)} =
^{/(^i+i), 0(2/2)}» the hypothesis /(δ) < f(c) together with Lemma 2
yields f(xt) < f(xi+1), that is 0(#o) > 0(2/2). But then a similar argu-
ment applied to (2k) also yields f(xt) < f(xi+1), that is, /(6 t) < /(α*).
Hence / ( α ^ J < f(bk) < /(αfc) for k = 1, 2, in particular /(α4) is
strictly monotone increasing with k, and in fact f(ak) > f(a) in view
of (1J. By Lemma 1 the image of [α, 6] x {yQ} must be dense in
[/(α), J5[ x {̂ o} where B=l.u.b. f(ak). If now (5, v0) 6 fl set K= [a, β] x
[v_!, vj for some a < B < β and v^ < v0 < ^ such that KaΩ.
Consider (lfc) with ut = f(xt+ι) and choose ^ < 0(2/0. By Lemma 4
there exists an ε > 0 such that within K, F{uQ, vx) = F{f(xt+1)9 v0}
implies f(xi+1) > uQ + ε. If v1 is increased, u0 must decrease and
hence F{f(xt), g{y,)} = ^ { / ( ^ - M ) , 0̂} implies /(a?<+1) > f(xt) + ε. With
/(α*-i) e [α, JB], by (l t) follows /(&*) > /(α^i) + me and analogously
(choose v^>g(y2))f f(ak)<f(bk)+mεf for some ε '>0; clearly (6, v0) £ fl.
To prove the corresponding result for the g.l.b. A, use the same
y1 and 2/2 as above (with 0(2/1) > 0(2/0) and 0(2/0) > 0(2/2)) but replace
the previous paths with the following:

(li) (Vo < Vi, %o = c > > £m = αx) for some αx e ]α, c[ ,

(20 (2/0 < 2/2; ̂ 0 = αx < < xm = δx) for some 6X e ]c, δ[ ,

(I*) (2/o < 2/i5 £0 = &*_! > > &» = «t) for some αfc e ]α, c[ ,

(2t) (2/0 < 2/2; #0 = αfc < < #m = δfc) for some 6fc 6 ]c, b[ .

For (1,) as before, F{f{xt\ 0(2/0)} = F{f(xi+1), gfa)} and hence /(«,)>
/(a?<+1). Hence /(c) > / ( α j and / ( δ ^ ) > /(α»). For (2k) follows

), 0(2/2)} = F{f(xi+1), 0(2/0)} implying / ( ^ ) > f(xi+1) and hence
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flflk) > /(&*). Consequently f{c) > /(αj > > f(bk_J > f(ak) >
f(bk) implying that now /(αfc) is a monotone decreasing sequence.
As before the image of [α, 6] x {y0} will be dense in ]A, f(c)] x {v0}
where A = g.l.b. f(ak). Again (A, yo)$Ω.

Case (4.4iii) f(e) < /(&) < /(α).
Now define 2/1 and #2 by (y0 < ys, x0 = c < < a?n = b) and

(2/o<2/2; &0 = c> >xn=a). For ^ follows Ff/fe), gfa)) = F{f(xi+1),
g(y0)} and since f(c) < f(a) so f(xt) < f(xi+1) and flr(2/i) > g(yQ). For
2/2 follows Fiffa), 0(2/0)} = F{f(xi+1), g(y2)} and since f(c) < /(α), so
now 0(2/0) > 0(2/2). Consider

(l i) (!/o < Vi; &o = 0 > ' > ^m = «i) for some a, 6 ]α, c[ ,

(2i) (2/0 < 2/2; 0̂ = »! < < xm = δi) for some 6X e ]c, 6[ ,

(Ik) (Vo < Vim, ̂ 0 = h-i > ' -' > #m = ak) for some ak e ]a, c[ ,

(2*) (y0 < Vzm, ̂ 0 = &k < < #m = &*) for fome bk e ]c, b[ .

For (14) follows F{f{xt), g(y0)} = F{f(xi+1), g(yd} and hence f(x<) >
f(xi+1) and /(&,_,) > /(α4). For (2,) follows Ff/fo), 0(2/,)} = ^{(^+1),
0(2/0)}, hence f(xt)>f(xi+ί) and f(ak)>f(bk). Hence /(c)>/(α1)> - • >
/(δ*-i) > /(a*) > /(&*)• I n particular the sequence /(αfc) is monotone
decreasing. To obtain a monotone increasing sequence use

(lfc) (Vo < Vi', CLk~i < ' ' ' < h)

and

(2,) (2/0 < 2/2; 6* > * > α t )

with α0 = c.

5* Proof of Theorem 2* For the moment continue with the
two dimensional case. With [a, b] x {y0} c i2 let v0 = 0(2/0); in 42 the
image (/(α), v0) of (a; y0) lies on some maximal open horizontal line
segment ] A, B[ x {̂ 0} c Ω. The image (/(&), v0) of (6, v0) may or
may not lie within this line segment; conceivably Ω could contain
]A, B[ x tyo} and ]B, C[ x {vQ} with (B, v0) e Ω while f(a) e ]A, B[
and f(b) e ]B, C[. Nevertheless if / is not continuous then by
Lemmas 3 and 5, the image of [α, b]x{y0} must be dense in ]A, C[x
{VQ}, and in particular dense in ]A, B[ x {vQ}. Similarly for g. Hence
for any point (α?0, y0)^oo aΩ with ω open, the image π(ω) must be
dense in any horizontal or vertical line segment contained in Ω and
containing (/(a?0), 0(2/0))-

By considering any two variables in ϋ^, a similar result holds:
for any point poeω cΩ aRn with ω open, the image π(ω) must be
dense in any line segment 7 c Ω with 7 parallel to a coordinate axis
and with q0 — π(p0) e 7. Since Ω is open and connected this q0 can
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be joined to any other point g f t e β by a polygon consisting of line
segments yOf , 7» parallel to the axes with yi c f l , qoe y0 and qn e
7n Since π(α>) is dense in γ0, τ x can be replaced by yf arbitrarily
close to 7i and with γ0 Λ 7* 6 π(α>), and in general, with π(ω) dense
in yf, 7i+i can be replaced by γ?+1 arbitrarily close to yi+1 but with
7 * Λ 7 * + i e φ ) . The polygon 70, 7*, β , 7 ί then joins q0 to g* with
qt arbitrarily close to qn and since qn was arbitrary, π(ώ) is dense
in Ω.
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