UNICOHERENT PLANE PEANO SETS ARE σ -UNICOHERENT

WILFRIDO MARTÍNEZ T. AND A. GARCÍA-MÁYNEZ

A Peano space is a connected, locally connected and locally compact metric space. A region in a space X is an open and connected subset of X. A space X is σ -connected if every sequence A_1, A_2, \cdots of closed, mutually disjoint subsets of X, with at least two of them nonempty, fails to cover X. A connected space X is unicoherent (resp., σ -unicoherent) if for every pair H, K of closed and connected (resp., and σ -connected) sets with union X, the intersection $H \cap K$ is connected (resp., σ -connected).

THEOREM. Let X be a plane Peano space. Then the following properties are equivalent:

(a) X is unicoherent;

(b) There exists a cover of X formed by unicoherent regions $U_1 \subset U_2 \subset \cdots$ with compact closures;

(c) X is σ -unicoherent, and

(d) If M_1, M_2, \cdots is a sequence of closed, mutually disjoint subsets of X such that $X - M_i$ is connected for every *i*, then $X - (M_1 \cup M_2 \cup \cdots)$ is connected.

1. Introduction. It is a well known fact that every unicoherent Peano continuum X satisfies the following property, which we shall call property A:

If M_1, M_2, \cdots is a sequence of closed, mutually disjoint subsets of X such that $X - M_i$ is connected for every i, then $X - \bigcup_{i=1}^{\infty} M_i$ is connected.

It has been proved that certain unicoherent, noncompact Peano spaces also satisfy this property. In 1923, Miss A. Mullikin ([7]) proved that the plane has property A. (In 1924, S. Mazurkiewicz ([6]) simplified considerably Miss Mullikin's proof). In 1952, van Est ([10]) proved all Euclidean spaces also have property A. Recently, in 1971, J. H. V. Hunt ([4]) gave an example of a unicoherent, noncompact Peano space (contained in \mathbb{R}^3) which does not have this property, and proposed the problem of finding a class of Peano spaces with property A and containing all Euclidean spaces. Finally, in 1973, E. D. Tymchatyn and Hunt himself ([9])¹ discovered such a class, described by the following theorem:

¹ The authors are indebted to Professor Hunt for his many helpful comments.

Every Peano space with the following property (which we shall call B):

There exists a cover of the space formed by unicoherent regions $U_1 \subset U_1^- \subset U_2 \subset U_2^- \subset U_3 \subset \cdots$ with compact closures²⁾, has also property A.

Analyzing Hunt's example quoted above one wonders if there exists a plane Peano space which is unicoherent but does not have property A. In 3.2 below, we give a negative answer to this question, because for plane Peano spaces, unicoherence, property A, property B and σ -unicoherence³ are all proved to be equivalent. In the proof we use the theorem of Tymchatyn-Hunt quoted before.

2. Definitions and preliminary results. A Peano space is a connected, locally connected and locally compact metric space. A continuum is a compact and connected space. The space X is a semicontinuum if for every pair of points $a, b \in X$ there exists a continuum in X containing a, b. A region in a space X is a connected and open subspace of X. A connected space X is unicoherent if for every pair H, K of closed connected sets with union X, the intersection $H \cap K$ is connected. A space X is σ -connected if every sequence A_1, A_2, \cdots of closed, mutually disjoint subsets of X at least two of which are nonempty, fails to cover X. A space X is locally σ -connected if for every $x \in X$ and every neighborhood V of x, there exists a σ -connected neighborhood of x contained in V. A connected space X is σ -connected if for each pair H, K of closed σ -connected sets with union X, the intersection $H \cap K$ is σ -connected neighborhood of x contained in V. A connected space X is σ -unicoherent if for each pair H, K of closed σ -connected sets with union X, the intersection $H \cap K$ is σ -connected.

We shall state without proof some results needed in the proof of the main Theorem 3.2. The first of them is obvious. For the others, we give a reference.

2.1. Let A, X be subsets of \mathbb{R}^2 such that $A \subset X$. If $\mathbb{R}^2 - X$ has no bounded components, then every bounded component of $\mathbb{R}^2 - A$ is contained in X.

2.2. Let U be a proper open set in a Hausdorff continuum X and let T be a component of U. Then $\operatorname{Fr} T \cap \operatorname{Fr} U \neq \Phi$. (See, for instance, [2], 2.48.)

2.3. Let $X \subset S^2$ be unicoherent and locally connected. Then $S^2 - X$ is a semicontinuum. (See [1], page 75, Th. 1.)

² Since the regions U_n form a cover and each U_n^- is compact, it is clearly equivalent to assume that $U_1 \subset U_2 \subset \cdots$.

³ This last concept was introduced by A. Garcia-Máynez in [3].

2.4. Let X be connected, locally σ -connected and completely normal. If X is σ -unicoherent, then X satisfies property A. (This can be obtained easily from Theorem 3.2 in [3]).

2.5. Let X be connected and locally connected. If X satisfies property A, then X is unicoherent.

Proof. By Theorem 3 in [8], it is enough to prove that if R, S are regions in X with union X, then $R \cap S$ is connected. But then A = X - R and B = X - S are disjoint, closed and nonseparating subsets of X. Since X has property A, the set $X - (A \cup B) = R \cap S$ is connected.

3. Main theorem. Before proving the main theorem, we shall prove a result which we have not found in the literature.

3.1. Let $X \subset R^2$ be connected and locally connected.

(a) If X is unicoherent, then $R^2 - X$ has no bounded components.

(b) If X is a $G_{\mathfrak{d}}$ and $R^{\mathfrak{d}} - X$ has no bounded components, then X is unicoherent.

Proof. (a) Identify S^2 with $R^2 \cup \{\infty\}$. According to 2.3, $S^2 - X$ is a semicontinuum. Proceeding by contradiction, assume $R^2 - X$ has a bounded component H. Select a point $q \in H$. Let L be a continuum in $S^2 - X$ containing ∞ , q. Let T be the component of $L - \{\infty\}$ containing q. Since $T \subset R^2 - X$ and $T \cap H \neq \Phi$, we must have $T \subset H$. Therefore, T is bounded, that is, $\infty \notin T^-$. But according to 2.2, every component of $L - \{\infty\}$ contains ∞ in its closure, a contradiction.

(b) We proceed again by contradiction assuming X is not unicoherent. There exists then an essential mapping $f: X \to S^1$. According to (3), page 84 in [1], there exists a simple closed curve $J \subset X$ such that $f | J: J \to S^1$ is essential. Let D be the bounded component of $R^2 - J$. Necessarily, $D - X \neq \Phi$, because $D \subset X$ would imply that $f | J \cup D$ is nonessential (because $J \cup D$ is a disk and hence is contractible) and, therefore, f | J would be also nonessential. There exists, therefore, a component H of $R^2 - X$ intersecting D. Then, $H \subset D$ and H is bounded, a contradiction.

The Example 3 described in [5] is a connected and locally connected subset X of R^2 which is an infinite countable union of mutually disjoint closed segments X_1, X_2, \dots , all lying in a square. A direct analysis shows X is not unicoherent. According to Miss Mullikin's theorem quoted in the introduction, $R^2 - X$ is connected (because each $R^2 - X_i$ is connected). This proves, incidentally, that we cannot eliminate the hypothesis "X is a G_i " in part (b) of Theorem 3.1. We are now in a position to prove the main result of this paper.

3.2. Let X be a Peano subspace of R^2 . Then the following propositions are equivalent:

- (a) X is unicoherent;
- (b) X has property B;
- (c) X is σ -unicoherent, and
- (d) X has property A.

(We shall give a cyclic proof $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d) \Rightarrow (a)$).

Proof (a) \Rightarrow (b). For this we shall need the following lemma.

LEMMA. Let $X \subset \mathbb{R}^2$ be Peano and unicoherent; let V be an X-region⁴ with compact X-closure and let $\{L_j\}_{j \in M}$ be the family of bounded components of $\mathbb{R}^2 - V$. Then $U = V \cup (\bigcup_{j \in M} L_j)$ is a unicoherent X-region with compact X-closure.

Proof. By 3.1, $R^2 - X$ has no bounded components and then, by 2.1, each $L_j \subset X$. Hence, $U \subset X$. Each L_j is also a component of X - V and since X is connected and locally connected, $U = V \cup$ $(\bigcup_{i \in M} L_i)$ is connected (because no L_i can be separated from V).

 $R^2 - U$ is the only nonbounded component of $R^2 - V$ (because V is bounded). Therefore, $R^2 - U$ is closed in $R^2 - V$, that is, there exists a closed set K in R^2 such that $R^2 - U = K \cap (R^2 - V)$. Also, $X - U = X \cap (R^2 - U) = X \cap K \cap (R^2 - V) = K \cap (X - V)$. That is, X - U is X-closed and U is X-open.

Since the X-closure of V is compact, it coincides with V^- (the closure of V in R^2) and $V^- \subset X$. Further, by 1.47.2 in [2],

$$\operatorname{Fr}\left(\bigcup_{j\in M}L_{j}
ight)\subset\left(\bigcup_{j\in M}\operatorname{Fr}L_{j}
ight)^{-}\subset V^{-}$$
 .

Therefore,

$$egin{aligned} U^- &= V^- \cup \left(igcup_{j\,arepsilon\,M} L_j
ight)^- = V^- \cup \left(igcup_{j\,arepsilon\,M} L_j
ight) \subset \mathrm{Fr}\left(igcup_{j\,arepsilon\,M} L_j
ight) \ &= V^- \cup \left(igcup_{j\,arepsilon\,M} L_j
ight) \subset X \;. \end{aligned}$$

Hence, the X-closure of U coincides with U^- and, being bounded, it is compact.

Finally, 3.1 implies that U is unicoherent, because U is a G_{δ} in R^2 (since U is U⁻-open and U⁻ is a G_{δ} in R^2) and $R^2 - U$ has no bounded components (in fact, $R^2 - U$ is connected and unbounded).

⁴ We shall use the prefix "X-" to indicate that the corresponding concept refers to the relative topology of X.

We come back now to the proof of $(a) \Rightarrow (b)$.

Let $\{V_{\beta}\}_{\beta \in L}$ be an X-cover of X with X-regions with compact Xclosure. Since R^2 is hereditarily Lindelöf, there exists a countable subfamily $\{V_1, V_2, \cdots\}$ of $\{V_{\beta}\}_{\beta \in L}$ covering X. Let $\{H_a\}_{a \in K}$ be the family of bounded components of $R^2 - V_1$. By previous lemma, $U_1 =$ $V_1 \cup (\bigcup_{a \in K} H_a)$ is a unicoherent X-region with compact X-closure. Let $\{V_{i_1}, V_{i_2}, \cdots, V_{i_m}\}$ be a subfamily of $\{V_1, V_2, \cdots\}$ such that $V'_2 =$ $\bigcup_{j=1}^m V_{i_j}$ is an X-region (with compact X-closure) containing V_2 and U_1^{-} . Applying the lemma again, we can find a unicoherent X-region U_2 with compact X-closure and such that $U_2 \supset V'_2$. Proceeding inductively, we can get an X-cover $\{U_1, U_2, \cdots\}$ formed by unicoherent X-regions with compact X-closures and such that the X-closure of U_i is contained in U_{i+1} for each $i = 1, 2, \cdots$. This proves X satisfies property B.

 $(b) \Rightarrow (c)$ This follows from the Tymchatyn-Hunt theorem in [9].

 $(c) \Rightarrow (d)$ This is a corollary of 2.4.

(d) \Rightarrow (a) This follows from 2.5.

References

1. S. Eilenberg, Transformations continues en circonférence et la topologie du plan, Fund. Math., **26** (1936), 61-112.

2. A. García-Máynez, Introducción a la topología de conjuntos, México, Trillas, 1971.

3. ____, On σ -unicoherence (to appear in the Bol. Soc. Mat. Max.).

4. J. H. V. Hunt, A counter-example on unicoherent Peano spaces, Coll. Math., 23 (1971), 263-266.

5. B. Knaster, A. Lelek and J. Mycielski, Sur les décompositions d'ensembles connexes, Coll. Math., 6 (1958), 227-246.

6. S. Mazurkiewicz, Remarque sur un Théorème de M. Mullikin, Fund. Math., 6 (1924), 37-38.

7. A. M. Mullikin, Certain theorems relating to plane connected point sets, Trans. Amer. Math. Soc., **24** (1923), 144-162.

8. A. H. Stone, Incidence relations in unicoherent spaces, Trans. Amer. Math. Soc., 65 (1949), 427-447.

9. E. D. Tymchatyn and J. H. V. Hunt, The theorem of Miss Mullikin-Mazurkiewiczvan Est for unicoherent Peano spaces, Fund. Math., 77 (1973), 285-287.

10. W. T. van Est, A generalization of a theorem of Miss Anna Mullikin, Fund. Math., **39** (1952), 179-188.

Received September 15, 1977 and in revised form December 15, 1977.

INSTITUTO DE MATEMATICAS, UNAM CIRCUITO EXTERIOR, C. U. MEXICO 20, D. F.