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ON THE ASYMPTOTIC BEHAVIOR OF LARGE
PRIME FACTORS OF INTEGERS

K. ALLADI AND P. ERDOS

We prove results on the asymptotic behavior of large
prime factors of the integers. The basic idea of the paper
is that if k is any fixed integer, then the kth largest prime
factor of n, denoted by Pk{n) is generally much bigger than
Σj>kPj(n) We give precise estimates of this phenomenon.
This paper is a sequel to an earlier paper by the authors.

1* Notations and definitions* Throughout this paper the letters
p and q, with or without subscript will denote primes.

Let n = ΠΓ=i VίU Pi > P2 > > pr be the canonical decomposi-
tion of an integer n > 1 into primes. We set

(1.1) A(n) = Σ α*ft , A*(n) = Σ P*

and

(1.2) Ω(n) = Σ <*i f
ii

Let A(l) = A*(l) = β(l) = ω(l) = 0.
We may define the kth largest prime factor in two ways depending

on whether we want to count prime factors according to multiplicity
or not. To be more precise set

Pΐ{n) = Vu for k£ω(n)

= 0 for k> ω(n) .

We may also define

PM = p,

(1.4) Pk(n) = Pi
P1(n)-P2(n)

pk(n) = 0 for & >

Observe that
The terms "average order" and "normal order" will mean the

following: Let / be an arithmetic function and set

(1.5) F(x) = Σ f(n) .

Suppose g is a monotonic function such that
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where

(1.7) G(sc) = i J ^

then / has average order g. Next, we say that two functions / and
g are "nearly the same almost always" if for each ε > 0

(1.8)

where

(1.9) f.(a?)= Σ 1 .
i - <(/(*)/fir(w))<H-β

If in (1.9) and (1.8), the function g is monotonic, we say that / has
normal order g.

Consider the sum

(1.10) ψ(x,y)= Σ 1.

If a ^ 1 is a real number and y = xί/a, it is well known (see [10])
that

(1.11) Λ α )

exists. The limit in (1.11) is also defined if — °o < a < 1 and

1 0 ̂  a < 1
(1.12) p{ά) = .

The function p(a) is a monotonic decreasing continuous function of
a for a}zl.

Finally we define the sums

&(*» ife) = Σ
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The aim of this paper is to obtain estimates for these sums S^x, k),
i = 1, 2, 3, 4.

2* General background and main theorem* The results in
this paper are in continuation of those in §2 of [2].

It is a well known theorem of Hardy and Ramanujan [6], [7]
that the functions Ω(n) and ω(n) both have average and normal order
log log n = g{n). This means that a number n usually has log log n
prime factors and most of them occur square free. Thus it is natural
to expect the large prime factors to occur with multiplicity one,
most of the time. So one should be able to show that the functions
A and A* have the same average order. In an earlier paper [2] we
showed this to be true and much more.

Not only do A and A* have the same average order, but the
function Px{n) dominates the sums in (1.1) to such an extent that
A, A* and Px have the same average order. More generally A(n) —
Px{n) — . . . — Pk^(n) and Pk{n) have the same average order. It was
observed in [1] that the functions P*(n) and A*(n) — Pι(n) — . . . —
PίU(tt) also have the same average order as Pk{n), since the asymptotic
analysis in [2] remains unaffected if the weak inequalities are re-
placed by strict ones. Thus we restate (without proof) the main
theorem in [2] in a more complete form:

THEOREM A. If k is a fixed positive integer then

Σ {A(n) - P,{n) - . . . - Pk^{n)} ~ Σ Pk(n) ~ Σ P*(n)'

(2.1)

~ Σ {A*(n)-Pttn) Pί κ (log xY

where ak is a constant depending only on k, and is a rational
multiple of ζ(l + 1/k) where ζ is the Riemann zeta function. In
addition for each k ^ 1

(2.2) Σ {A(n) - A*{n)} - x log log α + O(x) = o( Σ Pi(n)) .

Theorem A says that the average order in (2.1) is g(n) =
a* n1/k/(\og n)k where α* = α* (l + 1/k). An average is essentially
influenced by two things—(i) the abnormally large values of a func-
tion, which certainly contribute to (2.1) and (ii) the values a function
takes most often.

The question now arises whether A, A*, and Pi are nearly the
same almost always. The main theorem stated below answers this
question in the affirmative.
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THEOREM B. If k is a fixed positive integer then

(2.3) S&, k) ~ S2(x, k) ~ Sz{x, k) ~ Sax, k) ~ a'k
 g

 t
v y (log a?)* 1

where a[ = 1 αwd α& /or & > 1 is α constant depending only on kf

and is a rational multiple of er where y is Euler's constant. In
addition for each k ^ 1

A(n) - A*(n) _ 0( x
1el/log g log log x 1 \*άk. P,{n) 1

where c is an absolute constant >0.

3* Consequences and motivation* Statements (2.3) and (2.4)
may be looked upon as analogues to (2.1) and (2.2). Theorem A said
that A, A* and Pt have the same average order, π2n/6 log nf {aι =
7Γ2/12, see [2]). We can deduce from Theorem B the following.

COROLLARY. The functions A, A* and P1 are all nearly the
same almost always. Also all three functions fail to possess a normal
order.

Proof. Consider two arithmetic functions /, g satisfying f(n) ^
gin) > 0. Suppose that

We rewrite (3.1) as

(3.2)

Since fig ^ 1 we infer from (3.2) that

< ^^ > 0 as x
ε-x

for each ε > 0, where φ£x) is as in (1.8). So / and g are nearly
the same almost always. (We can deduce (3.3) also if f(n) ^ g(n) for
all n).

Setting k — 1 in (2.3) we see that (3.1) is true with / = A(n)
and g(n) = P^ri). Therefore A and P1 are nearly the same almost
always. Since A^ A* ^ Plf the same is true for all three functions.

Now to show that these three functions do not have normal
orders it suffices to show that one of them does not. It follows
easily from a theorem of Elliott [5] on additive functions
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f(n) = Σ

that A* does not have a normal order. That proves the corollary.

REMARK. Since A(ri) ^ log n, it follows from (2.2) that

A*(n)
~~—:—

< v A{ri) -
logw

= Q ίx log log x\
V logo? / "

From (3.2), (3.3) and (3.5) we can deduce that A and A* are nearly
the same almost always.

Let us look a little more closely at (2.3) which for / = A or A*
and g = P1 is a more accurate form of (3.1). We may rewrite (2.3)
as

V A*(n)

<3-6> , Σ PK.)

where

(3.7) Σ

We show in § 5 that

(3.8)

where p is defined in (1.11). We deduce from (3.8) in §6 that ak is
a rational multiple of er for & > 1. The integral representation is
investigated in §6 and this leads to pretty connections with some
related problems.

The next section is devoted to obtaining upper and lower bounds
for Si(x, k), ί = 1, 2, 3, 4. This enables us to deduce the first four
asymptotic relations in (2.3). It is only §5 that we prove (3.7) and
(3,8). But the upper bound method in §4 is used in §5 to take care
of the error terms arising out of (3.6) and (2.3). For the reader
who does not want to go through the detailed proof, see [1], where
some of the ideas of this paper and an earlier paper by the authors
[2] are summarized.

We now move on to the proofs of our results.

4. Upper and lower bounds. In what follows, cu c2, cs,
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denote absolute positive constants whose precise values will not be
our concern. Also exp {x} = ex. We begin by proving

THEOREM 1. There exists for each positive integer k a constant
bk and a real number x0 = xo(k) such that if x ^ xQ then Si(x, k) >
bk-x/(\og xf-1 for i = 1, 2, 3, 4.

To prove this we need

LEMMA 1. Let s be a positive real number. Then

p>*p(\ogp)s s(\ogx)8

Proof. We use the Prime Number Theorem [4], [9] in the form

(4.1) I π(x) - li(x) | = O(x exp {-c2Vlogx}) .

Now write

1 = Γ dπ{y) = Γ dy + Γ d{ττ
gp)s l*+y(logy)8 J*y(logy)8+1 Ĵ +p>*p(logp)s l*+y(logy)8 J*y(logy)8+1 Ĵ + y(logy)8

2/(log y)8 *+

Lemma 1 follows from (4.1) and (4.2).

Proof of Theorem 1. It suffices to prove Theorem 1 for the
smallest of the four sums S^x, k).

Assume first that k > 1. For x sufficiently large choose a prime
px in the interval

(4.3)

Now choose primes p2, p3f , pk satisfying

Consider any multiple m ^ x of pλp2 pk

(4.5) m = ^'PxPβ pk .

Because of (4.3) and (4.4) we have

(4.6) p,p2 pk ^ x
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and

<4 7> n ' i τ ^ ;
By (4.7) and (4.4)

(4.8) P x(»') ^ n' < x1/k+1 ^ (k - l)lx1/k+1 < pk .

Thus by (4.5) and (4.8) we see that Pk(fn) = pk. So any multiple
^ x of Pt' pk has pk as its A th largest prime factor (P*) So

(4.9) *>*(*» k> = 2J

(Pi s a t i s f y i n g (4.4))

We can estimate the second sum in (4.9) by using the well known
result [11]

(4.10) Σ — = log log x + c3 + O(exp {-c4l/log x}) .
Pύk 1)

Observe that the second sum in (4.9) is

Σ . Σ Σ ••• Σ
p1l2<p2<Pχ J)1/3<3>3<P1/2

k-1

Pk

(4.11) =* Σ Λίfπϊ Σ -))•( Σ l)}
V y k"χί/Vc + l)ζPl<ζxl/kpl {\3=2 \p1l3<Pj<P1U3-l)P3'// \Pιlk<pk<p1Uk-l) /)

by virtue of Lemma 1 and (4.10). Theorem 1 follows from (4.9) and
(4.11), for k > 1. For k = 1, Theorem 1 is trivially true.

Now for an upper bound.

THEOREM 2. All four sums St(xf k), ί = 1, 2, 3, 4 are O(#/(log a?)*"1)
where k is an integer ^ 1, awcϋ the O-constant depends only on k.

We need a few preliminary results before proving Theorem 2.

LEMMA 2. Lei k be a nonnegative integer and

St(x) = Σ (log log a? - loglogpf .

Then

-loglog
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Proof. If we write S*(x) as a Stieltjes integral, use the fact
that

dπ(y) = J*L- + d{π(y) - li(y)} ,
logy

integrate the second integral by parts and then use (4.1) we get

(4.12) SS(x) = (Όogloga-Ioglogy)^
v ' J* log y

Next

log 7/

= (log log x — log log y)hli(y)

( 4 1 3 ) iΠiiyχioglogx - log log y)*-1

ί/ log 2/

= OOloglogaO ) +
y log

But

(4.14) U(y) - - ^ - + 0 ( r r ^ -
y J logy \log2y

So the integral in (4.13) becomes

j f" (log log x - log log y)"-1

 0([x (log log g - log log y)*
(4.15) I log2 y VJ4 log 3 j /

= Ii + I,.

We split Ji into

S
a;/(loga;)*+3 /.j

4 Jα;/(logχ)fc+3

Clearly in (4.16)
pio->»+» ^ (log log ̂ - ^ x / g X

( 4 ' 1 7 ) L V (logx)fc+3 / V(logα?)fc+2/

Regarding the second integral in (4.16) we observe that

k\
J

*!= + o ( f 2
!t)*+s Uogx V log x

g
logy

g
( 4 1 8 )

 χ f (log log x - l o g log j/)"-1

 d y ^
)x/aogχ)k+z logy
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Now the last integral in (4.18) is

(4.19) TUx) + O ffy) = TUx) + O (
V (\ogx)k+* / HlogaO*+ϊ

From the definition of Tk we have

(4.20) T0(x) = — ϊ _ + 0
' log x

Now make the induction hypothesis that for k ^

(4.21) TUX) = {k

(λ ~
y (log

(logcc)* V (logo?)

Then from equations (4.16) through (4.21) we deduce that

(log x)k+1 V (log xf

By analysis very similar to the above one can show that

< 4 2 3» '"
So from (4.22), (4.23), (4.15) and (4.13) we see that (4.21) is true for
Tk(x) and so by induction for all k ^ 1. Lemma 2 follows from (4.12)
and (4.21).

LEMMA 3. Let x, y ^ 4 be real numbers and k ^ 0 an integer.
Then

y> (log log x — log log p)k

 = (log log x — log log y)k+1

v^pί* p k + 1

+ <Λ((log log x — log log yf exp { — cbV\ogy}) .

Proof. As in the beginning of the proof of Lemma 2 we convert
the above sum into a Stieltjes integral and replace dπ(y) by dy/log y.
Lemma 3 can be easily proved by making the substitution log log x —
log log y = t. We do not go through the details.

Proof of Theorem 2. It suffices to prove Theorem 2 for the
largest of the four sums S^x, k). That is we will show

(4.24)
PiW

fc-l

for k > 1 an integer. We claim that it suffices to prove (4.24), for
k > 1 because for k = 1 we have
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S(r Ώ- V A( n^ - T 1 + V
(425) 2SM

= a? - 1 + &(», 2)

= 0(3)

assuming that (4.24) is true for k — 2. So from now on we assume
that k > 1.

We write

(4.27)

A(n) - Pt(w) - Pt(n) - - Pk^(n) _ Pk(n)
Pan) Pι(n)

Let us denote a general nonzero term of (4.27) by pjp^ We would
like to know how often this term occurs in S^x, k). The term pJPί
occurs as often as we can find integers n = pλp2 pk-i'Pk^ ^ #
where the pt satisfy pk ^ pk^ ^ ^ px and P^m) ^ p^.^ If we
fix the primes pt to satisfy these conditions then the number of such
n is given by

where ψ is defined in (1.10).
Thus we may rewrite (4.27) as

= Σ Σ Σ Σ
(4.29)

We first consider a subsum of (4.29) with a restriction on pt. That
is we choose β with 0 < β < 1, whose value will be specified later,
and consider pt in (4.29) satisfying xβ ^ p1 ^ ». We shall get an
upper bound for this sum.

Observe that the sum in (4.29) with this extra condition on pL is

Σ Σ ••• Σ
X

• Pk Pi
(4.30) - - χ

= ̂ OΣ i Σ i Σ -i— Σ ^ .

(Note: If A; = 2 in (4.30) we have only

(4-31) *.,£<,£
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and no other terms. For k > 2, there is no confusion in (4.30).)
Because of this difference assume for the moment that k > 2. Then
if we use Lemma 3 we infer

(4.32) Σ — = O(log log Vι - log log p8) .

Again by Lemma 3 and (4.32)

(4.33) Σ — Σ — = O((log log Pι - log log p,)2) .
Pi<P3^PlP P^P2^PlP

Iterating this process we get in (4.30) for k > 2

(4.34) θ(x Λ Σ 4 Σ (log log z - l o g log p,)*

by repeated use of Lemma 3. Now observe that because of (4.31)
we see that (4.34) is true even for k = 2. Thus for k ̂  2, we may
replace (4.30) by (4.34). Thus from now on we drop the assumption
k > 2, but of course still assume k > 1.

To estimate (4.34) we use Lemma 2 which gives

Finally Lemma 1 and (4.35) imply that the sum in (4.35) and hence
in (4.30) is

where the constant on the O-term in (4.36) depends only on k and
not on β.

So (4.36) gives a bound for the sum in (4.29) with the condition
xβ ^ Pi ̂  »• For the sum corresponding to px ̂  xβ we write

(4.37) Σ =Σ Σ
+1

To estimate (4.37) we use the following result of de Bruijn [3]; If
y = x1/a then

(4.38) ψ(x, y) = O(x exp {-c6a}) .

In (4.37) consider the case

(4.39) x β β m + 1 ^p^ xβ/*m .

Then in (4.29) with the restriction (4.39) on pt we have from (4.38)
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the following:

_ 2m - kβ

β

We choose β — β(k), depending on k, so small that

(4.41) «^2^M>^.

Then by (4.38), (4.39), and (4.41) we will have in (4.29) for the
subsum corresponding to (4.39)

(4 42) <^yk'
Pk-)= ° t ^ e x p {-c^i

If we substitute (4.42) in (4.29) and analyze this sum just the way
we derived (4.36) we get

(4.42) ( { l o g ( ^ ^

__0( X^/βT^ \

Vαog^^expίc^-V/S}/ '

But then

( 4 4 3 ) ^oexP{c2-V/9}

This means that (4.43), (4.42), and (4.36) imply that in (4.29)

S&, k) = O(x/(log xf-1)

for k > 1. That completes the proof of Theorem 2.
It is interesting to note that Theorems 1 and 2 actually imply

the first four asymptotic relations in Theorem B, as will be shown
below. Before establishing this we prove the last part of Theorem
B namely

THEOREM 3. For each positive integer k we have

= O(x exp {—c7vΊog x log log x})

. Pt(nY
= o

Proof. First let 1 ^ y ^ x and y = x1/a. N. G. de Bruijn [3]
showed that if 3 < a < 4y1/2/log y then
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(4.44) ψ(x, y) = O(x log2 y exp {—a log a — a log log a + c8a}) .

Take y = exp {Vlogx log logx}. Then from (4.44) we have

(4.45) ψ(x, y) = O(x exp { —c9l/log x log log x}) .

Next observe that

(4.46)

We now split

(4.47) Σ A W ~ f ( n ) - Σ + Σ =
^ ' 2^n^x PΛn) 2£nSx 2^n^x l 2

Clearly from (4.46) and (4.45)

(4.48) Σ = O(log aj ψ»(aj, y)) = O(x exp { — c10τ/log a? log log «}) .
1

But then by Theorem A, (2.2), we have

(4.49) Σ ^ exp {-i/logίcloglog^} Σ (A(n) - A*(n))

= O(# exp { — cnτ/log α? log log x}) .

The first equation in Theorem 3 follows from (4.47), (4.48) and (4.49).
The second equation is a consequence of Theorem 1. That proves
Theorem 3.

THEOREM 4. For every integer k ^ 1 we have

S,{x, k) - S2(x, k) - S,{xf k) - S<(x, k) .

Proof. The smallest of the four sums is S4(x, k). By Theorem 1

(4.50) Sfa, k) ̂  S4(x, k) > bkx/(log xf'1 .

The largest of the four sums is S^x, k). Consider the difference

&(*, k) - s4(x, k) = Σ
 A(n) ~ Fλn) ~ ~ PUn) ~ Pt{n)

= v

( 4 5 1 )

 + Σ Pt(») - Pt(n)

By Theorem 2



308 K. ALLADI AND P. ERDϋS

(4.52) S.ix, k + l) = O(x/(log xf) .

But then

(4.53) A(n) - A*{n) = ± P,{n) - Σ P?(») = Σ
ί = l 3=1 3=1

^ Pk(n) - Pϊ(n) .

So by (4.53) and Theorem 3 we have

Σ -
2^n^x(4.54)

= 0 (as exp {—c7l/log as log log a?}) .

Clearly from (4.51), (4.52) and (4.54)

(4.55) &(&, fc) - S4(x, k) = O(a?/(log x)fc) .

Thus from (4.55) and (4.50) we deduce

(4.56) S,{x, k) - S^x, k) .

But since these are the smallest and largest sums, Theorem 4 follows
from (4.56).

While proving Theorem 2 we did not use Lemmas 1, 2, and 3 in
the forms in which they were stated, but used only the upper bounds
they implied. These lemmas will play a role in obtaining asymptotic
estimates, which we take up in the next section. We refer to the
method of proof of Theorem 2 (namely the choice of β and the con-
vergence of the series (4.43)), as the "upper bound method" and use
this method to take care of the error terms arising out of the
asymptotic estimates in what follows.

5* Asymptotic estimates* Our goal in this section is to prove

THEOREM 5. Let k be a positive integer. Then all the four
sums St(xf k), i = 1, 2, 3, 4 are asymptotically equal to

a'kx/(log xf'1

where

S oo

p(s — k)sk~2ds .

We need some lemmas before we go to the proof.

LEMMA 4. If a ^ 1 and ε > 0 then
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Proof. It is well known (see [10]) that p satisfies

Furthermore (see [10], [3])

Combining (5.1) and (5.2) we get

0 <; p{a) - P(a + β) =
t a V Γ(a + 1) /

because p is monotonic decreasing.

LEMMA 5. There exists constants c18, c14 αwcϊ c15 sucfe that if

a ^ 1 ami 2/ — ̂ 1/a> ^ ^ 1> then

- xp(a) I < 2 max
exp {c14τ/log »} eα/4 log x

Proof. Lemma 5 is obtained by combining certain results of de
Bruijn [3]. For the function A(x, x1/a) defined by de Bruijn, it is
known

(5.3) Iψ(x, x1/a) - Λ(x, x1/a) I < c15xa2exp {-cuvΊogy}

and

(5.4) I A(x, x1/a) - xρ{a) \ < clδxa/(ea/4 log x) .

Lemma 5 follows from (5.3) and (5.4).

Proof of Theorem 5. Because of Theorem 4 it suffices to prove
Theorem 5 for one of sums St(x, k). We consider Sλ(xf k). So we
start with (4.29). (We assume k > 1 since Theorem 5 is trivially true
for k = 1. (See (5.1), (5.2) and Theorem 4.)

In (4.29) we first look at the contribution due to numbers for
which

We will get an upper bound for the contribution due to such numbers.
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Let 0 < β < 1 be a real number whose value will be specified later.
Then write

(5.6) Σ = Σ + Σ

In the interval xβ/zm+1 <̂  px < xβl%m one has an upper bound for ψ given
in (4.42), while for xβ <̂  pt <. x we use the trivial upper bound

(5 7)

Then for numbers satisfying (5.5) together with xβ ̂  pι <; x, we have
the following bound in (4.29)

{ ' \ χβ<Pι£χ P^log p ^ 1 Pk^Pi PkPk^k-ι^H Pk^ PφVz^iPi/ '

Analysis similar to (4.32), (4.33) and (4.34) yields

o(χ θ Σ n

 1 ,k+ι Σ — dog log Pι - log log Pkf-ή
Pk

( 5 ' 9 )

 =0(χ y (loglogp,)*-1 \ 0/x(loglogx)k~ ι\
\ **£&** px(log px)*+1 / ^ /9fc+1(log x)k+1 /

using Lemma 1. To estimate the contribution due to integers satis-
fying (5.5) for the case pt ^ xβ, we use the decomposition of the last
sum of (5.6). Then the upper bound method yields

provided β is suitably chosen. Thus from (5.9) and (5.10) we conclude
that the contribution due to terms satisfying (5.5) is given by (5.10),
and is smaller than the asymptotic term we are seeking.

Next we observe that the contribution due to terms for which
Pi = J>i(w) is small is negligible. For that purpose set

(5.11) » = (exp{(logα?Γ}).

With y as in (5.11) we have by (4.38)

(5.12) ψ(x, y) = O(x exp {-eM(log αθ1/3}) .

So, if Pi = P^n) <; y, then

PUn) ( Σ log*

%
= O(log xfix, y)) = O(α exp {-c17(log
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Because of (5.13) and (5.10), we assume from now on that

(5.14) ( 1 Q

 Pί

)k+1 ^Pk^ Pΰ Pi(n) = ft > exp {(log x)m) .

Once we assume (5.14) we can rewrite Lemma 5 as

ftft ft
(5.15)

+ o Pi ' Pk log ft

where a = log (x/p, pk)/log ft_lβ

The idea is to substitute (5.15) in (4.29). It is then easy to take
care of the contribution due to the error term in (5.15) in (4.29) by-
observing that (5.14)

(5.16) l o £ ft-i ̂  l o £ Pk ̂  log Pi > — log pι , x ^ xQ .

This means if we substitute the O-term of (5.15) in (4.29), and use
the upper bound method we get

(5.17) O(x/(logx)k) .

The convergence of a series like (4.43) is ensured this time by the

e-aμ t e r m in (5.15). Since (5.17) is smaller than the asymptotic term
we are seeking, we may forget the contribution of the O-term in
(5.15), in the sum (4.29).

As to the leading term of (5.15) we observe that

/rr ION / log (X/Pλ " ft) \ _ /lθg X - Σιϊ=Λθg Pi\
( 5 1 8 ) p{ ^ ^ p

By (5.14) we have

(5.19) log Pi = log px + O(log log ft) , 1 <£ i <> k .

Substituting (5.19) in (5.18) we get

(5.20) ^ ( l o g (

Ί ^ ' " ^ ) = P{^- - * +

^ log^-i / Uogft

Using Lemma 4 to estimate (5.20) we get

logft / V log2ft.Γ{a)

where a is as in (5.15).
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Thus the factor p in the leading term of (5.15) is equal to the
quantity in (5.21). Recall that our idea is to substitute (5.15) in
(4.29) and estimate the sum. The contribution of the O-terms in
(5.21) can be obtained by the upper bound method. There is a log x
in the numerator, but a log 2 ^ in the denominator. This time the
presence of Γ(a) in the denominator ensures convergence in a series
like (4.43). Thus the upper bound method yields

(5.22) O(xloglogx/(logx)k)

as the contribution due to the O-term of (5.21). Thus we deduce
that the main contribution from (4.29) comes by assuming (5.14) and
replacing ψix/p, •••?*, pk-i) by

So we replace (4.29) by

v p((log x/log pj - k)
2-i 1
x)2/3}^Pl^a! p±

1 Λ

x Σ Σ —••• Σ - .
P1!{logp1)k^l^pk^p1 pk^pk_1^p1 Pk-l ^ ^ ^ P l ^

To estimate (5.24) we use Lemma 3. First we get

(5.25) Σ — = (log log p, - log log p3) + O(exp {-c5l/logp3}) .

v

e x p { ( l o 2

(5.24)

The contribution due to the O-term in (5.25) in (5.24) is taken care
of by the upper bound method. This time the presence of p in (5.24)
ensures convergence of a series like (4.43), because of (5.2). Actually
every error term that arises in (5.24) by repeated use of Lemma 3
can be estimated by the upper bound method, yielding

(5.26) O(x exp {-c18Vlog x}) .

So we need only look at the leading terms arising out of Lemma 3
in (5.24). After k-2 applications of the lemma we are left with

χ £
exp {(log x) 2 / 3 } ^ ^ x p\

( 5 2 7 )

 χ Σ (loglogp, -loglog
(k — 2)!

In (5.27) we use Lemma 2 to get
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χ y P((lθg «0/(lθg Pi)) - k)

(5.28)
χ | £i + O ( ^

As before, the O-term in (5.28) contributes

(5.29) O(x log log x/(log x)k)

by use of the upper bound method. Finally the leading term in
(5.28) is estimated by writing it as a Stieltjes integral. That is

x v p((log αQ/Qog ffx) - k)
exp{(loga;)2/3

a?)/(log 1/) -

J epx {(log x) 2/3} - ?/(lθg

(5.30) = χ f
J e x p { ( l o g x ) 2 /

fβ+ |θ((logα?)/(Iogl/)-fe)
Jexp{( logα;)2/3}-

x d{π(y) - li(y)} = I3 + I, .

We can bound /4 rather easily. First observe that | p \ ̂  1. Ignoring
Ό, we integrate by parts, and use (4.1) to deduce

(5.31) I4 = O((x exp {-c19(log x)1/3}) .

To estimate J3 write y = xι/s. Then

( 5 ' 3 2 ) = ( log^^LJi "" Jdog,)̂  3.

(log ̂ )7<

because of (5.2). So Theorem 5 follows from (5.32) and the preceding
estimates.

REMARKS. Note that we have actually shown that

(5.33) Sfak) = ak-

Observe that S^x, k) is the largest of the four sums and S^x, k) is
the smallest. Therefore, because of (4.55), we deduce a stronger
form of Theorem 5, namely
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(5.34) Ux, k) = 4—*-^ +
v J (logic)

for i = 1, 2, 3, 4.
Thus we have proved all the statements of Theorem B, except

the relation between ak and er. We do this in the next section.

6* The constants άk. It is obvious from Theorem 4 or (5.1)
and (5.2) that a[ = 1. So we suppose k ^> 2. For k ^ 2 write

(6.2) c4 = Γ/°(β - &)sfe-9ds = Γ ^ β - k)sk~2ds =
J J

= Σ f* T
i=o

O

"~^ \"(Xf)t>dt = Σ (* T 2 ) ^ — / 3
\ J / Jo ί = o \ J /

where

(6.3) f} =

In a recent paper, Knuth and Pardo [8], have studied the behavior of

(6.4) Ψk(x,V)= Σ 1.

In the course of their investigations they show

(6.5) /, = erg,

where 7 is Euler's constant and the g5 are recursively defined by

(6.6) #o = 9ι = 1 , 9i = — Σ I3

3 ^

Combining (6.2), (6.5), and (6.6) we infer that ak is a rational
multiple of er for k ^ 2. For instance

af2=f0 = erg0 = e r .

That completes the proof of Theorem B.
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