A PRIMENESS PROPERTY FOR CENTRAL POLYNOMIALS

Amitai Regev

In this note we prove an anolog of of Amitsur's theorem for central polynomials.

Theorem. Let F be an infinite field, $f(x)=f\left(x_{1}, \cdots, x_{r}\right)$, $g(x)=g\left(x_{r+1}, \cdots, x_{s}\right)$ two noncommutative polynomials in disjoint sets of variables. Assume that $f\left(x_{1}, \cdots, x_{r}\right)$. $g\left(x_{r+1}, \cdots, x_{s}\right)$ is central but not an identity for F_{k}. Then both $f(x)$ and $g(x)$ are central polynomials for F_{k}.

Note. Since $[x, y]^{2}$ is central for F_{2} while $[x, y]$ is not, the assumption of disjointness of the variables cannot be removed.

Central polynomials that are not identities of the $k \times k$ matrices F_{k} were constructed in [2], [3]. In [1] Amitsur proved the following primeness property of the polynomial identities of F_{k} :

Theorem (Amitsur). Let F be an infinite field, $f(x)=$ $f\left(x_{1}, \cdots, x_{n}\right), \quad g(x)=g\left(x_{1}, \cdots, x_{n}\right)$ two noncommutative polynomials over F. If $f(x) \cdot g(x)$ is an identity for F_{k}, then either $f(x)$ or $g(x)$ is an identity for F_{k}.

Proof of the theorem. Since F is infinite, by standard arguments we may assume it is algebraically closed. Hence every matrix in F_{k} is conjugate to its Jordan canonical form. We show (W.L.O.G.) that $f(x)$ is central. By assumption there are $y_{1}, \cdots, y_{s} \in F_{k}$ such that

$$
f\left(y_{1}, \cdots, y_{r}\right) \cdot g\left(y_{r+1}, \cdots, y_{s}\right)=\alpha I \neq 0
$$

Denote $A=g\left(y_{r+1}, \cdots, y_{s}\right)$, then $\operatorname{det} A \neq 0$ since $\operatorname{det} \alpha I \neq 0$, so that $A^{-1}=B \in F_{k}$ exist. Thus deduce the identity

$$
\begin{equation*}
f\left(y_{1}, \cdots, y_{r}\right)=\alpha\left(y_{1}, \cdots, y_{r}\right) \cdot B \tag{1}
\end{equation*}
$$

where $\alpha(y)$ is a scalar function on $\left(F_{k}\right)^{r}$, not identically zero. Conjugate both sides of (1) by a matrix $D \in F_{k}$ so that $D B D^{-1}$ is in a Jordan canonical form. Since $f(x)$ is a polynomial,

$$
D f\left(y_{1}, \cdots, y_{r}\right) D^{-1}=f\left(D y_{1} D^{-1}, \cdots, D y_{r} D^{-1}\right)=f\left(\bar{y}_{1}, \cdots, \bar{y}_{r}\right)
$$

By (1), $D f(y) D^{-1}=\alpha(y) D B D^{-1}$. Since

$$
\left(y_{1}, \cdots, y_{r}\right)=\left(D^{-1} \bar{y}_{1} D, \cdots, D^{-1} \bar{y}_{r} D\right),
$$

we can write

$$
\alpha\left(y_{1}, \cdots, y_{r}\right)=\bar{\alpha}\left(\bar{y}_{1}, \cdots, \bar{y}_{r}\right),
$$

so we may finally assume in (1) that B is in its Jordan canonical form:

$$
f\left(y_{1}, \cdots, y_{r}\right)=\alpha\left(y_{1}, \cdots, y_{r}\right)\left(\begin{array}{llll}
\beta_{1} & \varepsilon_{1} & & 0 \\
0 & & \ddots & \\
& & \ddots & \varepsilon_{k-1} \\
0 & & \beta_{k}
\end{array}\right)
$$

each $\varepsilon_{i}=0$ or 1 and $\alpha(y)$ is a scalar function on $\left(F_{k}\right)^{r}$, not identically zero.

We proceed to show that all $\varepsilon_{i}=0$, for example, that $\varepsilon_{1}=0$. Choose (y_{1}, \cdots, y_{r}) $=(y)$ so that $\alpha(y) \neq 0$. Next, let S_{k} be the Symmetric group on $1, \cdots, k$. If $\eta \in S_{k}$ and A_{η} denotes the matrix ($\delta_{\eta(i), j}$), then it is well known that A_{η}^{-1} exists and for any matrix $\left(a_{i, j}\right) \in F_{k}$, $A_{\eta}\left(a_{i, j}\right) A_{\eta}^{-1}=\left(a_{\eta(i), \eta(j)}\right)$.

To show $\varepsilon_{1}=0$, choose the transposition $\sigma=(1,2) \in S_{k}$ and conjugate (1^{\prime}) by A_{o}. Denoting $y_{i}^{\prime}=A_{o} y_{i} A_{\sigma}^{-1}$ we obtain the equation

$$
\alpha\left(y_{1}^{\prime}, \cdots, y_{r}^{\prime}\left(\begin{array}{cc}
\beta_{1} & \varepsilon_{1} \tag{2}\\
0 & \beta_{2} \\
& \\
& \ddots
\end{array}\right)=\alpha\left(y_{1}, \cdots, y_{r}\right)\left(\begin{array}{lll}
\beta_{2} & 0 & \\
\varepsilon_{1} & \beta_{1} & \\
& & \ddots
\end{array}\right) .\right.
$$

Equating the $(2,1)$ entry on both sides we deduce that $\varepsilon_{1}=0$.
Thus B in (1^{\prime}) is diagonal. Since $\operatorname{det} B \neq 0$, we have $\beta_{1}, \cdots, \beta_{k} \neq 0$. By equating the $(1,1)$ and the $(2,2)$ entries in (2) we get

$$
\begin{aligned}
& \alpha\left(y^{\prime}\right) \beta_{1}=\alpha(y) \beta_{2} \\
& \alpha\left(y^{\prime}\right) \beta_{2}=\alpha(y) \beta_{1}
\end{aligned}
$$

and all terms are $\neq 0$. Hence $\beta_{2}= \pm \beta_{1}$. Similarly, $\beta_{i}= \pm \beta_{1}$, $2 \leqq i \leqq k$. We want to show that $\beta_{1}=\cdots=\beta_{k}$. If Char $F=2$, we are already done. Assume therefore that Char $F \neq 2$. Assume for example that $\beta_{2}=-\beta_{1}$. Let

$$
H=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
& & 1 . \\
0 & & \ddots
\end{array}\right) . \quad \text { Clearly } H^{-1}=\left(\begin{array}{rrrr}
1 & -1 & & 0 \\
0 & 1 & & \\
& & 1 & \\
0 & & \ddots
\end{array}\right)
$$

Write $z_{i}=H y_{i} H^{-1}$ and conjugate (1') (with B diagonal) by H to obtain

$$
\alpha\left(z_{1}, \cdots, z_{r}\right) B=\alpha\left(y_{1}, \cdots, y_{r}\right)\left(\begin{array}{lrl}
\beta_{1} & -2 \beta_{1} & 0 \\
0 & -\beta_{1} & 0 \\
0 & & \ddots
\end{array}\right)
$$

This is contradiction since $-2 \beta_{1} \neq 0$, hence the right hand side is not diagonal while the left is.

References

1. S. Amitsur, The T-ideal of the free ring, J. London Math. Soc., 30 (1955), 470-475. 2. E. Formanek, Central Polynomials for Matrix Rings, J. of Algebra, 23 (1972), 129-133.
2. Ju. P. Razmyslov, A Certain Problem of Kaplanski, Izv. Akad. Nauk. SSSR. Seri Mal., 37 (1973), 483-501.

Received August 9, 1978.
The Weizmann Institute of Science Rehovot, Israel

