A PRIMENESS PROPERTY FOR CENTRAL POLYNOMIALS

Amitai Regev

In this note we prove an anolog of of Amitsur's theorem for central polynomials.

THEOREM. Let F be an infinite field, $f(x) = f(x_1, \dots, x_r)$, $g(x) = g(x_{r+1}, \dots, x_s)$ two noncommutative polynomials in disjoint sets of variables. Assume that $f(x_1, \dots, x_r) \cdot g(x_{r+1}, \dots, x_s)$ is central but not an identity for F_k . Then both f(x) and g(x) are central polynomials for F_k .

Note. Since $[x, y]^2$ is central for F_2 while [x, y] is not, the assumption of disjointness of the variables cannot be removed.

Central polynomials that are not identities of the $k \times k$ matrices F_k were constructed in [2], [3]. In [1] Amitsur proved the following primeness property of the polynomial identities of F_k :

THEOREM (Amitsur). Let F be an infinite field, $f(x) = f(x_1, \dots, x_n)$, $g(x) = g(x_1, \dots, x_n)$ two noncommutative polynomials over F. If $f(x) \cdot g(x)$ is an identity for F_k , then either f(x) or g(x) is an identity for F_k .

Proof of the theorem. Since F is infinite, by standard arguments we may assume it is algebraically closed. Hence every matrix in F_k is conjugate to its Jordan canonical form. We show (W.L.O.G.) that f(x) is central. By assumption there are $y_1, \dots, y_s \in F_k$ such that

$$f(y_1, \cdots, y_r) \cdot g(y_{r+1}, \cdots, y_s) = \alpha I \neq 0$$
.

Denote $A = g(y_{r+1}, \dots, y_s)$, then det $A \neq 0$ since det $\alpha I \neq 0$, so that $A^{-1} = B \in F_k$ exist. Thus deduce the identity

$$(1) f(y_1, \cdots, y_r) = \alpha(y_1, \cdots, y_r) \cdot B$$

where $\alpha(y)$ is a scalar function on $(F_k)^r$, not identically zero. Conjugate both sides of (1) by a matrix $D \in F_k$ so that DBD^{-1} is in a Jordan canonical form. Since f(x) is a polynomial,

$$Df(y_1, \dots, y_r)D^{-1} = f(Dy_1D^{-1}, \dots, Dy_rD^{-1}) = f(\bar{y}_1, \dots, \bar{y}_r)$$
.
By (1), $Df(y)D^{-1} = \alpha(y)DBD^{-1}$. Since

AMITAI REGEV

$$(\pmb{y}_{1},\,\cdots,\,\pmb{y}_{r})=(D^{-1}ar{\pmb{y}}_{1}D,\,\cdots,\,D^{-1}ar{\pmb{y}}_{r}D)$$
 ,

we can write

$$lpha(y_1, \cdots, y_r) = \overline{lpha}(\overline{y}_1, \cdots, \overline{y}_r)$$
,

so we may finally assume in (1) that B is in its Jordan canonical form:

$$(1') \qquad f(y_1, \cdots, y_r) = \alpha(y_1, \cdots, y_r) \begin{pmatrix} \beta_1 & \varepsilon_1 & 0 \\ & \ddots \\ 0 & \beta_2 & \varepsilon_{k-1} \\ 0 & & \beta_k \end{pmatrix}$$

each $\varepsilon_i = 0$ or 1 and $\alpha(y)$ is a scalar function on $(F_k)^r$, not identically zero.

We proceed to show that all $\varepsilon_i = 0$, for example, that $\varepsilon_1 = 0$. Choose $(y_1, \dots, y_r) = (y)$ so that $\alpha(y) \neq 0$. Next, let S_k be the Symmetric group on 1, \dots , k. If $\eta \in S_k$ and A_η denotes the matrix $(\delta_{\eta(i),j})$, then it is well known that A_{η}^{-1} exists and for any matrix $(a_{i,j}) \in F_k$, $A_{\eta(a_{i,j})}A_{\eta}^{-1} = (a_{\eta(i),\eta(j)})$.

To show $\varepsilon_1 = 0$, choose the transposition $\sigma = (1, 2) \in S_k$ and conjugate (1') by A_{σ} . Denoting $y'_i = A_{\sigma} y_i A_{\sigma}^{-1}$ we obtain the equation

$$(2) \qquad \alpha(y'_1, \cdots, y'_r) \begin{pmatrix} \beta_1 & \varepsilon_1 \\ 0 & \beta_2 \\ & \ddots \end{pmatrix} = \alpha(y_1, \cdots, y_r) \begin{pmatrix} \beta_2 & 0 \\ \varepsilon_1 & \beta_1 \\ & \ddots \end{pmatrix}.$$

Equating the (2, 1) entry on both sides we deduce that $\varepsilon_i = 0$.

Thus B in (1') is diagonal. Since det $B \neq 0$, we have $\beta_1, \dots, \beta_k \neq 0$. By equating the (1, 1) and the (2, 2) entries in (2) we get

$$lpha(y')eta_{ extsf{1}}=lpha(y)eta_{ extsf{2}}\ lpha(y')eta_{ extsf{2}}=lpha(y)eta_{ extsf{1}}$$

and all terms are $\neq 0$. Hence $\beta_2 = \pm \beta_1$. Similarly, $\beta_i = \pm \beta_1$, $2 \leq i \leq k$. We want to show that $\beta_1 = \cdots = \beta_k$. If Char F = 2, we are already done. Assume therefore that Char $F \neq 2$. Assume for example that $\beta_2 = -\beta_1$. Let

$$H=egin{pmatrix} 1&1&0\0&1&0\&&1\0&&\cdot\&&1\0&&\cdot\&&1\end{pmatrix}$$
. Clearly $H^{-1}=egin{pmatrix} 1&-1&0\0&1&0\&&1\0&&\cdot\&&1\end{pmatrix}$.

 $\mathbf{270}$

Write $z_i = Hy_i H^{-1}$ and conjugate (1') (with B diagonal) by H to obtain

$$lpha(z_1, \cdots, z_r)B = lpha(y_1, \cdots, y_r) egin{pmatrix} eta_1 & -2eta_1 & 0 \ 0 & -eta_1 & 0 \ 0 & \ddots \end{pmatrix}.$$

This is contradiction since $-2\beta_1 \neq 0$, hence the right hand side is not diagonal while the left is.

References

S. Amitsur, The T-ideal of the free ring, J. London Math. Soc., 30 (1955), 470-475.
E. Formanek, Central Polynomials for Matrix Rings, J. of Algebra, 23 (1972), 129-133.

3. Ju. P. Razmyslov, A Certain Problem of Kaplanski, Izv. Akad. Nauk. SSSR. Seri Mal., 37 (1973), 483-501.

Received August 9, 1978.

THE WEIZMANN INSTITUTE OF SCIENCE REHOVOT, ISRAEL