PERIODIC POINTS ON TORI

BENJAMIN HALPERN

We prove the following theorem.

THEOREM 1. Given a continuous map $f: T^n \to T^n$ of the n-dimensional torus into itself. Each map homotopic to f has an infinite number of periodic points if and only if the Lefschetz numbers of the iterates $L(f^n)$, $m=1,2,\cdots$, are unbounded.

The "if" direction of Theorem 1 follows from a theorem of Brooks, Brown, Pak, and Taylor [1]. Let N(f) denote the Nielsen number of the map f. Recall that each map homotopic to f must have at least N(f) distinct fixed points.

THEOREM 2. (Brook, Brown, Pak, and Taylor [1]). If $f: T^n \to T^n$ is a continuous map, then N(f) = |L(f)|.

The converse direction of Theorem 1 is deduced from the more precise result. Theorem 3.

DEFINITION 1. Given a map $f\colon T^n\to T^n$. Let $\lambda_1,\,\cdots,\,\lambda_n$ be the characteristic values of $H_1(f)\colon H_1(T^n)\to H_1(T^n)$. If λ_i is not a root of unity, then set $a_{im}=|1-\lambda_i^m|$. If λ_i is a root of unity, then let N be such that $\lambda_i^N=1$ and $\lambda_i^m\ne 1$ for $1\le m< N$ (i.e., λ_i is a primitive Nth root of unity), and set

$$a_{im} = egin{cases} |1-\lambda_i^m| & ext{if} \ m
ot\equiv 0 mod N \ \sum_{n \mid N} |1-\lambda_i^q| & ext{if} \ m \equiv 0 mod N \end{cases}.$$

Set $a_m(f) = \prod_{i=1}^n a_{im}$.

THEOREM 3. For each map $f: T^n \to T^n$ there exists a smooth map g homotopic to f such that for $m \ge 1$,

$$\#\{x \in T^n \mid g^m(x) = x\} \le a_m(f)$$
.

Since $L(f^m) = \prod_{i=1}^n (1 - \lambda_i^m)$, we see that $\#\{x \in T^n \mid g^m(x) = x\} = N(f)$ for all m such that $\lambda_i^m \neq 1$ for all i. From Theorems 2 and 3, one may also deduce similarities between the asymptotic behaviors of $P_m = \#\{x \in T^n \mid g^m(x) = x\}$ and $Q_m = \max\{N(f^r) \mid 1 \leq r \leq m\}$.

In the process of proving Theorem 3 we establish a general result, Theorem 4, which concerns periodic points for maps homotopic to periodic maps.

THEOREM 4. Given a smooth compact connected manifold M of dimension $m \geq 2$, and a smooth map $f: M \to M$ such that $f^N = 1_M$ for some $N \geq 2$, and $f(x_0) = x_0$ for some $x_0 \in M$. Also suppose $P = \{x \in M \mid f^r(x) = x \text{ for some } r, 1 \leq r < N\}$ is finite. Then there exists a smooth map $g: M \to M$ which is homotopic to f and such that P = the set of all periodic points of g, and $g \mid P = f \mid P$.

When Theorem 4 is specialized to tori, it gives a map g homotopic to the given periodic map $f: T^n \to T^n$, whose numbers of periodic points of various periods are exactly the lower bounds implied by Theorem 2. Theorem 3 for an arbitrary map $f: T^n \to T^n$ is proved by homotoping f to a map g which with a "change of coordinates" takes the form $g: T^n = T^k \times T^{n-k} \rightarrow T^k \times T^{n-k} = T^n, g(x, y) = (a(x), r(x, y))$ where $a: T^k \to T^k$ is periodic. We homotopy a to an \bar{a} according to Theorem 4 and then, using an induction hypothesis we homotopy ron the sets $\{x\} \times T^{n-k}$ for x a periodic point of \bar{a} . This gives a map whose periodic points are the same as a map of the form $\bar{a} \times \bar{b}$: $T^k \times \bar{b}$ $T^{n-k} \to T^k \times T^{n-k}$ where $\bar{a} \colon T^k \to T^k$ and $\bar{b} \colon T^{n-k} \to T^{n-k}$. This is sufficient to prove Theorem 3 by induction, but it gives a map with possibly more periodic points than the lower bound set in Theorem 2. In special cases the lower bound in Theorem 2 can be achieved by refinements in the technique outlined above. So we make the following conjecture.

Conjecture. Given a map $f: T^n \to T^n$. Then there exists a smooth map g homotopic to f such that $\sharp \{x \in T^n \mid x \text{ is a periodic point of } g \text{ of least period } m\} = r_m \text{ where } r_1 = |L(f)| \text{ and for } q \ge 2$

$$r_{\scriptscriptstyle q} = egin{cases} 0 & ext{if} \ L(f^{\scriptscriptstyle q}) = 0 \ | \ L(f^{\scriptscriptstyle q}) | - \sum\limits_{m < q top m
otin } r_m & ext{if} \ L(f^{\scriptscriptstyle q})
eq 0 \ . \end{cases}$$

This work was motivated by a question of Shub and Sullivan which appears on page 140 of Hirsch [3]. Shub and Sullivan ask whether every map homotopic to $g\colon T^2\to T^2$ must have an infinite number of periodic points where g is the map covered by the linear map $\overline{g}\colon R^2\to R^2$ whose matrix is $\begin{pmatrix} 2&1\\1&1 \end{pmatrix}$. Since the Lefschetz numbers $L(g^n)$ are easily seen to be unbounded, a positive answer follows from the theorem of Brooks, Brown, Pak, and Taylor, Theorem 2. An elementary, transparent proof of a special case of Theorem 2 is presented in Proposition 1.

2. Preliminaries. Denote the integers by Z, the rationals by

Q, and the reals by R. For each $a \in R^n$ let $T_a : R^n \to R^n$ denote the translation by a, $T_ab = b + a$ for $b \in R^n$. Set $\mathscr{T} = \{T_a \mid a \in \mathbb{Z}^n\}$. Let $\pi : R^n \to T^n$ denote the usual covering map which identifies T^n with R^n/\mathscr{T} . Recall that an $n \times n$ matrix A is unimodular provided it has integer entries and det $A = \pm 1$, or equivalently, it has integer entries and an inverse with integer entries. Clearly, the rows of a matrix A with integer entries form a basis for the module \mathbb{Z}^n over \mathbb{Z} if and only if A is unimodular.

We will use the form of Nielsen fixed point theorem which states that if $f\colon X\to X$ is a continuous map of a compact manifold X into itself, then each map g homotopic to f must have at least N(f) fixed points, where N(f) is the Nielsen number of f. Furthermore, N(g)=N(f), (Brown [2]). The Nielsen number N(f) is defined as follows. First an equivalence relation \sim is defined on the set F of fixed points of f. Two fixed points $x,y\in F$ are equivalent, $x\sim y$, provided there is a path γ in X from x to y such that $f\circ \gamma$ is end points fixed homotopic to γ . The set of equivalence classes F/\sim is known to be finite and each equivalence class is compact.

Using a fixed point index I, such as defined in [2] we may assign an index i(A) to each $A \in F/\sim$ by setting i(A) = I(U) for any open set U such that $F \cap U = A$. The Nielsen number N(f) is the number of $A \in F/\sim$ such that $i(A) \neq 0$. If A is a singleton $\{x\}$, then $i\{x\}$ is the usual index of an isolated fixed point of f and consequently if f is differentiable and $1 - df_x$ is nonsingular, then $i\{x\} = \pm 1$ as $\det (1 - df_x)$ is positive or negative.

Let $e^1=(1,0,\cdots,0)$, $e^2=(0,1,\cdots,0)$, etc., denote the standard basis for \mathbf{R}^n . Set $\beta_i(t)=\pi(te^i)$ and $\alpha_i=[\beta_i]\in\pi_1(T^n,*)$, where $*=\pi(0)$. Then α_1,\cdots,α_n form a basis for $\pi_1(T^n,*)$. Since the Hurewitz homomorphism $\rho\colon\pi_1(T^n,*)\to H_1(T^n)$ is an isomorphism, we can identify $\pi(T^n,*)$ with $H_1(T^n)$ via ρ and consider α_1,\cdots,α_n as a basis for $H_1(T^n)$, which we shall call the standard basis of $H_1(T^n)$. If $L\colon\mathbf{R}^n\to\mathbf{R}^n$ is a linear map, we denote its matrix with respect to the standard basis by \bar{L} and define it by $L(e^i)=\sum_j \bar{L}_{ji}e^j$. Throughout this paper we will consider \mathbf{R}^n to be a space of column vectors. Then \bar{L} satisfies $L(v)=\bar{L}v$ for all v in \mathbf{R}^n .

Consider the case where $\bar{L}_{j_k} \in \mathbb{Z}$ for all j,i. Then for $a \in \mathbb{Z}^n$, $La = b \in \mathbb{Z}^n$. Since $L \circ T_a = T_b \circ L$, we see that L induces a map $L' \colon T^n \to T^n$. We say that L covers L'. It is a straightforward verification that the matrix of $H_1(L') \colon H_1(T^n) \to H_1(T^n)$ with respect to the standard basis is equal to \bar{L} . Since T^n is covered by \mathbb{R}^n , T^n is an Eilenberg-MacLane space, $T^n = K(\mathbb{Z}^n, 1)$. Hence the homotopy class of a map $f \colon T^n \to T^n$ is determined by the homomorphism $H_1(f) \colon H_1(T^n) \to H_1(T^n)$. We sum up these observations in the following lemma.

LEMMA 1. Each map $f: T^n \to T^n$ is homotopic to a map $g: T^n \to T^n$ which is covered by a linear map $\overline{g}: R^n \to R^n$ whose matrix is the same as the matrix of $H_1(f): H_1(T^n) \to H_1(T^n)$.

LEMMA 2. If $f: T^n \to T^n$ is covered by a linear map $A: R^n \to R^n$, $f \circ \pi = \pi \circ A$, and 1 is not a characteristic root of A, then the fixed points are isolated, they all have the same index, and the number of them is |L(f)|.

Proof. Let x be a fixed point of f. Using an appropriate restriction of $\pi: \mathbb{R}^n \to \mathbb{T}^n$ for a coordinate system about x, we see that df_x expressed in these coordinates is A. Since $\det (1-A) = \prod_{i=1}^n (1-\lambda_i)$, where $\lambda_1, \dots, \lambda_n$ are the characteristic roots of A, we see that $\det (1-A) \neq 0$. Hence x is an isolated fixed point. Therefore, $i(x) = \pm 1$ as $\det (1-A)$ is positive or negative, and so i(x) is independent of x. The Lefschetz fixed point formula asserts that the sum of the i(x) as x ranges over the fixed points of f is L(f). Hence the number of fixed points is |L(f)|.

PROPOSITION 1. Given a map $f: T^n \to T^n$ such that 1 is not a characteristic root of $H_1(f): T^n \to T^n$. Then N(f) = |L(f)|.

Proof. By Lemma 1 and the homotopy invariance of N(f), we see that we may assume that f is covered by a linear map $A: \mathbb{R}^n \to \mathbb{R}^n$ and that 1 is not a characteristic root of A. From Lemma 2 we know that the set F of fixed points of f satisfies #F = |L(f)|, and $i(x) \neq 0$ for each $x \in F$. To prove the present proposition it is sufficient to show that if $x, y \in F$, and $x \neq y$, then x is not Nielsen equivalent to y. For then, each $\{x\}$ with $x \in F$ will be a distinct Nielsen equivalence class and their number, #F = |L(f)|, will be equal to N(f) by the definition of N(f).

Assume $x, y \in F$, $x \neq y$, and $x \sim y$. Then there is a path γ in T^* from x to y such that γ is end points fixed homotopic to $f \circ \gamma$. Let $\widetilde{\gamma} \colon I \to R^*$ be a lift of γ , $\pi \circ \widetilde{\gamma} = \gamma$, going from $\widetilde{\gamma}(0) = \widetilde{x}$ to $\widetilde{\gamma}(1) = \widetilde{y}$. Then $A \circ \widetilde{\gamma}$ covers $f \circ \gamma$, since $\pi \circ A = f \circ \pi$. Set $a = \widetilde{x} - A(\widetilde{\gamma}(0)) = \widetilde{x} - A(\widetilde{x})$. Since $\pi(A(\widetilde{x})) = f(\pi(\widetilde{x})) = f(x) = x$ and $\pi(\widetilde{x}) = x$ we deduce that $a \in \mathbb{Z}^*$. Then $\pi \circ T_a = \pi$ and so $T_a \circ A \circ \widetilde{\gamma}$ is also a lift of $f \circ \gamma$, $\pi \circ T_a \circ A \circ \widetilde{\gamma} = \pi \circ A \circ \widetilde{\gamma} = f \circ \pi \circ \widetilde{\gamma} = f \circ \gamma$. Also note that $T_a \circ A \circ \widetilde{\gamma}(0) = A(\widetilde{\gamma}(0)) + a = \widetilde{x} = \widetilde{\gamma}(0)$. Since γ is end point fixed homotopic to $f \circ \gamma$, we have $T_a \circ A \circ \widetilde{\gamma}(1) = \widetilde{\gamma}(1)$. Therefore $\widetilde{\gamma}(1) - \widetilde{\gamma}(0) = T_a A \widetilde{\gamma}(1) - T_a A \widetilde{\gamma}(0) = (A \widetilde{\gamma}(1) + a) - (A \widetilde{\gamma}(0) + a) = A(\widetilde{\gamma}(1) - \widetilde{\gamma}(0))$. From $x \neq y$ and $\pi \widetilde{\gamma}(0) = x$ and $\pi(\widetilde{\gamma})(1) = y$, we conclude that $\widetilde{\gamma}(0) \neq \widetilde{\gamma}(1)$. Hence $\widetilde{\gamma}(1) - \widetilde{\gamma}(0)$ is an eigenvector of A with eigenvalue A, a contradiction.

2. Algebraic lemmas.

LEMMA 3. Given $v = (v_1, \dots, v_n) \in \mathbb{Z}^n$, $n \geq 1$, such that g.c.d. $(v_1, \dots, v_n) = 1$, where g.c.d. stands for greatest common divisor. Then there exist $v^2, v^3, \dots, v^n \in \mathbb{Z}^n$ such that v, v^2, \dots, v^n form a basis for \mathbb{Z}^n .

Proof. We use induction on n. For n = 1 we must show that $\{v\}$ is a basis for \mathbb{Z}^1 , i.e., that $v = \pm 1$. But this follows from the fact that g.c.d. (v) = 1.

Now suppose n>1 and that the lemma holds for n-1. If $v_1=v_2=\cdots=v_{n-1}=0$, then $v_n=\pm 1$ and the lemma obviously holds. So suppose that not all v_1,v_2,\cdots,v_{n-1} are 0. Let $d=\mathrm{g.c.d.}(v_1,\cdots,v_{n-1})$. Then $\mathrm{g.c.d.}(d,v_n)=1$ and so we may find $\alpha,\beta\in Z$ such that $\alpha v_n+\beta d=1$. Apply the induction hypotheses to the vector $w=(v_1/d,\cdots,v_{n-1}/d)\in Z^{n-1}$ and obtain vectors $w^2,\cdots,w^{n-1}\in Z^{n-1}$ such that w,w^2,\cdots,w^{n-1} form a basis for Z^{n-1} . Thus the matrix A with rows w,w^2,\cdots,w^{n-1} is unimodular, and so $\det A=\pm 1$. Let B be the matrix with rows $dw,w^2,w^3,\cdots,w^{n-1}$. Then $\det B=d(\det A)$ and the first row of B is $dw=(v_1,v_2,\cdots,v_{n-1})$. Set $w^i=(w_1^i,\cdots,w_{n-1}^i)$ for $2\leq i\leq n-1$. Form the matrix C indicated below.

where $i = -\det A$. Then expanding $\det C$ on the last column we find $\det C = \alpha v_n + \beta d = 1$. Thus the last n - 1 rows satisfy the lemma.

LEMMA 4. If $v^1, v^2, \dots, v^r \in \mathbb{Z}^n$, $n \ge 1$, then there is a unimodular matrix A with rows A^1, \dots, A^n such that $\operatorname{sp}\{A^1, \dots, A^q\} = \operatorname{sp}\{v^1, \dots, v^r\}$, where $\operatorname{sp} V =$ the linear span in \mathbb{R}^n for $V \subset \mathbb{R}^n$, and $q = \dim \operatorname{sp}\{v^1, \dots, v^r\}$.

Proof. We may suppose v^1, \dots, v^r are linearly independent in \mathbb{R}^n . We will use induction on r. For r=1, Lemma 3 with $v=d^{-1}v^1$ where $v^1=(v^1_1,\dots,v^1_n)$ and $d=\mathrm{g.c.d.}(v^1_1,\dots,v^1_n)$ gives the desired conclusion.

Suppose now that $r \ge 2$ and that Lemma 4 holds for r-1. Apply this supposition to v^1, \dots, v^{r-1} and obtain a unimodular matrix

B such that its rows B^{1}, \dots, B^{n} satisfy $\operatorname{sp}\{B^{1}, \dots, B^{r-1}\} = \operatorname{sp}\{v^{1}, \dots, v^{r-1}\}$. Note that $\operatorname{sp}\{B^{1}, \dots, B^{r-1}, v^{r}\} = \operatorname{sp}\{v^{1}, \dots, v^{r-1}, v^{r}\}$.

By considerring the linear transformation from \mathbb{R}^n to \mathbb{R}^n whose matrix is B it is easily seen that it is sufficient to prove the lemma in the special case where $B^i = e^i$. Now let $v^r = (\alpha_1, \dots, \alpha_n)$, and set

$$w=(0,\cdots,0,\alpha_r,\alpha_{r+1},\cdots,\alpha_n)=v^r-(\alpha_1,\cdots,\alpha_{r-1},0,\cdots,0)$$
.

Then $\operatorname{sp}\{B^1, \dots, B^{r-1}, v^r\} = \operatorname{sp}\{B^1, \dots, B^{r-1}, w\}$. Since v^r is independent of B^1, \dots, B^{r-1} , not all of $\alpha_r, \alpha_{r+1}, \dots, \alpha_n$ can vanish. Set $d = \operatorname{g.c.d.}\{\alpha_r, \alpha_{r+1}, \dots, \alpha_n\}$, and $u = d^{-1}w$. Then $u \in \{0\} \times \mathbb{Z}^{n-r+1}$ and the greatest common divisor of its coordinates is 1. Hence by Lemma 3 there is an $(n-r+1) \times (n-r+1)$ unimodular matrix C such that the first row is $\alpha_r/d, \dots, \alpha_n/d$. Set

$$A = \left \lceil egin{array}{c|c} I^{(r-1) imes (r-1)} & 0 \ \hline 0 & C \end{array}
ight
ceil.$$

Then A is unimodular, and its first r rows are B^1, \dots, B^{r-1}, u which have the same span in \mathbb{R}^n as does v^1, \dots, v^r .

Suppose $f: T^n \to T^n$, $n \ge 1$, is a map and A is the matrix of $H_1(f): H_1(T^n) \to H_1(T^n)$. It is shown in [1] that $L(f) = \det (1 - A^t) = \det (1 - A)$, where $A^t =$ the transpose of A =the matrix of $H^1(f): H^1(T^n) \to H^1(T^n)$. Let $\lambda_1, \dots, \lambda_n$ be the characteristic roots of A. Then $L(f) = \prod_{i=1}^n (1 - \lambda_i)$. Since $\lambda_1^m, \dots, \lambda_n^m$ are the characteristic roots of A^m we have proved the following formula.

$$(*)$$
 $L(f^{\it m})=\prod\limits_{i=1}^{\it n}\left(1-\lambda_i^{\it m}
ight)$.

LEMMA 5. Let $\lambda_1, \dots, \lambda_n$ be complex numbers, none of them 1, such that the set $\{\prod_{i=1}^n |1-\lambda_i^m| | m=1, 2, \dots\}$ is bounded, then $|\lambda_i| \leq 1$ for all $i=1, \dots, n$.

Proof. Suppose not. Divide $\{1, \cdots, n\}$ into four sets I, J, K, and L by setting $I = \{i \mid |\lambda_i| > 1\}$, $J = \{i \mid |\lambda_i| < 1\}$, $K = \{i \mid \lambda_i$ is a root of unity}, and $L = \{i \mid |\lambda_i| = 1 \text{ and } \lambda_i^q \neq 1 \text{ for all } q \geq 1\}$. For any $U \subset \{1, \cdots, n\}$, set $U_m = \prod_{i \in U} |1 - \lambda_i^m|$, with the convention that if $U = \emptyset$, then $U_m = 1$ for all m. Formula (*) gives $|L(f^m)| = I_m J_m K_m L_m$. Since $I \neq \emptyset$ we clearly have

$$(1)$$
 $I_m \longrightarrow \infty$.

Also

$$(2)$$
 $J_m \longrightarrow 1$.

For each $i \in K$, let $q_i \ge 1$ be such that $\lambda_i^{q_i} = 1$ and $\lambda_i^m \ne 1$ for $1 \le m < q_i$. If $K \ne \emptyset$, set $q = \prod_{i \in K} q_i$. If $K = \emptyset$, set q = 1. In either case, for $p \ge 0$,

$$(3) K_{q_{p+1}} = K_1 > 0.$$

Here we have used the hypothesis that $\lambda_i \neq 1$ for all i.

Set $N=\sharp L$. From the definition of L we see that $1\notin\{\lambda_i^{qr}\mid i\in L,\ r=1,\cdots,N\}$, and hence we can find an $\varepsilon>0$ such that $|1-\lambda_i^{qr}|>2\varepsilon$ for $i\in L$ and $1\le r\le N$.

Claim. For each $i \in L$, and each positive integer a, at most one member of the sequence λ_i^{qm+1} , where $a(N+1) < m \le (a+1)(N+1)$, satisfies

$$|1-\lambda_i^{qm+1}| \leq \varepsilon$$
.

Proof. Suppose not. Then there is an $i \in L$, m and r such that $1 \le r \le N$, and $|1 - \lambda_i^{q_{m+1}}| \le \varepsilon$, and $|1 - \lambda_i^{q_{(m+r)+1}}| \le \varepsilon$. It follows that

$$egin{aligned} 2arepsilon & \geq |\, \lambda_{\imath}^{g(m+r)\,+1} - \lambda_{\imath}^{q\,m+1} | = |\, \lambda_{\imath}^{q\,m+1} |\, |\, \lambda_{\imath}^{q\,r} - 1\,| \ & = |\, \lambda_{\imath}^{q\,r} - 1\,| > 2arepsilon$$
 ,

a contradiction. This proves the claim.

Since the number of m's which satisfy $a(N+1) < m \le (a+1)(N+1)$ is N+1 and $N=\sharp L$, for each a there is an m such that $a(N+1) < m \le (a+1)(N+1)$, and $|1-\lambda_i^{q^{m+1}}| > \varepsilon$ for all $i \in L$. Hence $L_{mq+1} \ge \varepsilon^N$ for an infinite number of m's. Note that this also holds when N=0. Combining this with (1), (2), and (3) we see that $|L(f^m)|$ is unbounded, a contradiction. Hence $|\lambda_i| \le 1$ for all i.

LEMMA 6. Given a map $f: T^n \to T^n$, $n \ge 1$, such that 1 is not a characteristic root of $H_1(f): H_1(T^n) \to H_1(T^n)$, and $L(f^m)$, $m = 1, 2, \cdots$, are bounded. Then each nonzero characteristic root of $H_1(f)$ is a root of unity.

Proof. Let $\lambda_1, \dots, \lambda_n$ be the characteristic roots of $H_1(f)$. By Lemma 5 we know that $|\lambda_i| \leq 1$ for all i.

Next we will show that for each i, $|\lambda_i| = 0$ or 1. Suppose not. Let $U = \{i \mid \lambda_i \neq 0\}$, and q = #U. Let

$$P(\lambda) = \prod\limits_{i=1}^{n} \left(\lambda - \lambda_i
ight) = \lambda^n + a_1 \lambda^{n-1} + \cdots + a_n$$

be the characteristic polynomial of $H_{i}(f)$. Then $a_{q}=\prod_{i\in U}(-\lambda_{i})\neq 0$.

Since a_q is an integer, we have

$$1 \leq |a_q| = \prod_{i \in I} |\lambda_i| < 1$$

because $|\lambda_i| \le 1$ for all i, and $0 < |\lambda_i| < 1$ for some i. This contradiction shows that for each i, $|\lambda_i| = 0$ or 1.

Note that $a_m = 0$ for m > q, and so

$$P(\lambda) = \lambda^{n-q}(\lambda^q + a_1\lambda^{q-1} + \cdots + a_q) = \lambda^{n-q}Q(\lambda)$$
.

All the roots of $Q(\lambda)$ have unit modulus. It is known, [4] page 122, that if all the roots of a monic polynomial with integer coefficients have unit modulus, then they all are roots of unity. This completes the proof.

4. Geometric lemmas.

LEMMA 7. Suppose the finite group G acts smoothly on a compact manifold M, and that $P = \{x \in M \mid gx = x \text{ for some } g \in G, g \neq 1\}$ is finite. Then there exists a Morse function $\varphi \colon M \to R$ such that $\varphi \circ g = \varphi$ for all $g \in G$. Furthermore, each $x \in P$ is a critical point of φ .

Proof. Following Milnor [5], we will say that a smooth map $f: M \to R$ is "good" on a set $S \subset M$ if f has no degenerate critical points on S.

We begin by obtaining a first approximation, a smooth map $\Psi \colon M \to R$, which is invariant (i.e., $\Psi \circ g = \Psi$ for all $g \in G$) and is good on a neighborhood V of P. Then we perturb Ψ equivariently to the desired Morse function φ .

It is easy to define a smooth map $h \colon M \to R$ such that each $x \in P$ is a nondegenerate critical point of index zero, i.e., in a local coordinate system about x the first partial derivatives vanish and the matrix of second partial derivatives is positive definite at x. These same conditions also hold for each $h \circ g$, $g \in G$, and consequently $\Psi = \sum_{g \in G} h \circ g$ is a first approximation as desired. Clearly, the set V where Ψ is good, is open, contains P, and satisfies g(V) = V for all $g \in G$.

Note that $gx \neq x$ for all $x \in M - V$ and $g \in G$, $g \neq 1$. Now a rather straightforward equivarient version of the argument used in Milnor [5], Theorem 2.7, to prove the existence of Morse functions serves to show that Ψ can be perturbed to an equivarient Morse function φ . A sketch of this equivarient version follows.

We may find coordinate neighborhoods U_1, \dots, U_r such that

$$M-V\!\subset\!igcup_{i=1}^r U_i$$
 , $P\cap\operatorname{cl}\Bigl(igcup_{i=1}^r U_i\Bigr)=arnothing$, and $U_i\cap g(U_i)=arnothing$

for $1 \le i \le r$ and $g \in G$, $g \ne 1$. Then $g'(U_i) \cap g(U_i) = \emptyset$ for $1 \le i \le r$ and $g, g' \in G$, $g \ne g'$. We can also find compact sets $C_i \subset U_i$ such that C_1, \dots, C_r cover M - V. We may alter Ψ in stages so that at the *i*th stage, the new Ψ is still equivarient and is good on

$$V \cup \left(\bigcup_{i=1}^{i}\bigcup_{g \in G}g(C_{i})\right)$$
.

At the *i*th step we simply apply the procedure used in the proof of Theorem 2.7 of [5] to U_i and then alter Ψ on $g(U_i)$, for $g \in G$, $g \neq 1$, so as to preserve the property $\Psi \circ g = g$ for all $g \in G$.

LEMMA 8. Suppose the finite group G acts smoothly on a compact connected m-dimensional manifold M, $m \ge 2$, and that $P = \{x \in M | gx = x \text{ for some } g \in G, g \ne 1\}$ is finite. Given a finite set $S \subset M - P$ and a point $x_0 \in M$ such that $gx_0 = x_0$ for all $g \in G$. Then there exists a smooth embedding $\Psi \colon D^m \to (M - P) \cup \{x_0\}$ such that $\Psi(0) = x_0$, $S \subset \Psi(\text{int } D^m)$, and $g(\Psi(D^m)) = \Psi(D^m)$ for all $g \in G$. Furthermore, for each $g \in G$, $\Psi^{-1} \circ g \circ \Psi \colon D^m \to D^m$ is the restriction to D^m of an orthogonal linear map.

Proof. We will use induction on *S. First suppose $S=\varnothing$. It is an easy matter to embed M into R^n for some n such that for each $g\in G$ the map $x\to gx$, $x\in M$, is the restriction to M of an orthogonal map $L_g\colon R^n\to R^n$. Just start with a smooth embedding $h\colon M\to R^k$, for some k. Set $E_g=R^k$ for each $g\in G$, and define $e\colon M\to \prod_{g\in G}E_g=R^{k^{\sharp G}}$ by $e(x)=\prod_{g\in G}h(gx)$, for all $x\in M$. Then the maps $e(x)\to e(gx)$, $x\in M$ are restrictions of maps $L_g\colon R^{k^{\sharp G}}\to R^{k^{\sharp G}}$ which simply permute the coordinates of $R^{k^{\sharp G}}$.

Set $n=k^*G$, and identify M with e(M) via e. Let TM_x be the tangent space of M at x, considered as a subspace of R^n . Let $T=x_0+TM_{x_0}$ be the geometric tangent space through the point x_0 . Let $N: R^n \to T$ be the orthogonal projection onto T. Then $L_g(T) \subset T$ for all $g \in G$, and so $L_g \circ N = N \circ L_g$ for all $g \in G$. The restriction of N to a neighborhood of x_0 in M is a diffeomorphism onto a neighborhood W of x_0 in T. The desired W is now easily constructed from the restriction of $(N \mid W)^{-1}$ to a ball about x_0 .

Now assume that $\Psi \colon D^m \to M$ satisfies Lemma 8 as stated. We will show that for any $x \in M - (P \cup S)$, Ψ can be altered so as to satisfy Lemma 8 with S replaced by $S \cup \{x\}$. We will use a connectedness argument. Since dim $M \ge 2$ and $P \cup S$ is finite, the space $M - P \cup S$ is connected. Let $V = \{x \in M - P \cup S \mid \text{Lemma 8 holds} \}$ with S replaced by $S \cup \{x\}$.

The set V is clearly open in $M-(P\cup S)$. We will show that $(M-(P\cup S))-V$ is also open. Let $x\in (M-(P\cup S))-V$. If $gx\in S$

for some $g \in G$, then Ψ already satisfies $S \cup \{x\} \subset \Psi(\operatorname{int} D^m)$. Hence $gx \notin S$ for all $g \in G$. Since $gx \neq x$ for all $g \in G$, $g \neq 1$, we may find a coordinate neighborhood U of x which is diffeomorphic to an open m-ball and such that $g(U) \subset M - (P \cup S)$, and $g(U) \cap U = \emptyset$ for all $g \in G$, $g \neq 1$. Then $g(U) \cap h(U) = \emptyset$ for g, $h \in G$, $g \neq h$. We claim that $U \subset (M - (P \cup S)) - V$. Suppose not. Then we can find a $g \in U \cap V$. Let $g \in M$ be a diffeomorphism which is fixed outside of $g \in M$ and $g \in M$. Define $g \in M$ by

$$ar{k}(p) = egin{cases} p & ext{if} \;\; p
otin ar{g} \in igcup_{g \in G} g(U) \ gkg^{\scriptscriptstyle -1}(p) & ext{if} \;\; p
otin g(U) \;. \end{cases}$$

Then \bar{k} is a well defined diffeomorphism, and Lemma 8 is satisfied with Ψ replaced by $\bar{k} \circ \Psi$ and S replaced by $S \cup \{x\}$. In fact, for each $g \in G$, $\bar{k} \circ g = g \circ \bar{k}$ and so $(\bar{k} \circ \Psi)^{-1} \circ g \circ (\bar{k} \circ \Psi) = \Psi^{-1} \circ g \circ \Psi$. This proves the claim, and hence $(M - (P \cup S)) - V$ is open.

Since $V \neq \emptyset$, we have $V = M - (P \cup S)$, and the induction step is complete.

5. Proofs of the theorems.

Proof of Theorem 4. First recall that a flow on M is a smooth map $F: M \times R \to M$ such that with the notation $F_t(x) = F(x, t)$ we have $F_s \circ F_t = F_{s+t}$ for all $s, t \in R$, and $F_0 = 1_M$. An orbit of F is a function of the form $F^x: R \to M$ where $x \in M$ and $F^x(t) = F(x, t)$ for all $t \in R$. An orbit F^x is periodic if $F^x(s) = F^x(0)$ for some $s \neq 0$. Thus the constant orbits are considered to be periodic.

The idea of the proof is to obtain a flow H_t : $M \to M$ such that the orbits H^x for $x \in P$ are constants and these are the only periodic orbits, and $H_t \circ f = f \circ H_t$. Then $g = H_1 \circ f$ will satisfy the conclusions of the theorem. The desired flow H_t is obtained in several steps.

Since $f^N=1$, we have a smooth action of $\mathbb{Z}/n\mathbb{Z}$ on M. Let $\varphi\colon M\to R$ be the Morse function given by Lemma 7. It is easy to obtain an equivarient Riemannian metric on M. Just average over $\mathbb{Z}/n\mathbb{Z}$ any Riemannian metric. Then the gradient of φ with respect to this equivarient Riemannian metric is an equivarient vector field v. The vector field v determines a flow F on M which satisfies $F_t(f(x))=f(F_t(x))$ for all $(x,t)\in M\times R$. The flow also satisfies $\varphi(F_t(x))>\varphi(x)$ whenever x is not a critical point of φ and t>0. Hence the only periodic orbits of F are the constant orbits at critical points of φ .

Let $S = \{x \in M \mid x \text{ is a critical point of } \varphi\} - P$. Let $\mathscr{U} \colon D^m \to M$ be given by Lemma 8. Pick $r \in (0, 1)$ such that $S \subset \mathscr{U}(D_r^m)$, where $D_r^m = \{x \in R^m \mid ||x|| \leq r\}$. Let $b \colon R \to R$ be a smooth map satisfying

b(t) = 0 for $t \le r$, b(t) > 0 for t > r, and b(t) = 1 for $t \ge (1 + r)/2$. Define $\bar{b}: M \to R$ by

$$\overline{b}(x) = egin{cases} 1 & ext{if } x
otin W(D^m_{(r+1)/2}) \ b(|| arPsi^{-1}(x) ||) & ext{if } x
otin arPsi^m). \end{cases}$$

It is clear that \overline{b} is well defined and smooth. Define a new vector field w by $w(x) = \overline{b}(x)v(x)$. Then w is equivarient under f and determines an equivarient flow G_t . The orbits of G, which are just the integral curves of w, are reparameterizations of portions of orbits of F. The orbits G^x for $x \in \Psi(D_r^m) \cup P$ are constant. All the other orbits are reparameterizations of portions of nonperiodic orbits of F by reparameterization functions which are strictly monotone increasing functions. Hence the orbits G^x for $x \in \Psi(D_r^m) \cup P$ are the only periodic orbits. Let $\theta \colon R \to R$ be a smooth map satisfying $\theta(t) = r + t$ for $t \leq 1/3$ (1-r), $\theta'(t) > 0$ for all t, and $\theta(t) = t$ for $t \geq r + 2/3$ (1-r). We will use later the obvious fact that $\theta^{-1} \colon R \to R$ exists and is smooth. Define $h \colon M - \{x_0\} \to M - \Psi(D_r^m)$ by

$$h(x) = egin{cases} x & ext{if } x
otin \mathcal{V}(D^m) \ rac{ heta(||x||)x}{||x||} & ext{if } x
otin \mathcal{V}(D^m) \end{cases}$$
 ,

where we have identified $\Psi(D^m)$ with D^m via Ψ . Define $H_t(x)$ by

$$H_t(x) = egin{cases} h^{-1}(G_t(h(x))) & ext{ for } x
eq x_0 \ x_0 & ext{ for } x = x_0 \end{cases}.$$

We wish to show that $H_t(x)$ is a smooth flow by showing that $H_t(x)$ is determined by a smooth vector field. Since $H_s \circ H_t = H_{s+t}$, and $H_0 = 1_M$, it is sufficient to show that $\eta(x) = d/dt \, H_t(x)$ at t = 0 is a smooth vector field. It is clear that $\eta(x)$ is well defined for all $x \in M$ and $\overline{\eta} = \eta \mid M - \{x_0\}$ is smooth. Since $\eta(x_0) = 0$, it is sufficient to show that $\eta(x)$ and all its derivatives approach 0 as $x \to x_0$. We calculate for $x \neq x_0$

$$egin{aligned} \eta(x) &= rac{d}{dt}(H_t(x))\mid_{t=0} = dh^{-1}\mid_{G_0(h(x))} rac{d}{dt}(G_t(h(x)))\mid_{t=0} \ &= dh^{-1}\mid_{h(x)} w(h(x)) \;. \end{aligned}$$

Since w and all its derivatives vanish on D_r^m , Taylor expansions show that for each derivative a(x) of a component of w(x) and each $n \ge 1$ there is a constant c such that

$$|a(x)| \leq c ||x|| - r|^n \quad \text{for } x \in \Psi(D^m).$$

The form of h(x) for $x \in \Psi(D^m) - \{x_0\}$ and $||x|| \leq (1-r)/3$, is

$$h(x) = \frac{(r + ||x||)x}{||x||}$$

and hence if u(x) is a derivative of a component of h of order n, then there is a constant e such that

$$|u(x)| \le e ||x||^{-n-1} \quad \text{for } 0 < ||x|| \le \frac{1-r}{3}.$$

The map $h^{-1} \mid (\Psi(D^m) - \Psi(D_r^m))$ has a smooth extention $\bar{h}^{-1} \colon \varphi(D^m) - \{x_0\} \to \varphi(D^m)$ given by $\bar{h}^{-1}(y) = \theta^{-1}(||y||)y/||y||$. Consequently $dh^{-1} \mid_y$ and all its derivatives are bounded. Using this and (5) and (6) we see that $\eta(x) = dh^{-1} \mid_{h(x)} w(h(x))$ and all its derivatives approach 0 as $x \to x_0$. Hence $\eta(x)$ is smooth and therefore so is $H_t(x)$.

It is clear from the definition of $H_t(x)$ and the properties of $G_t(x)$ that the only periodic orbits of H are the constant orbits H^x for $x \in P$. It is also clear from the fact that $x \to \Psi^{-1}(f(\Psi(x)))$ is the restriction of a orthogonal linear map to D^m , that $f \circ h = h \circ f$ and hence $f \circ H_t = H_t \circ f$ for all t. The map $(x, t) \to H_t(f(x))$ is a homotopy from $H_0 \circ f = f$ to the smooth map $g = H_1 \circ f$. It is easy to see that the set of periodic points of $H_1 \circ f$ is P and that $H_1 \circ f \mid P = f \mid P$. This completes the proof.

LEMMA 9. Suppose there is given a map $g\colon T^k\to T^k$, $k\geq 2$, which is covered by a linear map $A\colon R^k\to R^k$, and an integer $N\geq 2$, such that $g^N=1_{T^k}$, and $\lambda^m\neq 1$ for λ a characteristic root of A and $1\leq m< N$. Then there exists a smooth map \overline{g} homotopic to g such that $P=\{x\in T^k\mid g^m(x)=x \text{ for some } m,1\leq m< N\}=\text{the set of all periodic points of }\overline{g}, \overline{g}\mid P=g\mid P, \text{ and for }m\geq 1\ \#\{x\in T^k\mid \overline{g}^m(x)=x\}\leq a_m(g).$

Proof. We wish to apply Theorem 4. If follows from Lemma 2 that $P = \{x \in T^k \mid g^r(x) = x \text{ for some } r, 1 \leq r < N\}$ is finite. Since $N \geq 2$, $\lambda_i^1 \neq 1$ for all characteristic roots λ_i and hence

$$L(g) = \prod\limits_{i=1}^{n} \left(1 - \lambda_i
ight)
eq 0$$

by formula (*). Hence, we can find an $x_0 \in T^k$ such that $g(x_0) = x_0$. Therefore Theorem 4 gives a smooth map \overline{g} homotopic to g such that P = the set of periodic points of \overline{g} , and $\overline{g} \mid P = g \mid P$. It follows from Lemma 2 applied to g, and formula (*), that for $1 \leq m < N$,

$$\sharp\{x\in T^k\mid \bar{g}^m(x)=x\}=\sharp\{x\in T^k\mid g^m(x)=x\}=|L(g^m)|=a_m(g)$$
.

Then

$$egin{aligned} &\#\{x\in T^k\mid \overline{g}^N(x)=x\}\ &=\sum_{\substack{m< N\ m\mid N}} \#\{x\in T^k\mid x ext{ is a periodic point of }\overline{g} ext{ of period }m\}\ &\leqq\sum_{\substack{m\mid N}} \left|L(g^m)\mid\ &=\sum_{\substack{m\mid N}} \left|\prod_{i=1}^k \left(1-\lambda_i^m
ight)
ight|\ &\leqq\prod_{i=1}^k \sum_{\substack{m\mid N}} \left|1-\lambda_i^m\right|\ &\leqq\prod_{i=1}^k a_{iN}\ &=a_N(g) \;. \end{aligned}$$

To complete the proof it is sufficient to show that if $m \ge 1$, $q \ge 1$, and $m \equiv q \mod N$, then

$$\{x \in T^k \mid \overline{g}^m(x) = x\} = \{x \in T^k \mid \overline{g}^q(x) = x\}$$
.

We may assume m < q and so q = m + pN for some $p \ge 1$. Assume $\overline{g}^m(x) = x$. Then $x \in P$ and so $\overline{g}^N(x) = g^N(x) = x$. Consequently $\overline{g}^q(x) = \overline{g}^{m+pN}(x) = \overline{g}^m(x) = x$. The reverse implication, " $\overline{g}^q(x) = x$ implies $\overline{g}^m(x) = x$ " follows similarly. This completes the proof.

REMARK. In our application of Lemma 9 in the proof of Theorem 3, Lemma 9 needs to be augmented by the following observation. Lemma 9 also holds when k=1 and $N\geq 1$. We verify this as follows. It is easy to deduce that $A=1_{R^1}$ or $A=-1_{R^1}$. In the first case, $A=1_{R^1}$, we can homotopy $g=1_{T^1}$ to a rotation \bar{g} of the circle $S^1=T^1$ by an angle which has an irrational ratio to 2π . Such a \bar{g} has no periodic points and Lemma 9 is verified in this case.

In the second case, $A=-1_{R^1}$, g is a reflection and there are exactly two fixed points x_0 and x_1 . It is easy to homotopy g to a map \bar{g} which leaves x_0 and x_1 fixed, and moves all other points away from x_0 and closer to x_1 . Then x_0 and x_1 will be the only periodic points of \bar{g} . It is easy to calculate that $a_m(g)=2$ for all $m\geq 1$, and so Lemma 9 holds in this case also.

Proof of Theorem 3. We prove Theorem 3 by induction on n. By convention \mathbb{R}^0 and T^0 are singletons. Hence the case n=0 holds trivially. Now assume that n>0 and the theorem holds for all m< n. Let $f: T^n \to T^n$ be a map.

By Lemma 1 we may assume that f is covered by a linear map $F: \mathbb{R}^n \to \mathbb{R}^n$. By Lemma 5 we have

$$L(f^{\scriptscriptstyle m}) = \prod\limits_{j=1}^{n} \left(1 \, - \, \lambda_i^{\scriptscriptstyle m}
ight)$$

where $\lambda_1, \dots, \lambda_n$ are the characteristic roots of F.

First consider the case where $\lambda_i^m \neq 1$ for all $m \geq 1$ and $1 \leq i \leq n$. Then the theorem follows from Lemmas 2 and 5.

Consider now the remaining case where $\lambda_i^m=1$ for some $m\geq 1$ and $1\leq i\leq n$. Let N be the smallest such m. Let \bar{F}^t denote the transpose of \bar{F} . Since $(\bar{F}^t)^N$ has integer entries, we may find a $w\in \mathbf{Z}^n$ such that $w\neq 0$ and $(\bar{F}^t)^Nw=w$. Set

$$W = \operatorname{sp}_{R^n} \{ (\bar{F}^t)^m w \mid 0 \le m < N \}$$
.

Then dim $W \ge 1$, $\bar{F}^t u \in W$ for all $u \in W$, and $(\bar{F}^t)^N x = x$ for all $x \in W$. Set $k = \dim W$. By Lemma 4, we can find a basis w^1, w^2, \dots, w^n for \mathbb{Z}^n such that w^1, w^2, \dots, w^k form a basis for W. Let $K: \mathbb{R}^n \to \mathbb{R}^n$ be the linear transformation whose matrix satisfies $\bar{K}^t e^i = w^i$. Then, both \bar{K} and \bar{K}^{-1} have integer entries. Thus, both K and K^{-1} induce maps $K': T^n \to T^n$, and $K^{-1} = K'^{-1}: T^n \to T^n$. We "change coordinates" by noting that it is sufficient to prove the theorem for

$$g = K' \circ f \circ K'^{-1}$$

in place of f. The map g is covered by

$$M = K \circ F \circ K^{-1} : \mathbb{R}^n \longrightarrow \mathbb{R}^n$$
.

From $\bar{K}^t e^i = w^i$ and $\bar{F}^t u \in W$ for $u \in W$, it follows that the matrix \bar{M} of M has the form

$$ar{M} = \left(egin{array}{c|c} ar{A} & 0 \ \hline ar{C} & ar{B} \end{array}
ight)$$

where \bar{A} , \bar{B} , \bar{C} , and 0 are $k \times k$, $(n-k) \times (n-k)$, $(n-k) \times k$ and $n \times (n-k)$ matrices, and all entries of 0 are zero. It follows from $\bar{F}^{t^N} x = x$ for all $x \in W$, that $\bar{A}^N = 1$. Since $\bar{M} = \bar{K} \cdot \bar{F} \cdot \bar{K}^{-1}$ is similar to \bar{F} , $\lambda_1, \dots, \lambda_n$ are the characteristic roots of \bar{M} . Hence, we may renumber the λ_i 's so that $\lambda_1, \dots, \lambda_k$ and $\lambda_{k+1}, \dots, \lambda_n$ are the characteristic roots of \bar{A} and \bar{B} respectively. Let

$$B: \mathbb{R}^{n-k} \longrightarrow \mathbb{R}^{n-k}$$

be the linear map whose matrix is \overline{B} . Then B induces a map $b: T^{n-k} \to T^{n-k}$. Since $k = \dim W \ge 1$, we may apply our induction hypothesis to b and find a smooth map \overline{b} homotopic to b such that

$$\sharp \{x \in T^{n-k} \mid \bar{b}^m(x) = x\} \leq a_m(b) = \prod_{i=k+1}^n a_{im}$$
 .

Let $A: \mathbf{R}^k \to \mathbf{R}^k$ be the linear map whose matrix is \bar{A} . Let $a: T^k \to T^k$ be the map induced by A. Since $\bar{A}^N = 1$, we have $a^N = 1_{T^k}$. Because we choose N so that $\lambda_i^m \neq 1$ for $1 \leq m < N$ and all i, and N = 1 implies k = 1, we see that Lemma 9 or the remark which follows it applies. Hence we can find a smooth map \bar{a} homotopic to a such that $P = \{x \in T^k \mid a^m(x) = x \text{ for some } m, 1 \leq m < N\} = \text{the set of all periodic points of } \bar{a}, \ \bar{a} \mid P = a \mid P, \text{ and for } m \geq 1,$

$$\sharp \{x \in T^k \mid \bar{a}^m(x) = x\} \leq a_m(a) = \prod_{i=1}^k a_{im}$$
.

If we write $R^n = R^k \times R^{n-k}$, then M has the form

$$M(x, y) = (\bar{A}x, \bar{C}x + \bar{B}y)$$
.

Consequently, if we write $T^n = T^k \times T^{n-k}$, then g(u, v) = (a(u), r(u, v)) where $r: T^k \times T^{n-k} \to T^k$ is the map induced by the map $R: \mathbf{R}^k \times \mathbf{R}^{n-k} \to \mathbf{R}^k$ which is given by $R(x, y) = \overline{C}x + \overline{B}y$. The homotopy from a to \overline{a} gives rise to a homotopy from g to \overline{g} where

$$\bar{g}(u, v) = (\bar{a}(u), r(u, v))$$
.

The periodic points of \bar{g} must have the form

$$(u,v) \in T^k \times T^{n-k}$$
 where $u \in P$.

Partition P into orbits under \bar{a} . Let

$$X = \{u_i = \bar{a}^i(u_0) \mid i = 0, 1, \dots, m-1\}$$

be one such orbit consising of m distinct point, where $1 \leq m < N$ and $\bar{a}^m(u_0) = u_0$. Consider the maps

$$g_i = \overline{g} \mid u_i \times T^{n-k} : u_i \times T^{n-k} \longrightarrow u_{i+1} \times T^{n-k}$$
,

which are covered by the maps

$$M_i = M \mid x_i \times R^{n-k} : x_i \times R^{n-k} \longrightarrow x_{i+1} \times R^{n-k}$$

where $u_m = \overline{a}^m(u_0) = u_0$ and x_0 is chosen so that $\pi(x_0) = u_0$, and $x_i = \overline{A}^i x_0$ for $i \geq 1$, (recall that $\overline{a} \mid P = a \mid P$). Making the obvious identifications of $u_i \times T^{n-k}$ with T^{n-k} , and $x_i \times T^{n-k}$ with T^{n-k} we see that

$$M_i(y) = \bar{C}x_i + \bar{B}y$$

for all $y \in \mathbb{R}^{n-k}$. Define

$$M_{it}(y) = t \bar{C} x_i + \bar{B} y$$
 .

Then $M_{i1}=M_i$ and M_{i0} has \bar{B} as its matrix. Because \bar{B} has integer entries and $t\bar{C}x_i$ does not depend on y, the homotopy M_{it} induces a

homotopy g_{it} from $g_{i1}=g_i$ to the map induced by M_{i0} , which is b. Since b is homotopic to \overline{b} , each g_i is homotopic to \overline{b} . Since both g_i and \overline{b} are smooth, we may find a smooth homotopy $h_i\colon T^{n-k}\times I\to T^{n-k}$ such that for some $\varepsilon>0$, $h_i(v,t)=\overline{b}(v)$ for all $t<\varepsilon$, and $h_i(v,t)=g_i(v)=r(u_i,v)$ for all $t>1-\varepsilon$.

Pick coordinate charts (U_i, φ_i) about the points u_i such that $\{u_i\} = U_i \cap P$, $\varphi_i(U_i) = B_1(0) \subset \mathbb{R}^k$, and $\varphi_i(u_i) = 0$. Using the natural group structure on T^{n-k} we define

$$r_t$$
: $T^k \times T^{n-k} \longrightarrow T^{n-k}$ for $t \in [0, 1]$

by

$$r_{\scriptscriptstyle t}(u,\,v) = egin{cases} r(u,\,v) \,+\, h_{\scriptscriptstyle i}(v,\,t\,||\,arphi_{\scriptscriptstyle i}(u)\,||\,+\,1\,-\,t) \,-\, r(u_{\scriptscriptstyle i},\,v) & \quad ext{if} \;\; u \in U_{\scriptscriptstyle i} \ r(u,\,v) & \quad ext{if} \;\; u
otin \ U_{\scriptscriptstyle i} \,. \end{cases}$$

Using r_t we obtain a homotopy

$$\bar{g}_t(u, v) = (\bar{a}(u), r_t(u, v))$$

from $\bar{g}_0 = \bar{g}$ to \bar{g}_1 , where $\bar{g}_1(u, v) = (\bar{a}(u), r_1(u, v))$. Note that $r_1(u_i, v) = \bar{b}(v)$ for each $i = 0, 1, \dots, m-1$. Proceed similarly with the other orbits in P and call the final map \tilde{g} .

The map \widetilde{g} will be smooth and homotopic \overline{g} and hence homotopic to g. For all $(u, v) \in T^k \times T^{n-k}$, $\widetilde{g}(u, v) \in (\overline{a}(u), \widetilde{r}(u, v))$ for some map $\widetilde{r}: T^k \times T^{n-k} \to T^{n-k}$ which satisfies $\widetilde{r}(u, v) = \overline{b}(v)$ for all $u \in P$.

Now suppose $\tilde{g}^m(u, v) = (u, v)$. Then $\bar{a}^m(u) = u$ and so $u \in P$. Hence $\bar{a}^i(u) \in P$ for all i and so by an easy induction $\tilde{g}^i(u, v) = (\bar{a}^i(u), \bar{b}^i(v))$. Applying this with i = m we see that $\bar{b}^m(v) = v$. Hence

$$egin{aligned} \# \left\{ (u,\,v) \in T^k imes T^{n-k} \,|\, \widetilde{g}^{\,m}(u,\,v) = (u,\,v)
ight\} \ & \leq \# \left\{ u \in T^k \,|\, ar{a}^{\,m}(u) = u
ight\} imes \# \left\{ v \in T^{n-k} \,|\, b^{\,m}(v) = v
ight\} \ & \leq \prod_{i=1}^k a_{im} \cdot \prod_{i=k+1}^n a_{im} = a_m \;. \end{aligned}$$

This completes the proof.

Proof of Theorem 1. The "if" direction follows from the Nielsen fixed point theorem and Theorem 2.

Next we prove the converse direction. Assume that $L(f^m)$, $m=1,2,\cdots$, are bounded. We may assume $n\geq 1$. Let g be the map given by Theorem 3. If 1 is a characteristic root of $H_1(f)\colon H_1(T^n)\to H_1(T^n)$, then g has no periodic points because $a_m(f)=0$ for all $m\geq 1$. So assume that 1 is not a characteristic root of $H_1(f)$. Now from Lemma 6 we have $|\lambda_i|\leq 1$ for all i, where $\lambda_1,\cdots,\lambda_n$ are the characteristic roots of $H_1(f)$. Consequently, there exists a B such that

 $a_{im} \leq B$ for all $i=1,\,\cdots,\,n$, and $m\geq 1$. Thus $a_m(f) \leq B^n$ for all $m\geq 1$.

We will show that the number of periodic points of g is bounded by B^n . Suppose on the contrary that $S = \{x_i \mid 1 \le i \le B^n + 1\}$ is a set of $B^n + 1$ distinct periodic points such that x_i has period m_i . Set

$$m = \prod_{i=1}^{B^{n+1}} m_i.$$

Then $S \subset \{x \in T^n \mid g^m(x) = x\}$. But, by Theorem 3,

$$\#\{x \in T^n \mid g^m(x) = x\} \leqq a_m(f) \leqq B^n,$$

a contradiction. This completes the proof.

REFERENCES

- 1. R. Brooks, R. Brown, J. Pak, and D. Taylor, Nielsen numbers of maps of tori, Proc. Amer. Math. Soc., 52 (1975), 398-400.
- 2. R. Brown, The Lefschetz Fixed Point Theorem, Scott, Foresman and Company, 1971.
- 3. M. Hirsch, Differential Topology, Springer-Verlag, New York, 1976.
- 4. Hecke E. Leipzig, Theorie der Algebraischen Zahlen, Akademische Verlagsgesellschaft, 1923.
- 5. J. Milnor, Lectures on the h-cobordism Theorem, Princeton Math. Notes, Princeton, New Jersey, 1965.

Received February 15, 1978 and in revised form December 4, 1978.

INDIANA UNIVERSITY BLOOMINGTON, IN 47401