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PERIODIC POINTS ON TORI

BENJAMIN HALPERN

We prove the following theorem.

THEOREM 1. Given a continuous map /: Tn -> Tn of the
^-dimensional torus into itself. Each map homotopic to / has
an infinite number of periodic points if and only if the Lef s-
chetz numbers of the iterates L(fm), m—lf2, •••, are un-
bounded.

The "if" direction of Theorem 1 follows from a theorem of Brooks,
Brown, Pak, and Taylor [1]. Let N(f) denote the Nielsen number of
the map / . Recall that each map homotopic to / must have at least
N(f) distinct fixed points.

THEOREM 2. (Brook, Brown, Pak, and Taylor [1]). Iff: Tn->Tn

is a continuous map, then N(f) = \L(f)\.

The converse direction of Theorem 1 is deduced from the more
precise result, Theorem 3.

DEFINITION 1. Given a map / : Tn-+Tn. Let xlf •••, λ,» be the
characteristic values of H^f): H^T") -> H^T*). If λ, is not a root
of unity, then set aim = 11 — λΓ|. If λi is a root of unity, then let
N be such that λf = 1 and λf Φ 1 for 1 S m < N (i.e., λ< is a primi-
tive M h root of unity), and set

ί\l - X?\ if m ^ OmodJV
aim = Σ 11 - λ? I if m = 0 mod N .

Set am(f) = ΠΓ=i aίm.

THEOREM 3. For each map f: Tn —> Tn there exists a smooth map
g homotopic to f such that for m ^ 1,

Since L(/ ) = Π?=i (1 ~λΓ), we see that | { a ; e Γ | gm(x) = x} = N(f)
for all m such that XT Φ 1 for all i. From Theorems 2 and 3, one
may also deduce similarities between the asymptotic behaviors of
Pm = %{xeTn\ flΓ(aO = x} and Qm = max {N(fr) \ 1 ^ r g m}.

In the process of proving Theorem 3 we establish a general result,
Theorem 4, which concerns periodic points for maps homotopic to
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periodic maps.

THEOREM 4. Given a smooth compact connected manifold M of
dimension m ^ 2, and a smooth map f: M —> M such that fN = 1M for
some N ^ 2, and f(x0) — xQ for some x0 e M. Also suppose P =
{x e ikf I fr(x) = x for some r, 1 <Ξ> r < N] is finite. Then there exists
a smooth map g: M-* M which is homotopic to f and such that P =
the set of all periodic points of g, and g\P — f\P.

When Theorem 4 is specialized to tori, it gives a map g homotopic
to the given periodic map /: T* —> Tn, whose numbers of periodic
points of various periods are exactly the lower bounds implied by
Theorem 2. Theorem 3 for an arbitrary map /: Tn —> Tn is proved
by homotoping / to a map g which with a "change of coordinates"
takes the form g: Tn = TkxTn~k-^TkxTn~k = Tn

f g{x, y) = (a(x), r(x, y))
where a: Tk —>Tk is periodic. We homotopy a to an a according to
Theorem 4 and then, using an induction hypothesis we homotopy r
on the sets {x} x Tn~k for x a periodic point of a. This gives a map
whose periodic points are the same as a map of the form a x b: Tk x

Tn~k _^ Tk χ Tn-k w^eγe a: T* -> Γ* and 6: Tn~k -> Tn~K This is suf-
ficient to prove Theorem 3 by induction, but it gives a map with
possibly more periodic points than the lower bound set in Theorem 2.
In special cases the lower bound in Theorem 2 can be achieved by
refinements in the technique outlined above. So we make the follow-
ing conjecture.

Conjecture. Given a map/: Tn—>Tn. Then there exists a smooth
map g homotopic to / such that # {x e Tn | x is a periodic point of g
of least period m} = rm where rι = | L(f) \ and for q :> 2

if L(fq) = 0

if

This work was motivated by a question of Shub and Sullivan
which appears on page 140 of Hirsch [3]. Shub and Sullivan ask
whether every map homotopic to g: T2 —> T2 must have an infinite
number of periodic points where g is the map covered by the linear

_ /2 1\
map g: R2 —> R2 whose matrix is L +\. Since the Lefschetz numbers
L(gn) are easily seen to be unbounded, a positive answer follows from
the theorem of Brooks, Brown, Pak, and Taylor, Theorem 2. An
elementary, transparent proof of a special case of Theorem 2 is
presented in Proposition 1.

2* Preliminaries* Denote the integers by Z, the rationale by
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Q, and the reals by R. For each aeRn let Ta: R
n -> Rn denote the

translation by α, Tab = 6 + α for 6 6 Λ\ Set ^ = {Ta \ a e Zn}. Let
TΓ: Λ% --» Tn denote the usual covering map which identifies Tn with
RnlJ/~ Recall that an n x n matrix A is unimodular provided it
has integer entries and det A = ± 1 , or equivalently, it has integer
entries and an inverse with integer entries. Clearly, the rows of a
matrix A with integer entries form a basis for the module Zn over
Z if and only if A is unimodular.

We will use the form of Nielsen fixed point theorem which states
that if /: X-+ X is a continuous map of a compact manifold X into
itself, then each map g homotopic to / must have at least N{f) fixed
points, where N(f) is the Nielsen number of/. Furthermore, N(g) =
N(f), (Brown [2]). The Nielsen number N(f) is defined as follows.
First an equivalence relation ~ is defined on the set F of fixed points
of /. Two fixed points x, y eF are equivalent, x ~ y, provided there
is a path 7 in X from x to y such that /Όγ is end points fixed
homotopic to 7. The set of equivalence classes F/~ is known to be
finite and each equivalence class is compact.

Using a fixed point index I, such as defined in [2] we may assign
an index i(A) to each A e F / ~ by setting i(A) = I(U) for any open
set U such that F Π U = A. The Nielsen number N(f) is the number
of AeF/~ such that i(A) ΦQ. If A is a singleton {x}, then i{x} is
the usual index of an isolated fixed point of / and consequently if /
is differentiate and 1 — dfx is nonsingular, then i{x) = ± 1 as
det (1 — dfx) is positive or negative.

Let e1 = (1, 0, , 0), e2 = (0, 1, , 0), etc., denote the standard
basis for Rn. Set &(*) = π^) and at = [β^eπ^T71, *), where * =
τr(O). Then aL, •••,«» form a basis for πι(Tn

9 *). Since the Hurewitz
homomorphism p: π1(Tn, ^)->H1(Tn) is an isomorphism, we can identify
π(Tn, *) with H^T*) via p and consider a19 •••,«. as a basis for
HX(T% which we shall call the standard basis of iJ^T*). If L: Rn -*
iί% is a linear map, we denote its matrix with respect to the standard
basis by L and define it by L(e*) = Σ/ ^i^^ Throughout this paper
we will consider /2% to be a space of column vectors. Then L satisfies
L(v) = Lv for all v in Rn.

Consider the case where LjkeZ for all j,i. Then for aeZn,
La — beZn. Since L o T α = Tj°L, we see that L induces a map
U: Tn -> Tn. We say that L covers L'. It is a straightforward
verification that the matrix of flΊ(L'): £Γi(ΓΛ) -> ί/KΓ'1) with respect
to the standard basis is equal to L. Since Tn is covered by Rn, Tn

is an Eilenberg-MacLane space, Tn = iΓ(Z%, 1). Hence the homotopy
class of a map /: Tn -> Γ% is determined by the homomorphism
Hάf): H^T") -> -ff^Γ*). We sum up these observations in the follow-
ing lemma.



120 BENJAMIN HALPERN

LEMMA 1. Each map f: Tn -> Tn is homotopic to a map g: Tn —>
Tn which is covered by a linear map g: Rn —• Rn whose matrix is the
same as the matrix of H^f): H^T") -> H1{Tn).

LEMMA 2. If f: Tn -> Tn is covered by a linear map A: Rn --> Rn,
fo-jζ — %o A, and 1 is not a characteristic root of A, then the fixed
points are isolated, they all have the same index, and the number of
them is \L(f)\.

Proof. Let x be a fixed point of /. Using an appropriate restric-
tion of π: Rn —> Tn for a coordinate system about x9 we see that dfx

expressed in these coordinates is A. Since det (1 — A) = Π?=i (1 — λ*),
where λt, , λ» are the characteristic roots of A, we see that
det (1 — A) Φ 0. Hence x is an isolated fixed point. Therefore, i(x) =
± 1 as det (1 — A) is positive or negative, and so i(x) is independent
of x. The Lefschetz fixed point formula asserts that the sum of the
i(x) as x ranges over the fixed points of/ is L(f). Hence the number
of fixed points is |L(/) | .

PROPOSITION 1. Given a map f: Tn -*Tn such that 1 is not a
characteristic root of Hx{f): Tn -> Tn. Then N(f) = | L(f) j .

Proof. By Lemma 1 and the homotopy invariance of N(f), we
see that we may assume that / is covered by a linear map A: Rn —>
Rn and that 1 is not a characteristic root of A. From Lemma 2 we
know that the set F of fixed points of / satisfies # F = | L(f) |, and
i(x) Φ 0 for each x e F. To prove the present proposition it is suffi-
cient to show that if x, y e F9 and x Φ y, then x is not Nielsen equiv-
alent to y. For then, each {x} with x e F will be a distinct Nielsen
equivalence class and their number, # J F — |L(/) | , will be equal to
JV(/) by the definition of N(f).

Assume x,yeF, x Φ y, and x — y. Then there is a path 7 in
Tn from x to y such that 7 is end points fixed homotopic to /°7.
Let y: 1-^ Rn be a lift of 7, πoy — 7, going from 7(0) = x to 7(1) — 2/.
Then A07 covers /°7, since π° A = foπ. Set α = 2 — -4(7(0)) = 2 —
A(τ). Since π(A(β)) = f(π{%)) = /(«) = a? and π(2) = » we deduce that
α e Z . Then π<>Ta = π and so Γ α o4oγ is also a lift of /°7,
τro Γ α oio7 = 7Γ0A07 = /o7Γ©7 = /°7. Also note that Γ/io7(0) =

-4(7(0)) 4- α = 2 = 7(0). Since 7 is end point fixed homotopic to /°7,
we have ΓβoAo?(l)=7(l). Therefore 7(1)-7(0) = TaAΎ(Ϊ)- TaAy(0) =
(A7(l) + α) - (A7(0) + α) = -4(7(1) - 7(0)). From x Φ y and ίry(0) = cc
and τr(7)(l) = y, we conclude that 7(0) Φ 7(1). Hence 7(1) — 7(0) is
an eigenvector of A with eigenvalue 1, a contradiction.
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2* Algebraic lemmas*

LEMMA 3. Given v = (vlt , vn) e Zn, n ^ 1, such that g.c.d. (vίf

•••> v») == 1> where g.c.d. stands for greatest common divisor. Then
there exist v2, v3, "-, vn eZn such that v, v2, , t /orm a basis for Zn.

Proof. We use induction on n. For n = 1 we must show that
M is a basis for Z1, i.e., that v = ± 1 . But this follows from the
fact that g.c.d. (v) = 1.

Now suppose % > 1 and that the lemma holds for n — 1. If v1 =
#2 = . . . = vft__1 = o, then vΛ = ± 1 and the lemma obviously holds. So
suppose that not all vlf v2, , vu-t are 0. Let d=g.c.d.(vlf , iv^).
Then g.c.d. (d, v j = 1 and so we may find a, βeZ such that avn +
/5d = 1. Apply the induction hypotheses to the vector w = (vjd, ,
vn_Jd)eZn~1 and obtain vectors w2, wn 6 Zn~x such that w,
• , wn~ι form a basis for Zn~ι. Thus the matrix A with rows
w, w2, •••, wn~ι is unimodular, and so detA = ± l . Let B be the
matrix with rows dw, w2, wz, ••, wn~\ Then det B = ώ(det A) and
the first row of B is dw = (vlf v2, , v^-J. Set wi = (w}, , w»_i)
for 2 < i <* n — 1. Form the matrix C indicated below.

where i = —det A. Then expanding det C on the last column we find
det C = avn + βd = 1. Thus the last w — 1 rows satisfy the lemma.

LEMMA 4. // v\ v2, , vr e Zn, n^l, then there is a unimodular
matrix A with rows A1, , An such that sp {A1, , Aq} = sp {v\ , vr),
where spF = the linear span in Rn for VczRn, and q = dimspfv1,

Proof. We may suppose v1, , vr are linearly independent in Rn.
We will use induction on r. For r = 1, Lemma 3 with v = d"1^1

where v1 = (v}, , vi) and cί = g.c.d. {v\, , vl) gives the desired
conclusion.

Suppose now that r ^ 2 and that Lemma 4 holds for r — 1.
Apply this supposition to v1, , vr~ι and obtain a unimodular matrix
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B such that its rows B\ ---,Bn satisfy sp{B\ , Br~1} = spft;1, ,
vr~1}. Note that spfB1, , JS""1, vr} = spty1, , v""1, ^r}.

By considerring the linear transformation from Rn to JR* whose
matrix is B it is easily seen that it is sufficient to prove the lemma
in the special case where Bί = e\ Now let vr = (a19 , an)f and set

0, = vr - ,._!, 0, , 0) .

1, w}. Since ^ r is independent
•,«» can vanish. Set c£ =

Then sp{B\ , JB1""1, vr) = sp{J3\ ,
of B\ , Jδ1"""1, not all of <xr, α r + 1,
g.c.d. {αr, α r + 1, , α j , and % = d~ιw. Then % e {0} x Zn~r+1 and the
greatest common divisor of its coordinates is 1. Hence by Lemma 3
there is an (n — r + 1) x (n — r + 1) unimodular matrix C such that
the first row is ar/d, , ccjd. Set

A =
0

0

Then A is unimodular, and its first r rows are I?1,
have the same span in Rn as does v\ •• ,/yr.

•, Brl, u which

Suppose /: Tn —> Tn, n^l, is a map and A is the matrix of
Hx{f): H,{Tn) -> H,{Tn). It is shown in [1] that L(f) = det (1 - Af) =
det (1 — A), where A* = the transpose of A = the matrix of H\f):
H\Tn)-> H\Tn). Let λ u --^λ* be the characteristic roots of A.
Then L(/) = Π?=i (1 — λt) Since λΓ, •• ,λ? are the characteristic
roots of Aw we have proved the following formula.

(*)

L E M M A 5. Let Xlf •• ,λ Λ be complex numbers, none of them 1,

such that the set {Π*=i 11 —

/or αϊZ i = 1, ••-,%.
m = 1, 2, •} is bounded, then | λ< | ^

Proof. Suppose not. Divide {1,
L by setting / = {i \ \ λ< | > 1}, J = {i

into four sets J, J, iί, and
< 1}, K = {i I λ< is a root

of unity}, and L = {i \ \ Xt

C7c{l, . . . , Λ } , set ί/m =
= 1 and λ? Φ 1 for all <? ̂  1}. For any

Lieu 11 — λΓ I, with the convention that if
C7= 0 , then Um = 1 for all m. Formula (*) gives | L(f™)
Since I Φ 0 we clearly have

( 1 ) I . >~

Also

= ImJmKmL
mJmKmLm.
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( 2 ) Jm > 1 .

For each ί e K, let qt :> 1 be such that λ?* = 1 and XT Φ 1 for
1 <: m < qt. If Kφ 0 , set q = ϊ[ieκqt. If K = 0 , set q = 1. In
either case, for p ^ 0,

( 3 ) ίΓw + ι = I ζ > 0 .

Here we have used the hypothesis that \t Φ 1 for all i.
Set N = #L. From the definition of L we see that 1 g {λf | i e L,

r — 1, , ΛΓ}, and hence we can find an ε > 0 such that 11 — λf | > 2ε
for ieL and 1 <; r <i N.

Claim. For each i e L , and each positive integer α, at most one
member of the sequence λfm+1, where a(N + 1) < m ^ (α + 1)(JV + 1),
satisfies

11 - λΓ+11 ^ ε .

Proof. Suppose not. Then there is an ie L, m and r such that
l^r ^N, and 11 - λΓ+11 ^ ε, and 11 - λfm+r)+11 ^ ε. It follows
that

2ε ^ I λt ( w + r ) f l - λΓ+11 = I λfw+11 I λ?r - 11

= I XV ~ 11 > 2ε ,

a contradiction. This proves the claim.
Since the number of m's which satisfy a(N+ϊ) <m<Z(a + l)(N+l)

is N + 1 and N — #L, for each α there is an m such that a(N + 1) <
m ^ (a + l)(iV + 1), and 11 - λ?m+11 > ε for all i 6 L. Hence Lm<7+1 ^ ε*
for an infinite number of m's. Note that this also holds when iSΓ = 0.
Combining this with (1), (2), and (3) we see that | L(fm) \ is unbounded,
a contradiction. Hence | λ< | S 1 for all i.

LEMMA 6. Given a map f: Tn —> Tn, n^l, such that 1 is not a
characteristic root of Hγ(f): Hλ{Tn) -> H^T*), and L(fm), m = 1, 2, ,
are bounded. Then each nonzero characteristic root of H^f) is a
root of unity.

Proof. Let Xίf * ,λ n be the characteristic roots of H^f). By
Lemma 5 we know that \Xt\ ^ 1 for all i.

Next we will show that for each ΐ, | λ* | = 0 or 1. Suppose not.
Let U = {% I λ, Φ 0}, and q = #17. Let

= Π (λ - λt) = λ + αΛ11"1 + + αΛ
i = l

be the characteristic polynomial of H^f). Then αg — ΐlίeu(—\) Φ 0.
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Since aq is an integer, we have

because | λέ | < 1 for all i, and 0 < | λ£ | < 1 for some i. This contra-
diction shows that for each i, | λ« | = 0 or 1.

Note that am = 0 for m > q, and so

P(λ) = λw-«(V + αΛ""1 + + aq) = λM~«Q(λ) .

All the roots of Q(X) have unit modulus. It is known, [4] page 122,
that if all the roots of a monic polynomial with integer coefficients
have unit modulus, then they all are roots of unity. This completes
the proof.

4. Geometric lemmas*

LEMMA 7. Suppose the finite group G acts smoothly on a com-
pact manifold M, and that P = {x e M | gx = x for some g e G, g Φ 1}
is finite. Then there exists a Morse function <ρ:M-*R such that
φ o g = φ for all g eG. Furthermore, each xeP is a critical point
of φ.

Proof. Following Milnor [5], we will say that a smooth map
f:M->R is "good" on a set SdM if / has no degenerate critical
points on S.

We begin by obtaining a first approximation, a smooth map
Ψ: M-+ R, which is invariant (i.e., Ψ°g = Ψ for all g e G) and is good
on a neighborhood V of P. Then we perturb Ψ equivariently to the
desired Morse function φ.

It is easy to define a smooth map h: ikf —> R such that each x e P
is a nondegenerate critical point of index zero, i.e., in a local coordi-
nate system about x the first partial derivatives vanish and the matrix
of second partial derivatives is positive definite at x. These same
conditions also hold for each hog, geG, and consequently W — ̂ gzGh°g
is a first approximation as desired. Clearly, the set V where Ψ is
good, is open, contains P, and satisfies g(V) — V for all geG.

Note that gx Φ x for all xeM — V and geG, g Φ 1. Now a
rather straightforward equivarient version of the argument used in
Milnor [5], Theorem 2.7, to prove the existence of Morse functions
serves to show that Ψ can be perturbed to an equivarient Morse
function φ. A sketch of this equivarient version follows.

We may find coordinate neighborhoods Ulf , Ur such that

M-Vcz(jUif PndfUP,) = 0 , and Ui
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for 1 ^ % ^ r and g e G, g Φ 1. Then '̂(C/J Π g{U%) = 0 for 1 ^ i ^ r
and #, #' eG, g Φ g'. We can also find compact sets C* c £7* such that
Ct, , Cr cover ikf — V. We may alter Ψ in stages so that at the
ΐth stage, the new Ψ is still equivarient and is good on

U
i=l

At the ith step we simply apply the procedure used in the proof of
Theorem 2.7 of [5] to £7, and then alter Ψ on g(Ut), for geG, g Φ 1,
so as to preserve the property Ψ©g = g for all geG.

LEMMA 8. Suppose the finite group G acts smoothly on a com-
pact connected m-dίmensional manifold M, m ^ 2, and that P =
{xeM\gx = x for some geG, g Φ 1} is finite. Given a finite set
SczM — P and a point xoeM such that gxQ = x0 for all g e G. Then
there exists a smooth embedding Ψ: Dm —»(M — P) U {#0} such that
Ψ(0) = α̂o, SaΨ(intDm), and g(Ψ(Dm)) = ¥(Dm) for all geG. Further-
more, for each geG, Ψ~ιogoψ\ Dm —>Dm is the restriction to Dm of
an orthogonal linear map.

Proof. We will use induction on *S. First suppose S = 0 . It
is an easy matter to embed M into iίΛ for some n such that for each
geG the map x->gx, xeM, is the restriction to M of an orthogonal
map Lg:R

n—>Rn. Just start with a smooth embedding h: M-+Rk, for
some k. Set £•, = Rk for each gr e G, and define β: Λf-> ΐ[geG Eg = i?fct<?

by e(a?) = Π̂ eG ̂ (fl̂ )> f° r aU ^ β ikί. Then the maps e{x) -* β(βrα?), α e AT
are restrictions of maps Lg: Rk*G -> iίfe#ί? which simply permute the
coordinates of Rk*G.

Set n = &*G, and identify M with β(Λf) via e. Let Tiki,, be the
tangent space of M at #, considered as a subspace of Rn. Let T =
x0 + ΓAfβ0 be the geometric tangent space through the point x0. Let
N:Rn->T be the orthogonal projection onto T. Then Lg(T)aT for
all #eG, and so La<>N = NoLff for all #eG. The restriction of N
to a neighborhood of x0 in Af is a diffeomorphism onto a neighbor-
hood W of #0 in Γ. The desired Ψ is now easily constructed from
the restriction of (N | W)~γ to a ball about &0.

Now assume that Ψ: Dm -> ilί satisfies Lemma 8 as stated. We
will show that for any xeM— (PUS), f can be altered so as to
satisfy Lemma 8 with S replaced by S U {x}. We will use a connected-
ness argument. Since dim M ^ 2 and P U S is finite, the space
ikf- PU S is connected. Let V = {xeM- P[j S\ Lemma 8 holds
with S replaced by S U {x}}.

The set V is clearly open in Λf — (P(jS). We will show that
{M - (P U S)) - F is also open. Let xe(M- (PUS)) - V. lίgxeS



126 BENJAMIN HALPERN

for some geG, then Ψ already satisfies S\J {x} c?F(intZ)m). Hence
gxί S for all 0e G. Since gx Φ x for all geG, # =£ 1, we may find
a coordinate neighborhood U oί x which is diffeomorphic to an open
m-ball and such that g(U) c M - (P U S), and g(U)f]U=^ 0 for all
# e G, 0 9fc l . Then g(U) Π A(Ϊ7) = 0 ίor g, keG, g Φ h. We claim
that ί / c ( M - ( P u S ) ) - 7 . Suppose not. Then we can find a
y e U f]V. Let &: ikf —> Λf be a diffeomorphism which is fixed outside
of U and &(#) = as. Define k: Λf —> ilf by

P p U

gkg~\v) if peg(U) .

Then fe is a well defined diffeomorphism, and Lemma 8 is satisfied
with ?F replaced by fc © Ψ and S replaced by S U {#}. In fact, for each
geG, kog = #ofc and so (fcoψ)~ιogoφoψ) — ψ~ιogoψ. This proves
the claim, and hence (M — (PU S)) — F is open.

Since F ^ 0 , we have F = Λf — (P U S), and the induction step
is complete.

5* Proofs of the theorems*

Proof of Theorem 4. First recall that a flow on M is a smooth
map F: M x R-> M such that with the notation Ft(x) — F(x, t) we
have FsoFt = F s + ί for all s, £ e R, and Fo = 1^. An orbit of F is a
function of the form FX:R-*M where £ 6 Λf and F*(t) = Ĵ (a?, t) for
all ί e /?. An orbit Fx is periodic if Fx(s) = î ^O) for some s Φ 0.
Thus the constant orbits are considered to be periodic.

The idea of the proof is to obtain a flow Ht:M^M such that
the orbits Hx for xe P are constants and these are the only periodic
orbits, and Ht of = /o £Γt. Then g = H^f will satisfy the conclusions
of the theorem. The desired flow Ht is obtained in several steps.

Since fN — 1, we have a smooth action of Z\nZ on M. Let
φ:M->R be the Morse function given by Lemma 7. It is easy to
obtain an equivarient Riemannian metric on M. Just average over
Z/nZ any Riemannian metric. Then the gradient of φ with respect
to this equivarient Riemannian metric is an equivarient vector field
v. The vector field v determines a flow F on M which satisfies
Ft(f(x)) = f(Ft(x)) for all (x, t)eM x R. The flow also satisfies
φ(Ft(x)) > φ(x) whenever x is not a critical point of φ and t > 0.
Hence the only periodic orbits of F are the constant orbits at critical
points of φ.

Let S = {xeM\x is a critical point of φ) - P. Let Ψ: Dm -> M
be given by Lemma 8. Pick r e (0,1) such that SαΨ(DT), where
D™ = {xeRm \\\x\\ ?ί r}. Let b: R -> R be a smooth map satisfying
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b(t) = O_for t ^ r, b(t) > 0 for t > r, and b(t) = 1 for t ^ (1 + r)/2.
Define b:M->R by

w x ί X if X
(6(|| ίΓ-1^) II) if xe¥(Dm) .

It is clear that δ is well defined and smooth. Define a new vector
field w by w(#) = b(x)v(x). Then w is equivarient under / and deter-
mines an equivarient flow Gt. The orbits of G, which are just the
integral curves of w, are reparameterizations of portions of orbits of
F. The orbits Gx for x e W(D?) U P are constant. All the other orbits
are reparameterizations of portions of nonperiodic orbits of F by
reparameterization functions which are strictly monotone increasing
functions. Hence the orbits Gx for x e Ψ(D?) U P are the only periodic
orbits. Let θ: R —• R be a smooth map satisfying θ(t) — r + t for
t ^ 1/3 (1 - r), θ\t) > 0 for all t, and θ(t) = t for ί ^ r + 2/3 (1 - r).
We will use later the obvious fact that θ~ι: R—>R exists and is smooth.
Define h: M - {x0} -> AT - ?Γ(JDΓ) by

f x if x

M*)= M E M if ,
I ||α?||

where we have identified ^(Z)w) with Dm via Ψ. Define i ϊ ,^) by

h-\Gt(h{x))) for x Φ x0

xQ f o r x — x0 .

We wish to show that Ht(x) is a smooth flow by showing that
Ht(x) is determined by a smooth vector field. Since HsoHt — Hs+t,
and Ho = lM, it is sufficient to show that η{x) = d/dί -#*(#) at ί = 0
is a smooth vector field. It is clear that τ](x) is well defined for all
xeM and rj ~ rj\M — {xQ} is smooth. Since η(xQ) — 0, it is sufficient
to show that τj(x) and all its derivatives approach 0 as x —> a?0. We
calculate for x Φ x0

η(x) = ~^(Ht(x)) | ί = 0 = ah- |

= dfc-1 | λ ( x ) w(h(x)) .

Since w and all its derivatives vanish on Z)r

m, Taylor expansions show
that for each derivative a(x) of a component of w{x) and each n ^ 1
there is a constant c such that

( 5) I a(x) I ̂  c I || α? || - r |w for x e Ψ(D™) .



128 BENJAMIN HALPERN

The form of h(x) for xeΨ(Dm) - {x0} and | |α?| | ^ (1 — r)/3, is

and hence if u(x) is a derivative of a component of h of order •«.,
then there is a constant e such that

(6) \n(x)\^ β | | * | | — x for 0 < ||a; \\ £ λ^l-.
ό

The map h~ι \ (Ψ(Dm)-Ψ(D?)) has a smooth extention /r1: φ{Dm) -
{£0}-*φ(Z>w) given by hr^y) = θ'\\\y\\)yl\\y\\. Consequently dh~ι\y

and all its derivatives are bounded. Using this and (5) and (6) we
see that η(x) = dhr1 \h{x) w(h(x)) and all its derivatives approach 0 as
x -> xQ. Hence η(x) is smooth and therefore so is Ht(x).

It is clear from the definition of Ht(x) and the properties of Gt(x)
that the only periodic orbits of H are the constant orbits Hx for
x e P. It is also clear from the fact that x->Ψ~\f{Ψ(x))) is the restric-
tion of a orthogonal linear map to Dm, that foh = h<>f and hence
f°Ht = Ht°f for all t. The map (x, t) -> Ht(f(x)) is a homotopy from
H0°f = / to the smooth map # = Hλof. It is easy to see that the
set of periodic points of H.of is P and that H1of\P = f\P. This
completes the proof.

LEMMA 9. Suppose there is given a map g: Tk—> Tk, k ̂  2, which
is covered by a linear map A: Rk —> i?fc, and an integer N ^ 2, swcfc
ίfeαί ^ = lΓfc, α^cί λm ^ 1 /or λ a characteristic root of A and 1 <;
m < N. Then there exists a smooth map g homotopic to g such that
P = {x G Tk I srm(α?) = a? / o r some m, 1 ^ m < iSΓ} = ίfee set of all periodic

points of g, g\P= g\P, and for m ^ l %{x e Tk \ gm(x) = x) ^ αm(flr).

Proof. We wish to apply Theorem 4. If follows from Lemma
2 that P = {x 6 Tfc I 0r(z) = x for some r, 1 ̂  r < iSΓ} is finite. Since
N ^ 2, λj =£ 1 for all characteristic roots λf and hence

L(g) = Π (1 - \) Φ 0
t = l

by formula (*). Hence, we can find an xoe Tk such that g(x0) = xQ.
Therefore Theorem 4 gives a smooth map g homotopic to g such that
P = the set of periodic points of g, and g \ P = g \ P. It follows from
Lemma 2 applied to g, and formula (*), that for 1 ̂  m < N,

%{x 6 T* I g»(x) = x} = %{x e Tk I flT(a?) = «}

Then
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= Σ # { ^ e Tk I x is a periodic point of # of period m}

k

Πd
m\N

= O>N(9)

T o c o m p l e t e t h e p r o o f i t i s s u f f i c i e n t t o s h o w t h a t i f m ^ 1, q^l,
a n d m = q m o d N, t h e n

{x 6 Γfc I gm(x) = x] = {x e Γ & I £*(&) = #} .

We may assume m < q and so g = m + piV for some p ^ 1. As-
sume gw(α?) = ». Then x e P and so gN(x) = flf^(ίc) = cc. Consequently
^(a?) = gm+pN(x) = ^m(x) = a?. The reverse implication, "(79(x) = x implies
gm(x) = x?> follows similarly. This completes the proof.

REMARK. In our application of Lemma 9 in the proof of Theorem
3, Lemma 9 needs to be augmented by the following observation.
Lemma 9 also holds when k = 1 and N ^ 1. We verify this as follows.
It is easy to deduce that A = l κ i or A — — lΛi. In the first case, A —
lΛi, we can homotopy g = lΓi to a rotation g of the circle S1 = T 1 by
an angle which has an irrational ratio to 2ττ. Such a g has no periodic
points and Lemma 9 is verified in this case.

In the second case, A = — lΛi, g is a reflection and there are
exactly two fixed points x0 and χίm It is easy to homotopy g to a
map £ which leaves #0 and α̂  fixed, and moves all other points away
from x0 and closer to xx. Then xQ and xι will be the only periodic
points of g. It is easy to calculate that am(g) = 2 for all m ^ 1, and
so Lemma 9 holds in this case also.

Proof of Theorem 3. We prove Theorem 3 by induction on n.
By convention R° and T° are singletons. Hence the case n = 0 holds
trivially. Now assume that n > 0 and the theorem holds for all
m <n. Let /: Tn -> Tn be a map.

By Lemma 1 we may assume that / is covered by a linear map
F: Rn —> Rn. By Lemma 5 we have
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L(fm) = Π (1 - K)
3 = 1

where Xίf , λΛ are the characteristic roots of F.
First consider the case where λf Φ 1 for all m ^ 1 and 1 <̂  i <̂  n.

Then the theorem follows from Lemmas 2 and 5.
Consider now the remaining case where λf = 1 for some m ^ 1

and 1 ^ i <. n. Let JV be the smallest such m. Let Ft denote the
transpose of F. Since {Fι)N has integer entries, we may find & w eZn

such that w Φ 0 and {Fι)Nw = w. Set

TF - sp^KFTw I 0 ^ m < ΛΓ} .

Then dim ΪΓ ^ 1, F'% 6 W for all % e FT, and (F*)^ = « for all a; 6 W.
Set fc = dim W. By Lemma 4, we can find a basis w1, w2, , wn for
Zw such that w\ w\ -- ,wk form a basis for W. Let iί: Rn -^ Λw be
the linear transformation whose matrix satisfies Ktei — w\ Then,
both K and ίΓ"1 have integer entries. Thus, both K and K~ι induce
maps K': Tn-*Tn, and K~ιf = K'~ι: Tn-+Tn. We "change coordinates"
by noting that it is sufficient to prove the theorem for

g = K'ofoR'-1

in place of /. The map g is covered by

M= KoFoK~ι:Rn >Rn .

From Ktei = wί and F'% e T7 for ueW, it follows that the matrix
M of M has the form

where A, B, C, and 0 are k x k, in — k) x (n — ft), (n — k) x k and
n x {n — k) matrices, and all entries of 0 are zero. It follows from
FtNx = a? for all x e W, that AN = 1. Since Jίϊ = K-F-R-1 is similar
to F, λx,

 β ,λ% are the characteristic roots of M. Hence, we may
renumber the λ/s so that X19 , Xk and Xk+1, , λΛ are the charac-
teristic roots of A and JB respectively. Let

B: Rn~k • Rn'k

be the linear map whose matrix is B. Then B induces a map
b: Tn~k —»Γn"fc. Since ft = dim W*zl, we may apply our induction
hypothesis to b and find a smooth map 6 homotopic to b such that

# {x e T--fc I 6 w(x) = x} ^ αm(6) - Π α i w .
i k l
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Let A: Rk —> Rk be the linear map whose matrix is A. Let a: Tk —> Tk

be the map induced by A. Since AN = 1, we have aN = lτk. Because
we choose N so that λf Φ 1 for I <^ m < N and all i, and N = 1
implies k = 1, we see that Lemma 9 or the remark which follows it
applies. Hence we can find a smooth map a homotopic to a such that
P = {x e Tk I αm(x) = x for some m, 1 <; m < JV} = the set of all periodic
points of α, a | P = α | P, and for m ^ 1,

t { « e f I άm(x) = x} ^ am(a) = Π α ί m .

If we write Rn = Rk x Rn~k, then Λf has the form

M(x, y) = (Ace, Cx + j§2/) .

Consequently, if we write Tn — Tk x Γ ^ , then ^(^, v) = (a(u), r(u, v))
where r: Tk x Tn~k —• Tfc is the map induced by the map R: Rk x Rn~k-+
Rk which is given by R(x, y) = Cx + B?/. The homotopy from α to
α gives rise to a homotopy from g to g where

</(M, V) = (a(u), r(u, v)) .

The periodic points of g must have the form

(u, v) e Tk x T%~fc where w e P .

Partition P into orbits under α. Let

X = [ut = α*(%0) I ΐ = 0, 1, , m — 1}

be one such orbit consising of m distinct point, where 1 <£ m < JV

and αw(2t0) = u0. Consider the maps

/y — fi I ni \ / ΠΠn — k, ni \y HΠτι~k . ,-» \ / fp'n. — k

which are covered by the maps

where um = dm(u0) = %0 and x0 is chosen so that π(xϋ) = 0̂> and xέ =
A*a;0 for i > 1, (recall that α | P = a | P ) . Making the obvious identi-
fications of ^ x T%~k with Γ^"^, and xt x JBM~& with iί%"fc we see that

= Cx, + By

for all yeRn~k. Define

Then Ma — Mi and Λf<0 has B as its matrix. Because B has integer
entries and tCxi does not depend on y, the homotopy Jlf« induces a
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homotopy gίt from git = 3̂  to the map induced by Mί0, which is b.
Since 6 is homotopic to 6, each gi is homotopic to b. Since both gt

and b are smooth, we may find a smooth homotopy h^ Tn~k x I —»
T%~fc such that for some ε > 0, fe,(v, ί) = δ(v) for all t < ε, and /^O, ί) =
fl^i(v) = r(u,, v) for all ί > 1 — ε.

Pick coordinate charts (Ui9 φt) about the points ut such that {wj —
Ui ίΊ P, <Pi(Ui) = J?i(0) c iίfc, and ?><(%,) = 0. Using the natural group
structure on Tn~* we define

rt: Tk x Tn~k > Tn~k for t e [0, 1]

lr(u, v) + ^(v, 11| <pt(u) || + 1 - ί) - r{uu v) if u e U^
\ ™

r(u, v) ifttίU
ι = l

Using rt we obtain a homotopy

), rt(u, v))

from gQ = g to gl9 where g^u, v) = (ά(w), rL(w, v)). Note that rγ(uu v) =
b(v) for each i — 0, 1, , m — 1. Proceed similarly with the other
orbits in P and call the final map g.

The map g will be smooth and homotopic g and hence homotopic
to g. For all (u, v) e Tk x Γw-fc, gr(%, v) e (a(u), r(u, v)) for some map
ψ. Tu χ Tn-k _, Tn-k w]bicli satisfies r{u, v) = 6(v) for all u e P .

Now suppose ^ ( u , v) — (u, v). Then am(u) = u and so we P.
Hence α*(w) e P for all ί and so by an easy induction g*(u, v) =

^ Applying this with i — m we see that 6W(V) = v. Hence

^#{ueTk\ am(u) = 6̂} x # {v e Tw~fc | δw(v) = }̂

^ Π Λim Π ^im = &m
i = l i-=A + l

This completes the proof.

Proof of Theorem 1. The "if" direction follows from the Nielsen
fixed point theorem and Theorem 2.

Next we prove the converse direction. Assume that L(fm), m =
1, 2, •••, are bounded. We may assume n*zl. Let g be the map
given by Theorem 3. If 1 is a characteristic root of flΊ(/): H^T™) —>
Hx{Tn), then # has no periodic points because αm(/) = 0 for all m ^ 1.
So assume that 1 is not a characteristic root of H^f). Now from
Lemma 6 we have | λ, | <; 1 for all i, where X19 , λΛ are the char-
acteristic roots of i?i(/). Consequently, there exists a B such that
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aim <: B for all i = 1, , n, and m ^ 1. Thus am(f) ^ J5% for all
m ^ 1.

We will show that the number of periodic points of g is bounded
by Bn. Suppose on the contrary that S = {&, 11 <; i ^ J3Λ + 1} is a
set of Bn + 1 distinct periodic points such that x% has period m<. Set

m = Π ^ i

Then Sa {x e Tn \ gm(x) = a?}. But, by Theorem 3,

# { x e Γ | (Γ(x) = x) £ am(f) ^ Bn ,

a contradiction. This completes the proof.
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