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PERIODIC POINTS ON TORI

BENJAMIN HALPERN

We prove the following theorem.

THEOREM 1. Given a continuous map f: T*— T of the
n~dimensional torus into itself. Each map homotopic to f has
an infinite number of periodic points if and only if the Lefs-
chetz numbers of the iterates L(f™), m=1,2,.--, are un-
bounded.

The “if” direction of Theorem 1 follows from a theorem of Brooks,
Brown, Pak, and Taylor [1]. Let N(f) denote the Nielsen number of
the map f. Recall that each map homotopic to f must have at least
N(f) distinct fixed points.

THEOREM 2. (Brook, Brown, Pak, and Taylor [1]). If f: T"—T"
18 a continuous map, then N(f) = | L(f)].

The converse direction of Theorem 1 is deduced from the more
precise result, Theorem 3.

DEFINITION 1. Given a map f: T*—>T". Let \, ---, A, be the
characteristic values of H.(f): H(T") — H(T"). If \; is not a root
of unity, then set a;, = |1 — AF|. If A; is a root of unity, then let
N besuch that Ay =1and »* =1 for 1 < m < N (i.e., )\, is a primi-
tive Nth root of unity), and set

11—\ if m = 0mod N
Cim = 13011 — A if m = 0mod N .
qIN

Set a’m(f) = :L:l Aime

THEOREM 8. For each map f: T™ — T™ there exists a smooth map
g homotopic to f such that for m =1,

t{loeT" | g™(x) = o} = a.(f) .

Since L(f™) =TI, A —\"), we see that #{x € T"| g™(x) = x} = N(f)
for all m such that A = 1 for all <. From Theorems 2 and 8, one
may also deduce similarities between the asymptotic behaviors of
P,=4%{xecT"| g™x) =2} and @, = max {N(f") |1 = r < m}.

In the process of proving Theorem 3 we establish a general result,
Theorem 4, which concerns periodic points for maps homotopic to
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periodic maps.

THEOREM 4. Given a smooth compact connected manifold M of
dimension m = 2, and a smooth map f: M — M such that ¥ = 1,, for
some N =2, and f(x,) = x, for some x,€ M. Also suppose P =
{xe M| fr(x) = x for some r, 1 < r < N} is finite. Then there exists
a smooth map g: M — M which 1s homotopic to f and such that P =
the set of all periodic points of g, and g|P = f|P.

When Theorem 4 is specialized to tori, it gives a map g homotopic
to the given periodic map f: T* — T", whose numbers of periodic
points of various periods are exactly the lower bounds implied by
Theorem 2. Theorem 3 for an arbitrary map f: T" — T" is proved
by homotoping f to a map g which with a ‘“change of coordinates”
takes the form g: T"=T*X T**-T:tx T *=T", g(x, ¥)=(a(x), 7, ¥))
where a: T* — T* is periodic. We homotopy a to an @ according to
Theorem 4 and then, using an induction hypothesis we homotopy 7
on the sets {x} x T"* for x a periodic point of @. This gives a map
whose periodic points are the same as a map of the form @ x b: T* X
T* % Tt x T** where @: T* — T* and b: T** — T* This is suf-
ficient to prove Theorem 3 by induction, but it gives a map with
possibly more periodic points than the lower bound set in Theorem 2.
In special cases the lower bound in Theorem 2 can be achieved by
refinements in the technique outlined above. So we make the follow-
ing conjecture.

Conjecture. Given a map f: T"—T". Then there exists a smooth
map ¢ homotopic to f such that #{xre T"|x is a periodic point of ¢
of least period m} = », where », = | L(f)| and for ¢ = 2

(0 if L(f9) =0
r, = %|L(f‘1)] X, LU0,

This work was motivated by a question of Shub and Sullivan
which appears on page 140 of Hirsch [3]. Shub and Sullivan ask
whether every map homotopic to g: 7% — T* must have an infinite
number of periodic points where g is the map covered by the linear
map §: R* — R® whose matrix is (% }) Since the Lefschetz numbers
L(g™) are easily seen to be unbounded, a positive answer follows from
the theorem of Brooks, Brown, Pak, and Taylor, Theorem 2. An
elementary, transparent proof of a special case of Theorem 2 is
presented in Proposition 1.

2. Preliminaries. Denote the integers by Z, the rationals by
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Q, and the reals by R. For each ac R" let T,: R* — R" denote the
translation by a, T,b = b + a forbe R*. Set 9 ={T,|acZ"}. Let
7: R* - T" denote the usual covering map which identifies T with
R"/.~. Recall that an % X n matrix A is unimodular provided it
has integer entries and det A = +1, or equivalently, it has integer
entries and an inverse with integer entries. Clearly, the rows of a
matrix A with integer entries form a basis for the module Z" over
Z if and only if A is unimodular.

We will use the form of Nielsen fixed point theorem which states
that if f: X— X is a continuous map of a compact manifold X into
itself, then each map ¢ homotopic to f must have at least N(f) fixed
points, where N(f) is the Nielsen number of f. Furthermore, N(g) =
N(f), (Brown [2]). The Nielsen number N(f) is defined as follows.
First an equivalence relation ~ is defined on the set F of fixed points
of f. Two fixed points z, y € F' are equivalent, x ~ y, provided there
is a path v in X from z to y such that fo7 is end points fixed
homotopic to v. The set of equivalence classes F/~ is known to be
finite and each equivalence class is compact.

Using a fixed point index I, such as defined in [2] we may assign
an index 7(A) to each A< F/~ by setting ¢(4) = I(U) for any open
set U such that FFN U = A. The Nielsen number N(f) is the number
of A€ F/~ such that 7(4) = 0. If A is a singleton {x}, then %{x} is
the usual index of an isolated fixed point of f and consequently if f
is differentiable and 1 — df, is nonsingular, then i{z} = *+1 as
det (1 — df,) is positive or negative.

Let et =(1,0,---,0), ¢&=(0,1, ---, 0), ete., denote the standard
basis for R*. Set B,(t) = n(te*) and a, = [B]]en (T* %), where * =
7(0). Then e, ---, a, form a basis for 7,(T", ). Since the Hurewitz
homomorphism p: 7 ,(T", *)—H,(T") is an isomorphism, we can identify
n(T", =) with H,(T") via p and consider «, ---, @, as a basis for
H,(T™), which we shall call the standard basis of H,(T"). If L:R"—
R" is a linear map, we denote its matrix with respect to the standard
basis by L and define it by L(e’) = 3; L;.¢’. Throughout this paper
we will consider R" to be a space of column vectors. Then L satisfies
L(v) = Lv for all » in R".

Consider the case where L; e Z for all j,7. Then for acZ",
La =beZ". Since LoT,= T,oL, we see that L induces a map
L':T*—T" We say that L covers L’. It is a straightforward
verification that the matrix of H,(L'): H(T") — H,(T™) with respect
to the standard basis is equal to L. Since T" is covered by R", T*
is an Eilenberg-MacLane space, T" = K(Z", 1). Hence the homotopy
class of a map f: T*—T" is determined by the homomorphism
H(f): H(T™) — H,(T"). We sum up these observations in the follow-
ing lemma.
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LEMMA 1. Each map f: T —T* is homotopic to a map g: T™ —
T™ which is covered by a linear map §: R* — R" whose matrixz is the
same as the matric of H,(f): H(T") — H(T").

Lemma 2. If f: T — T™ is covered by a linear map A: R* — R",
fomw =mo A, and 1 is not a characteristic root of A, then the fixed
points are isolated, they all have the same index, and the number of
them is | L(f)]|.

Proof. Let x be a fixed point of f. Using an appropriate restric-
tion of 7: R* — T for a coordinate system about x, we see that df,
expressed in these coordinates is A. Sincedet (1 — A4) = T2, 1 — \),
where A\, ---,\, are the characteristic roots of A, we see that
det 1 — A) = 0. Hence z is an isolated fixed point. Therefore, i(x) =
+1as det I — A) is positive or negative, and so i(x) is independent
of . The Lefschetz fixed point formula asserts that the sum of the
i(x) as « ranges over the fixed points of f is L(f). Hence the number
of fixed points is | L(f)|.

PROPOSITION 1. Given a map f: T™—T" such that 1 is not a
characteristic root of H,(f): T*—T". Then N(f) =|L(f)|.

Proof. By Lemma 1 and the homotopy invariance of N(f), we
see that we may assume that f is covered by a linear map 4: R* —
R" and that 1 is not a characteristic root of A. From Lemma 2 we
know that the set F' of fixed points of f satisfies § F = | L(f)|, and
i(x) # 0 for each x€ F. To prove the present proposition it is suffi-
cient to show that if z, y € F, and x # y, then x is not Nielsen equiv-
alent to y. For then, each {x} with e F will be a distinct Nielsen
equivalence class and their number, ¥ F = | L(f)|, will be equal to
N(f) by the definition of N(f).

Assume z,ye F, 2 #+ vy, and x ~ 9. Then there is a path 7 in
T* from 2 to y such that v is end points fixed homotopic to fo7.
Let #: I — R" be a lift of v, 77 = 7, going from ¥(0) = % to 1) = ¥.
Then A-% covers fov, sincewec A = foxw. Seta =% — AF0) =7 —
A®). Since n(A®X)) = f(z([@)) = f(x) = = and (%) = x we deduce that
acZ* Then woT,=x and so T,oA-7 is also a lift of fo7,
ToT,0Ado¥ =ToAoF = fomroF = fov. Also note that 7,0 A-%(0) =
A(F(0) + a = & = §(0). Since 7 is end point fixed homotopic to fo7,
we have T,cA-¥(1)=%(1). Therefore ¥1)—%(0)=T,A71)— T, A5(0) =
(A7Q) + a) — (A5(0) + a) = A(¥(1) —7(0)). From z +# y and 77(0) = «
and 7(5)(1) = y, we conclude that %(0) = ¥(1). Hence (1) — ¥(0) is
an eigenvector of A with eigenvalue 1, a contradiction.
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2. Algebraic lemmas.

LEMMA 3. Given v = (v,, ++-, v,) € Z™, n = 1, such that g.c.d. (v,,
cee, ) = 1, where g.c.d. stands for greatest common divisor. Then
there exist v, v°, «- -, v* € Z" such that v, v%, -+ -, v™ form a basis for Z".

Proof. We use induction on n. For » = 1 we must show that-
{v} is a basis for Z!, i.e., that v = +1. But this follows from the
fact that g.c.d. (v) = 1.

Now suppose n» > 1 and that the lemma holds forn — 1. If v, =
Vy = +++» =9,_, =0, then v, = +1 and the lemma obviously holds. So
suppose that not all v, v, <+, v,_, are 0. Let d=g.c.d.(v, «+-, v,_,)-
Then g.c.d.(d, v,) =1 and so we may find a, 8€ Z such that av, +
Bd =1. Apply the induction hypotheses to the vector w = (v,/d, - -,
V,_,/d) € Z** and obtain vectors w? .--, w"*€ Z"* such that w, w?
oo, w ! form a basis for Z"'. Thus the matrix A with rows
w, w? -++, w*' is unimodular, and so det A = 1. Let B be the
matrix with rows dw, w?, w° ---, w**. Then det B = d(det A) and
the first row of B is dw = (v, v, -+, V,_). Set w' = (wi, «+--, wi_)
for 2<171=<n — 1. Form the matrix C indicated below.

— —_

(2 e Vna Vn
wf « e . wf‘_l 0
C =
wi™t e e o wiT 0
QY sy et A
5 —a (det A)B ]
where ¢ = —det 4. Then expanding det C on the last column we find

detC = av, + Bd = 1. Thus the last » — 1 rows satisfy the lemma.

LEMMA 4. If o', 2% -+, v €Z", n=1, then there is a unimodular
matrixz A with rows A', - - -, A® such that sp{A", «-+, A%} =sp{v', -+, 0"},
where spV = the linear span in R* for VC R*, and q = dim sp{v',
e, v}

Proof. We may suppose v, -+, v" are linearly independent in R".
We will use induction on ». For r =1, Lemma 8 with v = d !
where o' = (v}, ---,9.) and d = g.e.d. (v}, -+, v.) gives the desired
conclusion.

Suppose now that r =2 and that Lemma 4 holds for » — 1.
Apply this supposition to v*, «-+, v"~* and obtain a unimodular matrix
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B such that its rows B, --., B* satisfy sp{B’, ---, B!} = sp{v}, ---,
v"7'}. Note that sp{B?, ---, B, v"} = sp{v!, ---, v"", v"}.

By considerring the linear transformation from R" to R"™ whose
matrix is B it is easily seen that it is sufficient to prove the lemma
in the special case where B' = ¢'. Now let v" = («,, +--, @,), and set

’I,U:(O, "'90,ar)ar+v "':an) :1;"'_.(“1’ "'yar—vo: "',0)-

Then sp{B, ---, B, v"} = sp{B}, -+, B"™!, w}. Since v is independent
of B, .--,B, not all of «, a,,, -+, a, can vanish. Set d =
g.c.d.{a, @y, -+-, @}, and u = d7'w. Then u € {0} X Z* " and the
greatest common divisor of its coordinates is 1. Hence by Lemma 3
there is an (» — r + 1) X (n — r + 1) unimodular matrix C such that
the first row is a,/d, ---, a,/d. Set

I(r—l)x('r—l) i O

A=
0 lc

Then A is unimodular, and its first » rows are B', ---, B"}, 4 which
have the same span in R" as does o', «--, v".

Suppose f: T*—T", n=1, is a map and A is the matrix of
H/(f): H(T™) — H,(T™). It is shown in [1] that L(f) = det 1 — A% =
det (1 — A), where A* = the transpose of A = the matrix of H'(f):
HY (T") - H(T"). Let A, ---, N, be the characteristic roots of A.
Then L(f) = I[7, (1 — ;). Since Al :--, Ay are the characteristic
roots of A™ we have proved the following formula.

(+) L =T @ =) -

LEMMA 5. Let A\, -+, N\, be complex numbers, none of them 1,
such that the set {II7-, |1 — A |m =1, 2, ---} is bounded, then |\, | =<1
for all 1 =1, -+, n.

Proof. Suppose not. Divide {1, ---, n} into four sets I, J, K, and
L by setting I={¢t||n| > 1}, J={i||n] <1}, K= {i|\; is a root
of unity}, and L ={i||n;] =1 and A\ # 1 for all ¢ =1}. For any
Uc{l, ---,n}, set U, = I1icr |1 — A"|, with the convention that if
U=, then U, =1 for all m. Formula (x) gives | L(f™) | = IJnKnLin-
Since I = @ we clearly have

(1) I,—— .
Also
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(2) J,— 1.

For each 1€ K, let ¢, =1 be such that % =1 and A"+ 1 for
l1<m<q,. If K+ @, set ¢ =1liexq;- If K= @, set ¢q=1. In
either case, for p = 0,

(3) Kw+1=K1>O-

Here we have used the hypothesis that \, = 1 for all 4.

Set N = #L. From the definition of L we see that 1¢ {\!"|i¢e L,
r =1, ---, N}, and hence we can find an ¢ > 0 such that |1 — "] > 2¢
for teL and 1 < r» < N.

Claim. For each ¢ L, and each positive integer a, at most one
member of the sequence A{™*!, where a(N + 1) <m < (a + 1)(N + 1),
satisfies

11—\ <e.

Proof. Suppose not. Then there is an 7€ L, m and r such that
1<7r<N, and |1 —NM""|Ze, and |1 — M4 <e It follows
that

2e g lh!:(m+r)’.—l . )\ng+1| — |7\‘gm+1l [)\’gr _ 1]
= [N"—1|> 2,

a contradiction. This proves the claim.

Since the number of m’s which satisfy a(N+1) <m < (e +1)(N+1)
is N+ 1 and N = L, for each a there is an m such that a(IN + 1) <
m < (@ + 1N + 1), and |1 — M| >e for all i€ L. Hence L,,,., =¢"
for an infinite number of m’s. Note that this also holds when N = 0.
Combining this with (1), (2), and (3) we see that | L(f™)| is unbounded,
a contradiction. Hence |)\;| =1 for all 7.

LEMMA 6. Given a map f: T*—T", n =1, such that 1 is not a
characteristic root of H,(f): H(T™) — H(T™), and L(f™), m=1,2, ---,
are bounded. Then each monzero characteristic root of H,(f) is a
root of unity.

Proof. Let A\, --+, N, be the characteristic roots of H,(f). By
Lemma 5 we know that |\, | <1 for all 4.

Next we will show that for each 7, |A;] =0 or 1. Suppose not.
Let U= {i|N #0}, and ¢ = $U. Let

PO =TI (0= N) = A* + g™ + -+ +a,
i=1

be the characteristic polynomial of H,(f). Then a, = [I;cv (—N\;) # 0.
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Since a, is an integer, we have

l=la,)=111N| <1

because || <1 for all ¢, and 0 < |X;| <1 for some ¢. This contra-
diction shows that for each %, |N;| =0 or 1.
Note that a,, = 0 for m > g, and so

PO = MO 4 g ATt eee +oay) = MTIQM0N) .

All the roots of Q(\) have unit modulus. It is known, [4] page 122,
that if all the roots of a monic polynomial with integer coefficients
have unit modulus, then they all are roots of unity. This completes
the proof.

4. Geometric lemmas.

LEMMA 7. Suppose the finite group G acts smoothly on a com-
pact manifold M, and that P = {xe M| gx = x for some g€ @G, g + 1}
18 finite. Then there exists a Morse function @: M — R such that
@og =@ for all ge€G. Furthermore, each x€ P is a critical point
of ®.

Proof. Following Milnor [5], we will say that a smooth map
f:M— R is “good” on a set SC M if f has no degenerate critical
points on S.

We begin by obtaining a first approximation, a smooth map
¥. M — R, which is invariant (i.e., Tog = ¥ for all g € @) and is good
on a neighborhood V of P. Then we perturb ¥ equivariently to the
desired Morse function o.

It is easy to define a smooth map h: M — R such that each x ¢ P
is a nondegenerate critical point of index zero, i.e., in a local coordi-
nate system about x the first partial derivatives vanish and the matrix
of second partial derivatives is positive definite at x. These same
conditions also hold for each hog, g€ G, and consequently =3),.;hog
is a first approximation as desired. Clearly, the set V where ¥ is
good, is open, contains P, and satisfies g(V) =V for all geG.

Note that gxr #« for all xzeM —V and ge@G, g+ 1. Now a
rather straightforward equivarient version of the argument used in
Milnor [5], Theorem 2.7, to prove the existence of Morse functions
serves to show that ¥ can be perturbed to an equivarient Morse
funection . A sketeh of this equivarient version follows.

We may find coordinate neighborhoods U, ---, U, such that

M—VCL;_)lUi, Pmcl(gUi>=@, and U,ng(U) =2
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forl1<i<randgeG,g#1. Theng(U)Ng(U)=@ forl<iZr
and g,9'€G, g # ¢’ We can also find compact sets C, c U, such that
C, +++,C, cover M — V. We may alter ¥ in stages so that at the
sth stage, the new ¥ is still equivarient and is good on

vu(UUeC).
j=1geG

At the ith step we simply apply the procedure used in the proof of

Theorem 2.7 of [5] to U, and then alter ¥ on ¢(U,), for ge@G, g #1,

so as to preserve the property Zog = g for all geG.

LEMMA 8. Suppose the finite group G acts smoothly on a com-
pact conmected m-dimensional manifold M, m =2, and that P =
{xe M|gx = x for some ge@, g+ 1} is finite. Given a finite set
Sc M — P and a point x,€ M such that gx, = x, for all g G. Then
there exists a smooth embedding ¥:D™ — (M — P)U {x,} such that
T0) = x,, SC¥(int D™), and g@(D™)) = ¥(D™) for all g G. Further-
more, for each g G, Trogo¥: D™ — D™ 1s the restriction to D™ of
an orthogonal linear map.

Proof. We will use induction on *S. First suppose S = @. It
is an easy matter to embed M into R" for some n such that for each
g € G the map ¢z — gx, x € M, is the restriction to M of an orthogonal
map L,: R*— R". Just start with a smooth embedding h: M— R*, for
some k. Set E, = R* for each g € G, and define e: M — [[,.; E, = R**¢
by e(®) = I1,.c h(9x), for all x€ M. Then the maps e(x) — e(gx), x€ M
are restrictions of maps L,: R¥? - R*® which simply permute the
coordinates of R*.

Set » = k*G, and identify M with e(M) via e. Let TM, be the
tangent space of M at x, considered as a subspace of R*. Let T =
z, + TM,, be the geometric tangent space through the point z,. Let
N: R* — T be the orthogonal projection onto 7. Then L, (T)cCT for
all geG, and so L,oN = NoL, for all geG. The restriction of N
to a neighborhood of x, in M is a diffeomorphism onto a neighbor-
hood W of x, in T. The desired ¥ is now easily constructed from
the restriction of (N | W)™ to a ball about x,.

Now assume that ¥: D™ — M satisfies Lemma 8 as stated. We
will show that for any xe M — (PUS), ¥ can be altered so as to
satisfy Lemma 8 with S replaced by S U {#}. We will use a connected-
ness argument. Since dimM =2 and PUS is finite, the space
M — PUS is connected. Let V={geM — PUS| Lemma 8 holds
with S replaced by S U {x}}.

The set V is clearly open in M — (PUS). We will show that
(M — (PUS)) —Visalsoopen. Letze(M — (PUS))—V. IfgreS
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for some geG, then ¥ already satisfies SU {x} c ¥(int D). Hence
gx e S for all geG. Since gr # « for all geG, g #1, we may find
a coordinate neighborhood U of x which is diffeomorphic to an open
m-ball and such that g(U)c M — (PUS), and g(U)NU = @ for all
9ge@G, g=#1. Then g(U)NKU) = @ for g, heG, g # h. We claim
that Uc (M — (PUS)) — V. Suppose not. Then we can find a
yeUNV. Letk: M— M be a diffeomorphism which is fixed outside
of U and k(y) = «. Define k: M — M by

P if pegLeJGg(U)
gkg~'(p)  if peg(U).

Then k is a well defined diffeomorphism, and Lemma 8 is satisfied
with ¥ replaced by ko¥% and S replaced by SU {x}. In fact, for each
9€G,kog=ygok and s0 (ko¥)'ogo(ko¥) =¥ ogo¥. This proves
the claim, and hence (M — (PU S)) — V is open.

Since V #= ¢, we have V = M — (PU S), and the induction step
is complete. ‘

k(p) =

5. Proofs of the theorems.

Proof of Theorem 4. First recall that a flow on M is a smooth
map F: M X R— M such that with the notation F,(x) = F(z, t) we
have F,oF, = F,,, for all s, teR, and F, =1,. An orbit of F' isa
function of the form F*: R — M where x€ M and F*(t) = F(x, t) for
all te R. An orbit F* is periodic if F%(s) = F*(0) for some s = 0.
Thus the constant orbits are considered to be periodic.

The idea of the proof is to obtain a flow H,: M — M such that
the orbits H*® for x € P are constants and these are the only periodic
orbits, and H,of = fo H,. Then g = H,of will satisfy the conclusions
of the theorem. The desired flow H, is obtained in several steps.

Since f¥ =1, we have a smooth action of Z/nZ on M. Let
®: M — R be the Morse function given by Lemma 7. It is easy to
obtain an equivarient Riemannian metric on M. Just average over
Z|nZ any Riemannian metric. Then the gradient of @ with respect
to this equivarient Riemannian metric is an equivarient vector field
v. The vector field v determines a flow F on M which satisfies
F,(f(x) = f(Fy(z)) for all (x,t)e M x R. The flow also satisfies
@(F,(x)) > ®(x) whenever x is not a critical point of @ and ¢ > 0.
Hence the only periodic orbits of F are the constant orbits at critical
points of .

Let S={xeM|x is a critical point of ¢} — P. Let #:D"—> M
be given by Lemma 8. Pick »e(0,1) such that Sc¥(D"), where
Dr={xeR"|||z|| £7}. Let b: R— R be a smooth map satisfying
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bt)=0"for t <, b{#) >0 for t > r, and bt) =1 for t = (1 + 7)/2.
Define b: M — R by

) — { 1 if o€ U(Dh)
b(| T () 1)) if xe?(D™) .

It is clear that b is well defined and smooth. Define a new vector
field w by w(x) = b(x)v(x). Then w is equivarient under f and deter-
mines an equivarient flow G,. The orbits of G, which are just the
integral curves of w, are reparameterizations of portions of orbits of
F. The orbits G for x € ¥(D™) U P are constant. All the other orbits
are reparameterizations of portions of nonperiodic orbits of F by
reparameterization functions which are strictly monotone increasing
funetions. Hence the orbits G for x € ¥(D™) U P are the only periodic
orbits. Let 6: R — R be a smooth map satisfying 6(¢) = » + ¢ for
t=1/3Q0 —7),0(®%) >0for all £, and 6(t) =¢ for t = + 2/3(L — 7).
We will use later the obvious fact that 67': R— R exists and is smooth.
Define h: M — {x,} — M — ¥ (D7) by

h(x) = { OleDe 5 pe w(D™)
] '

where we have identified ¥(D™) with D™ via ¥. Define H,(x) by

(G (h())) for « # x,
x, for z =« .

Hyx) = {

We wish to show that H,(x) is a smooth flow by showing that
H,(x) is determined by a smooth vector field. Since H,-H, = H,.,,
and H, = 1,, it is sufficient to show that 7(x) = d/dt H,(x) at ¢t =0
is a smooth vector field. It is clear that 7(x) is well defined for all
xeM and 7 = 9| M — {x,} is smooth. Since 7(x,) = 0, it is sufficient
to show that 7(x) and all its derivatives approach 0 as z —x,. We
calculate for a2 = x,

4 i
N(x) = W(Ht(x)) limo = A7 |gotnien dt (G(h(@))) =
= dh™" b wh(@)) .

Since w and all its derivatives vanish on D™, Taylor expansions show
that for each derivative a(x) of a component of w(x) and each n =1
there is a constant ¢ such that

(5) la@ | =clliz| —r|* for 2e¥(D™).
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The form of h(x) for xe ¥(D™) — {x,} and ||z|] = (1 — 7)/3, is

h(x) = (r + =)=
[l

and hence if u(x) is a derivative of a component of h of order =,
then there is a constant ¢ such that

(6) @< ellwli™ for 0< (o) = 22T

The map h~' | (T(D™)—¥(D™) has a smooth extention ~*: p(D™) —
{xs} — @(D™) given by A™'(y) = 67'(ly [Dy/lly|l. Consequently dhr™'|,
and all its derivatives are bounded. Using this and (5) and (6) we
see that n(@) = dh™ |4, w(k(z)) and all its derivatives approach 0 as
x — x,. Hence 7(x) is smooth and therefore so is H,(x).

It is clear from the definition of H,(x) and the properties of G,(x)
that the only periodic orbits of H are the constant orbits H*® for
x e P. Itis also clear from the fact that 2—7'(f(¥(x))) is the restric-
tion of a orthogonal linear map to D™, that foh = hof and hence
foH, = H,of for all t. The map (x, t) - H,(f(x)) is a homotopy from
H,of = f to the smooth map g = H,of. It is easy to see that the
set of periodic points of H,of is P and that H,of| P = f| P. This
completes the proof.

LEMMA 9. Suppose there is given a map g: T*— T*, k = 2, which
is covered by a linear map A: R* — R¥, and an integer N = 2, such
that g% = 1, and N™ %= 1 for N a characteristic root of A and 1 <
m < N. Then there exists a smooth map g homotopic to g such that
P={xeT"| g™x) = for some m, 1 < m < N} = the set of all periodic
pointsof §, G| P=g9|P, and for m =1 {xc T*| g™(x) = z} < a,.(9).

Proof. We wish to apply Theorem 4. If follows from Lemma
2 that P= {xe T*|g"(x) = « for some r, 1 <r < N} is finite. Since
N =2, A\ 1 for all characteristic roots N\, and hence

Lig) =TT (0 =) # 0

by formula (). Hence, we can find an x,€ T* such that g(z,) = x,.
Therefore Theorem 4 gives a smooth map § homotopic to g such that
P = the set of periodic points of g, and G| P = g|P. It follows from
Lemma 2 applied to g, and formula (x), that for 1 < m < N,

floeT | gn@) = o) = ${leec T g™@) = o} = | L(g™) | = a.(9) .
Then
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$leeT" | g% = a}
=3, #{xeT* |2 is a periodic point of § of period m}

m<N

églL(g’”)l

= > [a-w
éil;llmwll'— N
< M au

= ay(9)

To complete the proof it is sufficient to show that if m =1, ¢ = 1,
and m = ¢ mod N, then

fxeT* | gn@) =a} ={xeT"|g%) =2} .

We may assume m < ¢ and so ¢ = m + pN for some p = 1. As-
sume g"(x) = 2. Then xe P and so §¥(x) = ¢”(x) = x. Consequently
g'(x) = gm**¥(x) = g™(x) =«x. The reverse implication, “g‘(x) = x implies
g™(x) = x” follows similarly. This completes the proof.

REMARK. In our application of Lemma 9 in the proof of Theorem
3, Lemma 9 needs to be augmented by the following observation.
Lemma 9 also holds when &k = 1 and N = 1. We verify this as follows.
It is easy to deduce that A = 1p or A = —1;. In the first case, 4 =
lp, we can homotopy g = 1,1 to a rotation g of the circle S* = T by
an angle which has an irrational ratio to 2x. Such a g has no periodic
points and Lemma 9 is verified in this case.

In the second case, A = —1g, ¢ is a reflection and there are
exactly two fixed points z, and z,. It is easy to homotopy ¢ to a
map g which leaves x, and x, fixed, and moves all other points away
from 2, and closer to x,. Then 2, and z, will be the only periodic
points of g. It is easy to calculate that a,(g) = 2 for all m = 1, and
so Lemma 9 holds in this case also.

Proof of Theorem 3. We prove Theorem 3 by induction on n.
By convention R® and T° are singletons. Hence the case » = 0 holds
trivially. Now assume that » > 0 and the theorem holds for all
m <n. Let fi T —T" be a map.

By Lemma 1 we may assume that f is covered by a linear map
F:R"— R". By Lemma 5 we have
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L(f™) = H L — A7)

where A, ---, A, are the characteristic roots of F.

First consider the case where A\ = 1 forallm =1and1 <17 < .
Then the theorem follows from Lemmas 2 and 5.

Consider now the remaining case where A" =1 for some m =1
and 1 £4¢<mn. Let N be the smallest such m. Let F* denote the
transpose of F. Since (F'*)" has integer entries, we may find a we Z*»
such that w = 0 and (F)"w = w. Set

W = sprn {(F)"w |0 < m < N} .

Then dim W =1, Flue W for all we W, and (F")*x =« for allzc W.
Set & = dim W. By Lemma 4, we can find a basis w', w? ---, w" for
Z™ such that w', w? ---, w* form a basis for W. Let K: R” — R" be
the linear transformation whose matrix satisfies K'¢’ = w’. Then,
both K and K have integer entries. Thus, both K and K" induce
maps K': T"—»T", and KV = K'": T*—~T". We “change coordinates”
by noting that it is sufficient to prove the theorem for

g = K' of‘oI{"‘1
in place of f. The map ¢ is covered by
M=KocF-K " R"—> R".

From Kt¢' = w' and Fiue W for we W, it follows that the matrix
M of M has the form

where A4, B,C, and 0 are k x %k, (n — k) Xx (n — k), (n — k) x k and
% X (n — k) matrices, and all entries of 0 are zero. It follows from
Ft"g = x for all xe W, that AY = 1. Since M = K-F-K™* is similar
to F, A, -+, \, are the characteristic roots of M. Hence, we may
renumber the \,’s so that \, ---, N, and N\, - -+, N, are the charac-
teristic roots of A and B respectively. Let

B: Rn—k R Rn—k

be the linear map whose matrix is B. Then B induces a map
b: T** —»T"* Since k =dim W =1, we may apply our induction
hypothesis to b and find a smooth map b homotopic to b such that

tloe T | 57@) = 2} S au®) = 11t
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Let A: R* — R* be the linear map whose matrix is A. Let a: T* — T*
be the map induced by A. Since A¥ =1, we have a” = 1,.. Because
we choose N so that M= 1 for 1 <m < N and all ¢, and N=1
implies & = 1, we see that Lemma 9 or the remark which follows it
applies. Hence we can find a smooth map @ homotopic to a such that
P={xeT*|a™(x) = x for some m, L <m < N} = the set of all periodic
points of @, @| P =a | P, and for m =1,

toe T @ @) = 1) = @) = ] aun -

If we write R" = R* x R**, then M has the form
M(x, y) = (Az, Cx + By) .

Consequently, if we write T" = T* x T"7%, then g(u, v) = (a{w), r(u, v))
where #: T* x T** — T*ig the map induced by the map R: B* x R"*—
R* which is given by R(x, y) = Cx + By. The homotopy from a to
@ gives rise to a homotopy from g to § where

glu, v) = (@(w), r(u, v)) .
The periodic points of § must have the form
(w,v)e Tk x T * where ueP.
Partition P into orbits under @. Let
X={u=awu)|t=01 -, m—1}

be one such orbit consising of m distinet point, where 1< m < N
and @™(u,) = u,. Consider the maps

g =g u; X T o, X TV % > gy, X T"7F
which are covered by the maps
M, =M|x, Xx R"* ¢, x R"*—— g, x R"*

vzhere U, = @G™(u,) = %, and z, is chosen so that z(x,) = u,, and z, =
A'x, for 1 = 1, (recall that @ | P = o | P). Making the obvious identi-
fications of u, x T"* with T"*, and x, x R** with R"* we see that

M(y) = Cz, + By
for all ye R**. Define
M, (y) = tCx, + By .

Then M, = M, and M,, has B as its matrix. Because B has integer
entries and {Cx; does not depend on ¥, the homotopy M, induces a
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homotopy g¢,, from g, = g, to the map induced by M,, which is b.
Since b is homotopic to b, each g, is homotopic to b. Since both g,
and b are smooth, we may find a smooth homotopy %;: T"* x I—
T"~* such that for some ¢ > 0, h;(v, t) = b(v) for all ¢ <e, and h;(v, t) =
9:(v) = r(u;, v) for all ¢t > 1 — &.

Pick coordinate charts (U;, ®,) about the points u, such that {u;} =
U, NP, p,(U,) = B,(0) C R*, and @,(u;) = 0. Using the natural group
structure on T"* we define

re TF x T % —— Tk for te[0, 1]
by
’r(u, 'U) + hz’(vy t H @z(u) H + 1- t) - ’I'(u,-, /U) if u€e Uz

r(U, v) = . m
r(u, v) ifueUU,.
=1

Using 7, we obtain a homotopy
g.(u, v) = (@(w), ru, v))

from g, = g to g,, where g,(u, v) = (@), 7.(u, v)). Note that »,(u;, v) =
b(v) for each i = 0,1, ---, m — 1. Proceed similarly with the other
orbits in P and call the final map §.

The map g will be smooth and homotopic g and hence homotopic
to g. For all (u,v)e T* x T %, §(u, v) e (@), ¥(u, v)) for some map
Fo T* x T™* - T** which satisfies #(u, v) = b(v) for all e P.

Now suppose §™(u, v) = (4, v). Then a™(u) =wu and so weP.
Hence @‘(u)e P for all 7 and so by an easy induction §‘(u,v) =
(@(w), b*(v)). Applying this with ¢ = m we see that b™(v) =v. Hence

t{u, v)e T*" x T** [ g™(u, v) = (u, v)}
StueTr|am(w) =u} x $fve T b"(v) = v}

k n
éH a/im' ].—I aim = a’m °
=1 i=k+1

This completes the proof.

Proof of Theorem 1. The “if” direction follows from the Nielsen
fixed point theorem and Theorem 2.

Next we prove the converse direction. Assume that L(f™), m =
1,2, ---, are bounded. We may assume n» = 1. Let g be the map
given by Theorem 3. If 1 is a characteristic root of H,(f): H(T") —
H,(T"), then g has no periodic points because a,(f) = 0 for all m = 1.
So assume that 1 is not a characteristic root of H,(f). Now from
Lemma 6 we have |\;| <1 for all 7, where )\, --+, A, are the char-
acteristic roots of H,(f). Consequently, there exists a B such that
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¢n < B for all 4 =1, ---,n, and m = 1. Thus «a,(f) < B" for all
m = 1.
We will show that the number of periodic points of ¢ is bounded
by B*. Suppose on the contrary that S={x,|1<¢<B"+ 1} is a
set of B” + 1 distinet periodic points such that x, has period m,. Set
B”+41

m= [ m,.

=1

Then Sc{xe T"|g™(x) = x}. But, by Theorem 3,
gloeeT"|gm@) =2} < a.(f) = B,

a contradiction. This completes the proof.
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