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LEVEL SETS OF DERIVATIVES

R.P. BOAS, JR., AND G.T. CARGO

We consider real-valued functions defined on intervals
on the real line R, and we denote the extended real line
by R.

The theme of this paper is the idea that, when a func-
tion has a derivative that is equal to some A e R on a dense
set, the derivative can take other (finite) values only on a
rather thin set. Our most general result shows that, in
particular, the hypothesis "the derivative is equal to A on
a dense set" can be replaced by "at each point of a dense
set, at least one Dini derivate equals A." As corollaries
we obtain unified and rather simple proofs of some more
special known results, which we now state.

A function can be discontinuous at each point of a dense set
and yet be continuous at each point of a co-meager (residual) sub-
set of its domain. However, the following theorem of Fort [4]
shows that such a function cannot be differentiate at each point
of a nonmeager set.

THEOREM F. If f:I—>R where I is an open interval and iff
is discontinuous at each point of a dense subset of I, then the set
of points where f has a (finite) derivative is meager in I.

(For a different proof, see [1], p. 131; two rediscoveries are in
[3] and [10].)

Recently, Cargo [2] used harmonic analysis to prove

THEOREM C. If f is a real-valued function of finite variation
defined on a compact interval 7, and if, for some AeR, f'(x) = A
on a dense subset of /, then the set of those points at which f has
a (finite) derivative different from A is meager in I.

In 1903 W. H. Young [11] proved

THEOREM Y. If f\I-*R where I is an open interval, then the
set of all points at which at least one of the Dini derivates of f is
infinite is a Gδ subset of I.

In this paper we use real-variable methods to establish a result
(Theorem 2) that includes Theorems F and C (without the hypothesis
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of finite variation) as corollaries. We also give a short, elementary
proof of Theorem Y, observe that Theorem F is an easy consequence
of Theorem Y, and then prove a theorem (Theorem 3) that has
Theorems 2, Y, F, and C as corollaries.

2* The main theorems*

THEOREM 1. Let f: I -+ R where I is an interval, and let Ae R.
If /'(#) = A on a dense subset of I, then the set of those points at
which f has a (finite) derivative different from A is meager in I.

Note that Theorem C is an immediate consequence of Theorem
1. Since each interval is a Baire space with respect to the inherit-
ed metric, we have

COROLLARY 1. If f: I —> R has a (finite) derivative at each point
of the interval I, if Ae R, and if f(x) — Aon a dense subset of I,
then the set of points at which f(x) — A is nonmeager and co-meager
in I; and, hence, each subinterval of I contains uncountably many
points at which f'(x) = A.

Theorem 1 is a special case of, but easier to prove than, the
following result.

THEOREM 2. Let f: I —> R where I is an interval, anφlet Ae R.
If at each point of a dense subset of I at least one of the Dini de-
rivates of f has the value A, then the set of those points at which
f has a (finite) derivative different from A is meager in I.

Clearly, Theorem C is a corollary of Theorem 2.

To prove that Theorem F is a corollary of Theorem 2, suppose
that a function / is discontinuous at each point of a dense subset of
an open interval 1. Let F denote the set of points in I at which /
has a (finite) derivative. We want to prove that F is meager in I.
Let D+^iD-J) denote the set of points in / at which at least one
Dini derivate of / is equal to + °°(— oo). Then D+OQ U D_oo is dense
in I, since / is clearly continuous at any point at which all Dini de-
rivates are finite. Hence, each open subinterval of I contains an
open interval in which either D+oo or D_oo is dense. Call an open
subinterval of I distinguished if either D+oo or D^ is dense in the
subinterval, and let G denote the union of all distinguished intervals.
Our previous observation shows that I\G is nowhere dense in I.
Clearly, G is separable since R is separable. According to Lindelof 's
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covering theorem, G = \JnGn where {Gu G2, •} is a countable set
of (not necessarily disjoint) distinguished intervals. According to
Theorem 2, each F Π Gn is meager in Gn and, hence, in I. Finally,
F = {Ff] (I\G)}[J[Jn(Fn Gn) is meager in I, as desired.

Proofs of Theorems 1 and 2. In each theorem, it is enough to
consider the set S where f{x) < A, since the set where f'(x) > A is
the set where ( — /)'(#)< — A. If A is finite, S is contained in
\Jn=i US=i En>m where En>m consists of all points x in I such that
yel and 0 < | y - x | < 1/n imply that (f(y) - f(x))/(y — x) < A - 1/m;
if A= + °°, replace A — 1/m by m. To show that S is meager in /,
we have only to show that each En>m is nowhere dense.

Suppose that some ENtM is dense in some open interval J. In
Theorem 1, there is a dense set of points x at which f'{x) = A; let
#o be such a point in J. Since -&#•,# is also dense in /, for each
positive k, there exists xk e EN>M\{x0} such that xk —> x0 as fc -> oo.
Thus, if fc is so large that |αj0 — β*l < 1/N> then (f(xk) — f(xo))l
(xk — xQ) < A — 1/M (or < ikΓ if A= + oo). Letting fc -> oo, we get
f(x0) <; A — 1/ikΓ (or ^ If), contradicting /'(a?0) = A. Therefore, each
En,m is nowhere dense.

In Theorem 2, at each point of a dense set least one of the Dini
derivates has the value A) let x0 be a point of the dense set that
is also in J. Then there exists, for each positive integer k, a point
zk e J\{xQ) such that, as k -» °°,zk-+x0 and (/(sfc) — f(xo))/(zk ~ x0) -+ A.
As for Theorem 1, for each positive integer k, there exists a point
#fc 6 £7̂ \̂{x0} between xQ and ^ . For all sufficiently large k, we have
0<|^0 — xk\ < 1/N and 0 <\zk — xk\ < 1/N. Hence, since xk e ENyM, for
all sufficiently large k, we have (/(a?0) — /(a?*))/(»o — a?*) < -4. — 1/Λf
(or ikf) and (/(*,) - /(^))/fe - xk)< A - 1/M (or M). Clearly,

/fa) -f(Xk)zk - xk , /fe)
Zjc %o Zk Xk Zk Xo Xk Xo Zk Xo

and the right-hand side of the last equation is a convex combination
of the two difference quotients, each of which is less than A — 1/M
(or M) for all sufficiently large k. Letting ά-^oo, we obtain
ASA — 1/M (or M), which is a contradiction; and, again, each En>m

is nowhere dense in /.
The original proof of Theorem Y is quite complicated (see [11]

or [9], pp. 402-404). We now give a simple, elementary proof.

Proof of Theorem Y. For each positive integer n, let Fn denote
the set of all xeI such that |(f(y) — f(x))/(v — x)I ^ n whenever
yel and 0 < | y — x | < 1/n. Also, let F denote the set of all points
at which each Dini derivate of / is finite. Then it is geometrically
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clear (and not difficult to prove analytically) that F = U?=i F« Once
we prove that each Fn is closed in I we shall be done. Suppose
that n is a positive integer and that x is a limit point of Fn in /.
We want to prove that xe Fn. Let y be a point of / such that
0 < \y — x\ < 1/n. We want to prove that

( 1 ) fiv) - fix)
y — x

n

Since x is a limit point of Fn9 there exists a sequence zu z2, z39

of points of Fn\{x, y) such that zk —> x as & —> <>o. Next, note that,
for each positive integer k,

( 2 )

Since

2/ - «*

—> aj a s k ~

-f{χ) y - t #

v — x y — 2 * ' x — z k y — z k '

and 2j; e Fn for each A;, it follows that

fix)'

for all sufficiently large k.
conclude that

fiχ) -

From limfc _»«,(« — «fc)/(i/ — s*) = 0, we

Finally, since limk.^iy — x)/(y — zk) = 1, we see from (2) that

( 3 )

Since
that

y
( 4 )

From (3) we obtain

( 5 )

for each k and li

fjy)-fjzk)

= 12/ — a? | < 1M, it follows

^ n for all sufficiently large k .

fiv)-fjχ)
2/ - y — x

We conclude from (4) and (5) that (1) holds, as desired.

Thus, F = U?=i -P7* i s a n J^F subset of I, and I \ F is a Gδ subset
of /, that is, the set of all points at which at least one of the Dini
derivates of / is infinite is a Gδ subset of /. This completes the
proof of Theorem Y.

Next, we shall prove that Theorem F is a simple consequence
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of Theorem Y. As we noted above, the set of discontinuities of /
is a subset of the set of all points at which at least one of the
Dini derivates of / is infinite. Since the former set is dense in /,
so is the latter. By Theorem Y, the latter set is a Gδ subset of I.
Since a dense Gδ subset is co-meager (see [8], p. 135), it follows that
the set of points at which all four Dini derivates are finite is
meager in /. Finally, the set of points at which / has a (finite)
derivative is meager in I because it is a subset of the latter set.

3* An extension* Next, we shall prove a theorem that has
Theorem 2 as a direct corollary. If the domain of a real-valued
function / contains an open interval containing a real number x, we
define the set D(f; x) of derivates of / at x to consist of all A e R
for which there exists a sequence xu x2, α?3, of real numbers dis-
tinct from x and converging to x such that lim^^C/X^O — f{x))l
(xn - x) = A (see [7], pp. 115-116). The set D+(f; x) of right de-
rivates of / at x and the set D_(f\ x) of left derivates of / at x
are defined in the obvious way. Clearly, D(f; x) = D+(f; x) U
ZL(/; x). One can prove that D(f; x) is a closed subset of R and,
if / is continuous in a neighborhood of x, that D(f; x) is an interval.
The usual Dini derivates are extreme unilateral derivates (see [7],
p. 116). For example, the upper right (Dini) derivate of / at x is
just the largest element of D+(f; x), that is

f+(x) = lim sup / M ~ /(a) = m a x D+(f; x) .
u->%+ U — X

Of course, / has a derivative at x in the extended sense if and only
if D(f; x) consists of just one point of R.

THEOREM 3. Let f: I—> R where I is an open interval, and let
Ae R. Then the set of x such that D(f; x) contains at least one
element of {A, +°o, —00} is a Gδ subset of I.

Proof IίA=-hco or A= — oof the desired conclusion follows
from Theorem Y, which we just proved.

Suppose that AeR. Let Fdenote the set of all points at which
each derivate of / is finite; let DA denote the set of all x e I such
that Ae D(f x); and, for each positive integer n, let En denote the
set of all xel such that

f(y)-f{χ) . . .

y - x

whenever y e l and 0 < \y — x\ < 1/n.

n



42 R. P. BOAS, JR., AND G. T. CARGO

First, let us prove that I\DA = (JίU •#•• Suppose that x e U*=i En-
Then x e En for some positive integer n. If α?* —> a? as & —• oo where
#fc e /\{#} for each &, then 0 < | xk — cc | < 1/n for all sufficiently large
k; hence, since x e Ent

f(χk)-f(χ)
χk — x n

for all sufficiently large k. Thus, (f(xk) — f(x))/(xk — x) cannot con-
verge to A as k~>oo9 that is, xeI\DA. Next, suppose that #e
I\\Jn=iEn. Then, for each positive integer n,xeI\En

m, and, hence,
there exists ynel such that 0 < | yn — x \ < 1/n and

n

>, 2/» 6 J\{»} for each w, and (f(yn) — f(x))l
consequently, x e DAy that is, x ί I\DA9 as

Then yn->x as %
(yn — x)-* A as w —

desired.
Next, let us prove that, for each positive integer n, F Π En is

closed in F. Let xoeF be a limit point of F C\ En. We want to
prove that xoeEn. Given y e I such that 0 < \y ~ xo\ < 1/n, it will
suffice to prove that

( 6 ) f(y)-f(χo) __
y - χo n

Since xQ is a limit point of Ff] En, there exists a sequence a?!, a?2, α?3,
of points of JS»\{a?0, ?/} such that a?fc -^ x0 as fe —> oo. Now, clearly, /
is continuous at xQ since x0 e F. Hence,

( 7 ) >f(xQ) as k

Since xk —» x0 as k —> oo, it follows that 0 < liπifc-^ \y — xk \ = 17/ — ̂ 0 [ <
1/w. Thus, there exists a positive integer fex, such that 0 < \y — xk\<
1/n if k > &!. Since α;fc e En for each &, it follows that

( 8 )

From

( 9 )

(7)

f(y)
v-

we obtain

lim /(

f(Xk) Λ

Xu

y) - f(χk)

> x

~ n

A

-whenever k>kx

— f(y)-f(χo)
oi — sy

A

and (9) combined with (8) yields (6). Thus, each Ff] Έn is closed in F.
Since Ffl (I\DΛ) = F f] \J^En = \J«=t(FnK), it follows that

Ff\ (I\DΛ) is an Fσ subset of F. By Theorem Y, F is an Fa subset



LEVEL SETS OF DERIVATIVES 43

of I. Moreover, if U is an Fσ subset of V, and V is an Fa subset
of W, then U is an Fσ subset of W (see [8], p. 63). Hence, FΓ\
(I\DA) is an Fo subset of I. Finally, by De Morgan's law, I\{Ff)
(I\DA)} = {I\F} U DA is a Gδ subset of I, that is, the set of x such
that D(f x) contains at least one element of {A, +oo, — oo} is a Gδ

subset of I. This completes the proof of the theorem.
Next, let us prove a corollary of Theorem 3 that, in turn, has

Theorem 2 as a direct corollary.

COROLLARY 2. Let f:I-+R where I is an interval, and let
Ae R. If, at each point of a dense subset of I, A is a derivate of
f, then the set of those points at which f has a (finite) derivative
different from A is meager in I.

Proof, Without loss of generality we may, and do, assume
that I is open.

Since DA — {x e I: A e D(f; x)} is, by hypothesis, dense in / and
DA(zDA{J (I\F) where F is the set of all points at which each Dini
derivate of / is finite, it follows that DA U (I\F) is dense in I. Ac-
cording to Theorem 3, DA U (I\F) is a Gδ subset of J. Since DA U
(I\F) is a dense Gδ subset of /, it is co-meager in /, that is, I\{DA U
(I\F)} = {I\DA} n F is meager in I. Since the subset of I where
fix) exists (finite) and f{x) ^ 4 is a subset of {/\̂ } n F, it, too,
must be meager in J.

4* Conclusion. We note that a trivial modification of the
proof of Theorem 2 yields Corollary 2 directly. Also, "finite" may
be deleted in the statements of Theorems 1 and 2.

When this investigation was in the final stages, we discovered
that it overlaps some recent research of Garg [5]. In particular,
our Theorem 1 follows from Garg's Proposition 3.9 and also from his
Corollary 5.2.

While this paper was in press, we learned of Filipczak's paper
[3a]. Our Theorem 2 is a corollary of his lemma (p. 74). However,
our Theorem 3 is in some sense stronger than that lemma since it
asserts that a potentially smaller set is residual.

Finally, it should be pointed out that our observation that Fort's
theorem is an easy consequence of Young's theorem was anticipated
by Garg [6] in 1962.
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