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ON THE LOW DIMENSIONAL COHOMOLOGY OF
SOME INFINITE DIMENSIONAL

SIMPLE LIE ALGEBRAS

S. BERMAN

The two dimensional cohomology, with values in the
base field K of characteristic 0, of a simple Lie algebra at-
tached to any non-Euclidean indecomposable Cartan matrix
is computed. We find that dim (H2 {Sfy K)) equals the nul-
lity of the Cartan matrix which defines Sfm We also show
that there is an invariant 3-cocycle of £f if and only if the
matrix defining <& is symmetrizable. This yields cohomo-
logical interpretations for all the known isomorphism class
invariants of these algebras.

Introduction* About ten years ago V.G. Kac [7] and R. Moody
[12] independently discovered a class of infinite dimensional simple
Lie algebras defined over fields of zero characteristic which are
natural generalizations of the finite-dimensional split simple Lie
algebras, and which possess many of the same structural features.
More recently, these algebras have attracted wide interest, due to
the fact that one has a formula, the Macdonald-Kac formula, similar
to WeyΓs character formula, for certain modules of these algebras.
This formula has surprising connections with additive number theory
and sheds new light on Dedekind's ^-function. See [6], [8], [9], and
[11] for these developments and also the references therein.

A classification theory describing the isomorphism classes of
these algebras is lacking, due to the fact that there are no versions
of the well known conjugacy theorems which hold in the finite
dimensional case. However, in [3], it is shown that the nullity of
the Cartan matrix which defines the algebra is indeed an isomorphism
class invariant, since this is the dimension of the space of outer
derivations. If the Cartan matrix defining the algebra has the pro-
perty that it is symmetrizable (see § 1 for definitions) then the
algebra possesses a nondegenerate symmetric associative bilinear
form. This turns out to be an isomorphism class invariant as well,
see [3]. These two invariants are the only known ones to date.

The purpose of the present paper is to give new interpretations
to these invariants, via cohomology. We will show that if £f is
one of the algebras under consideration, arising from the Cartan
matrix (AiS), then H\£f, K) has dimension equal to the nullity of
(Aij). Here H\£f, K) is the 2-cohomology of Sf with values in
the base field K. We go on to show that there is an invariant
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3-cocycle if and only if (Ats) is symmetrizable, and hence, if this is
the case, then H\Jίf, K) is nonzero. We thus obtain a cohomolog-
ical interpretation of all the known isomorphism class invariants for
these algebras. Of course, these results are well known and easy
to prove in the finite dimensional case, (see [5]), because of WeyΓs
theorem on complete reducibility. However, in the infinite dimen-
sional case we do not have such techniques available and so our
methods are more computational.

In § 1 we will briefly recall the structural properties necessary
for our investigation and also fix the cohomology notation we will
use. Section 2 contains our main result on H\^f9 K), and in the
final section we investigate invariant 3-cocycles. Thanks go to E.
Moody for numerous suggestions concerning these matters, and to
J. Lepowsky for suggesting this type of investigation to me.

!• Basic facts and notation* We will use the notation in [3]
but for the convenience of the reader we recall this. For more in-
formation the reader may consult [2], [6], [7] and [12].

An I x I integral matrix, (AiS)f is a Cartan matrix if Au = 2,
Aiό ^ 0, and Ati = 0 <=> Atj = 0, for 1 ^ i, j ^ I, i Φ j . The Cartan
matrix is symmetrizable if and only if there are positive rational
numbers εu , eί such that Aiάεό = AJtεt for 1 ^ 1, j <; I. We always
assume that our Cartan matrix is indecomposable, which is the same
as requiring that the associated Dynkin diagram is connected. This
assumption is a matter of convenience and the results we obtain
can easily be extended to the case where the matrix is decomposable.
Also, we assume that (AiS) is not one of the sixteen types of Eucl-
idean Cartan matrices, (see [1] for a description of these). The
reason for this assumption is that the algebras attached to the
Euclidean Cartan matrices have null roots and are not simple and
hence our methods do not directly apply to them.

To any I x I indecomposable non-Euclidean Gartan matrix (Atj)
and any field K of characteristic 0 there is associated a Lie algebra,
£?, over K which is called the universal Cartan matrix Lie algebra
of type (Aij), or universal CM. algebra, for short. Sf is generated
by 31 elements eif fif hif 1 ^ i ^ I, subject to the four relations
K /;] = ^fa, [eif hj\ = Ajteif [U hs] = -Ajtfif and [hi9 hs] = 0, for
1 ^ if j ^ ϊ. It turns out JZ? has a unique maximal ideal & (see
[2] and [10] for a description) and we let £? denote the correspond-
ing simple factor algebra, and again let et, ft, hi denote the images,
in Jϊf, of the generators. £f is called the standard CM. algebra
of type (Aiό) over K.

Let V be the free Z-module of rank I with basis elements
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a19 , at so that V = Za, φ ©Zα,. If ^ denotes the linear
span of fei, , hi in ^ then dim 3ίf equals the rank of the Cartan
matrix {Aiβ), (see [3]), and we let V act on §ίf via a^hj) = A,-*.
There is a subset, Δ, of F such that £f = ^T7 + Σ « e i ^ α , (all sums
direct), where ^ is a subspace of .Sf and [ ^ ^ J S ^ , If
x e jS α̂, fe 6 ^r 7 then [x, h] = α(fc)x. Also, ±0^ e J and βS^ i = Keif

^f_ai = κf< for l ^ i ^ l If α - Σ U ^ A e 4 then either d< ^ 0
for all i, or d< <; 0 for all ΐ. Also, θ£Δ. One has α e z ) « - α 6 J ,
and the elements of Δ are called roots of £f. By the above we
can speak of positive and negative roots, and let Δ+ denote the set
of positive roots and A"— — Δ+ denote the set of negative roots. We
let .δf+ = Σ« j + ^ and -S?" = Σ«ej--£*« so that £f = £f~ ξ&
^ ^ φ = ^ + . Sf possesses an automorphism η of period 2 satisfying
V(ei) — ft f° r 1 ^ ί ^ I> s o t ^ a t ^(=2^+) = =S?~\ Since we assume that
(At/) is non-Euclidean we have that if aeA then there is some

for which a{h) ^ 0. If α = Σt=i ^α* e J w e let = Σt=i

Notice that if α e J + and I(α) ̂  2 then each element of £fa is a
linear combination of elements of the form [xβ, xr] where β,yeΔ+,
xβ e :5fh xr e £fy and β + y = a. A similar statement holds for aeΔ~.
Vκ denotes the space K®ZV and < , •>: V^x V̂ —> i? denotes the
nondegenerate symmetric bilinear form on Vκ for which the basis
au "',ccι is orthonormal.

Let Sf* = ^% ,̂ and for any integer n ^ 1 let

J2^ = Σ ^ and 5 ζ

u

Σ

Then we have =Sf? £ ^ ^ C eSf̂ C , and βg=;+1 = ^ 0 =^7W+1 for
all n ^ 0.

It is known that ^ possesses a nondegenerate symmetric as-
sociative bilinear form if and only if (AiS) is symmetrizable (see [3]).
Moreover, any two such forms on ^f are scalar related, since the
radical of such a form is an ideal of J5f, and £^ is simple. From
this it easily follows that if ( , •)• =S^x=S^ —> K is such a form and
if (ei9 ft) = 0 for some ie {1, •••,!} then the form is identically 0.

At one point in our argument we will need a slightly bigger
algebra than £f which is described as follows. The radical & of
<£ can be written as & = &~~ 0 ĝ̂ ^ 0 ^ + where ^ + (resp. &")

is just ^ n ^ + (resp. ^ n = ^ ~ ) , and ^ ^ ? is the center o f ^ , and
is in ^ = 0 L i - ^ ^ £ ^ . Now ^ + and ^P~ are ideals of Sp and
we let ^ denote the factor algebra of <9> by &~ 0 ^ + , and we
let <5£P denote the linear span of hu , ht in ^ so that dim §ίf — I.
Then & = ^ 0 Σ α e j = ^ , and ^ is a factor of ^ by its center

= {fe 6 ^|α(fe) = 0 for all α e J}. Clearly the dimension of
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is the nullity of (A^). When convenient we will identify Vκ and

When dealing with cohomology we will use the notation in [4,
Problem 12 of Chapter 1, § 3, p. 88-91], which we now recall. We
readjust this notation to the particular case of the trivial one
dimensional ^-module K. For any integer n ^ 1, Cn{^f, K) denotes
the vector space of alternating linear maps of £f x x £f (n
copies) into K, and C\£f,K) = K. C*{^>, K) = 0Γ=O C

%{Sf9 K).
For any fe Cn(^f, K) and x, x19 , xn+1 6 ^ we let

(i(x)f)x19 , 35.-1) = f(x9 xl9 , xn-i) ,
n

(θ(x)f)(xu , xn)

and

(df)(x19 , a;w+1)

where, as usual, a circumflex over a symbol denotes its omission.
The maps θ(x), ί(x), and d extend to linear maps on C*(Jzf, K) and
θ is a representation of £f. We have that

( i ) θ(x)ί(y) - i(y)θ(x) = i([a?, 2/]) for all x,ye£f,
(ii) di(y) + i(j/)d = ̂ (2/) for all y e £?,
(iii) dθ{y) = θ(y)d for all ye£f,

and (iv) ώ2 = 0.
Let Z%(,^, Z") be the kernel of d restricted to Cn(jίf, K), and

let B%^, K) = d(C»-\^f, K)\ Z*{^, K) - ©ϊ= 0 Z\^, K) and
B*{j5f, K) = (BZ=oB*(£f, K). From (iv) we have that B\£f, K)Q
Z\^, K) and so let H\^, K) - Z\£f, K)/B«(^f, K). Hn(^f9 K)
is called the wth cohomology space of £f with values in K, and
H*(£f, K) - ®Z=*H*(jSf, K) is called the cohomology space of Sf
with values in K. It is clear that H°(^f, K) = K and that H\3?f

K) is naturally isomorphic to (£fj[Jif, £f])* so that for the simple
CM. algebras £f we have H\Sf9 K) = (0). Elements in Z*(£?, K)
(resp. !$*(£?, K)) are called cocycles (resp. coboundaries). An ele-
ment fe Cn(^f, K) is invariant if and only if θ{x)f = 0 for all x
It is easy to see that if fsC\£f9K) is invariant then fs
K). Moreover, if fe Zn(£f, K) then θ(x)fe Bn(£f, K) for all n ̂  0,
since then, by (ii), θ(x)f = d(ί(x)f) for any xe^f. If feC\^f, K)
then Rad(/) = {x e £f\f(x9 x19 , xn-i) = 0 for all xt e £?, l ^ ί ^ ^ - 1 } .
If fe Zn(£f, K) is invariant we have that Rad(/) is an ideal of £f.

It is obvious that dim Hn{^p

f K) is an isomorphism class invari-
ant of Jίf, and so is the existence or nonexistence of nontrivial
invariant elements in Zn(£f, K).
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2* H\£f, K). Throughout this and the final section we let
^f denote a simple CM. algebra over the field K of characteristic
0 which is attached to the indecomposable ϊ x I Cartan matrix (Ati)
which is non-Euclidean. We are going to show that the dimension
of H\£f, K) equals the nullity of (AiS). To do this we let

, K) = {fe Z%J^, iΓ) |^£Rad(/)} and B\{^, K) - Z\{^, K) n
, K). Our first step is to show that Z\{^, K) = Vκ and this

is accomplished via a construction which associates to any je Vκ an
elemect freZ2(^f, K). Next, we show that B2

0(^f, K) = ££**, and
finally that Z\^f, K) = Z2

0(^f, K) + B\£?, K). It then follows that
H\£έ>, K) = Z2

0(J^, K)/B2

Q(J^, K) and hence, dim H\£f, K) equals
I-rank (AiS), which is the nullity of (Ati).

PROPOSITION 2.1. For any yeVκ there is an element fre
, K) such that fr(eif fs) = δtj(y, at) for 1 ^ i, j ^ I. Moreover,
, K) is isomorphic to Vκ and hence dim Zl(S^, K) = I.

Proof. Fix 7 € Vκ and let τ 6 <^* be the corresponding element.
Thus, <7, αέ> = z(ht) for ht e <%?, 1 ^ i ^ I. Let p be the projection
of &? onto 3& given by the decomposition ^ = ^ φ Σ α e j £fa and
define fτ\&x&-»K by f(x, y) = τ(P([x, y])) for all x, y e JS^.
Clearly, / r is an alternating form on j*f, and also, ^ C Rad(/r),
since [<%?, 3&\ - (0) and [ ^ , ^ ] C .S^ S Ker P for all α e Δ. It
follows that we can define fr: <£fx£? -* Kby fr(x + J ^ , 2/ + ^ ) =
fr(x,y) for any xfye^. fr is alternating and < ^ C Rad(/r). We
have that fr(eif fό) = τ(S4Λ) = ^<y<7, α,> for 1 ^ i, j ^ I. Finally,
using the Jacobi identity of &> we easily obtain that fr 6 Z\{Sf9 K).
This yields the existence part of our result.

Clearly the mapping which assigns to any Ύ e Vκ the element
freZ2

Q(£f, K) is a linear injection. Next, assume that feZ2

0(£f, K),
and let α, β e J, xa e &*, xβe,Sfβ. We have that for any h e £έf, 0 =
f([xa, xβ], h) = f([χa, hi xβ) - f([xβ, hi xa) = (α + £)(&)/(&„ ̂ ) . It fol-
lows that f(^?a, £fβ) = (0) unless (α + /S)(/̂ ) = 0 for all h e 3tf. In
particular, since (A^) is non-Euclidean, we have that f(J*fat, «£ )̂ = (0)
for all βeΔ, β Φ—at. Say f(et, ft) = 7t for 1 ^ i ^ I, and let
T - Σ U ^Λ Then f(eif fά) = fr(eif fά) for l<,i, j ^ I. Letting
g =f-fr we find that g e Zl{^, K) and that ei9 f, e Rad(^) for
1 ^ i ^ ϊ. But it is easy to see that the radical of any element in
Z2(^ff K) is a subalgebra of £f9 and it follows from this that
Rad(#) = £f9 and hence, that / = fr. Thus, Vκ is isomorphic to

, K).

LEMMA 2.2.
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Proof. If φ 6 C\£f, K) - £f* then dφ e B\£f, K) is given by
, I2)= — 0([ϊi, U), so since [^ff £f\ = ̂ , we have that ώ^ = 0 if

and only if φ = 0. Now dφeB2

0(£f, K) if and only if J T £ R a d ( ^ ) .
Clearly, if . S ^ c K e r ^ for all aeA then ^£Rad((Z0). Conversely,
if ^ £ R a d ( α ^ ) then let aeJ,xae£fa, and choose hzSί? such that
α(λ) Φ 0. Then 0 = dφ(xa, h)=—a(h)φ(xa), so that 0(αα) = 0, and
hence £fa £ Ker ^ for all α e i Thus, -B0

2(̂ P, JΓ) is isomorphic to
{φe^f^l^aQKerφ for all aeA), and it is clear that this last space
is isomorphic to

We are now in a position to obtain the main result of this
section.

THEOREM 2.3. Z\£f, K) = Zl{^f, K) + B\£f, K). In particu-
lar, the dimension of H\Sf, K) equals the nullity of the Cartan
matrix (Atj) which defines the CM. algebra J5?.

Proof. As in [3] we let {eβ^γ be a basis of ^ + such that
eβ. e £fh for all i ^ 1 and eβj = eό for 1 <Ξ j ^ I. Let e_βj — η(eβd) so
that {e_βj}™==1 is a basis of S<?~ and e_ .̂ — /,- for 1 ̂  j ^ I. For each
i ^ l we choose /^e ^ ^ such that βi(ht) = 2 for all i ^ 1 and hβ —
[ejf fd] for 1 <Ξ i ^ I. This choice of an infinite collection of Λ/s is
possible because (AiS) is non-Euclidean.

If feZ2(^, K) we define ^ e ^ 7 * by the equations φ(eβ.) = (1/2)
/(β/V fei), Φ(e-βi)=-ll2f(e_βi, ht) for i ^ 1 and 0(fc) = 0 for all h e 31?.
We certainly have that / + dφeZ2(£f, K). If i, j,k^l then 0 =
df(eβi, hjf hk) implies that βi(hd)f(eβi, hk) - βt(hk)f(eβi, hs). Taking k = i
in this yields 2 / ( ^ , hβ) = βt(h/)f(eβt9 h) = 2βi(hj)φ(eβi), so that f(eβt,
hd) = βlhό)φ(eh) = ̂ ([e^, ^^1)= -dφ{eh, hό). Thus, (/ + dφ)(eβi, hό) = 0
for all i, i ^ 1. Similarly, (/ + dφ)(e_β., hs) = 0 for all i, i ^ 1 so if
g =f+dφ then we have that s K ^ ^ ̂ ^) = (0) - g(^?~, Sί?\ and
geZ\J^,K). Next, note that 0 = dg(eiffif h^-g&e^fλ hd) +
Q([eif hj], ft) - g([fi9 hs], et), which implies g(hi9 h5) = alhd)g{eu f<) -
ctiihjMet, ft) = 0 for 1 ̂  i, i ^ I. It now follows that <̂ T £ Rad(̂ r)
so that f+dφ = ge Z2

0(^f, K), and hence fe Zl(£?9 K) + J32(j^, X).
Combining this with Proposition 2.1 and Lemma 2.2 now yields our
result.

REMARK 2.4. (a) Since in [3] it is shown that the dimension of
the outer derivation algebra of ^ is the nullity of (Ats) and since
this space is isomorphic to H\£f, Sf) we have that H\^, K) =
K\£fy £f). Moreover, it is shown in [3] that for any n ^ 2 there
exists a symmetrizable, and also a nonsymmetrizable, Cartan matrix
with nullity n.
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(b) There are no nonzero invariant elements in C\£f, K). In-
deed, if fe CX£f, K) and θ{x)f = 0 for all x e jίf then we must have
that fe Z\Sf, K). But then if llf I2,18 e Sf we have that 0 = df(llf

I2, W=~f([l» U Is) + f([l» Is], I2) - /([I2, Is], υ Since 0 - #&)/(!,, 1,) =
-/([Ii, «, Is) - /(I2, ft, « ) = -/([I. «, Is) + /([L Is], I2), we obtain /([ί2,
I3], ϋ = 0. Thus, f([£f, £f\ £f) = 0, and this implies that / = 0.

3* Invariants in C*(J*f, K). Our main goal here is to show
that there is a nonzero invariant element in C\J?f, K) if and only
if the matrix {Aiό) which defines J^ is symmetrizable. Moreover, we
go on to show that if (Aίό) is symmetrizable then the vector space of
invariant elements in CXJίf, K) is of dimension one and does not lie
in B\Jίf, K). It follows that when (Aiό) is symmetrizable we have
H\£f, K) Φ (0). Of course if feC\£f, K) is invariant then it is
in ZXJίf, K). We begin by recalling the following result of [3].

THEOREM 3.1. ^f possesses a nondegenerate symmetric associa-
tive bilinear form if and only if the matrix (Aiά) which defines Sf
is symmetrizable.

Using this result we have

LEMMA 3.2. // the matrix (Atj) which defines £f is symmetriz-
able then Z\£f, K) has a nonzero invariant element.

Proof. Define fe C\Sf, K) by f(x, y, z) = ([x, y], z) for all x, y,
ze^f where ( , >): JtfxJtf —> K is any nondegenerate symmetric
associative bilinear form on £f. / i s nonzero since ( , •) is nonde-
generate and \£f, £f\ = £f. An easy computation, [see 5], shows
that / is invariant and hence is in Z\£f', K).

We now assume that/6Z s(eSf, K) is a nonzero invariant element.
Thus, if ϊt e £f for 1 ̂  i ^ 4, we have

(3.3) /([I,, y , i8, i j = - f(i2, [ilf y , υ -

Setting lt = h, I2 = hi e 3ίf and letting I3 = xae &>a, l, = xβe
for a,βeA, we obtain, from (3.3), that

(3.4) (a + β)(h)f(h', xa, xβ) = 0.

Setting I2 = hi, I3 = hi' e £ίf and letting I4 = xa e S?a in (3.3) we
obtain, taking \ = h e £%f such that a(h) Φ 0,

(3.5) f(h', h", xa) =
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LEMMA 3.6. Let fe Z3(Jίf, K) be a nonzere invariant element.
Then there is a symmetric bilinear form ( , -)\ £έf x J%f-* K such
that (hk9 hi) = f(hk, eif /,) for 1 ̂  Jc, i ^ I.

Proof. For 1 ̂  k, i ^ I define Bki = /(ft*, et, /,). Then iί k Φ i
we have, using (3.3), that

5fc< = f([ek, fk], eif fi)=-f(fk, [ek9 ej, /,) - /(/*, eif [ek, /,]) .

Since i Φ k, [ek, ft] = 0, and hence, using (3.3) once again, we obtain
Bki = f(ek, [ei9 Λ], /,) + f(ek9 fk9 ht) = £ ίfc. Thus, the I x ϊ matrix (Bkί)
is symmetric. Clearly, if du --,d{eK and ΣUid*Λ* = 0, then
ΣUi dkf(hky eίy ft) = Σ*=i ώ Λi = 0, so that we can define (ft*, Λ<) =
5fci for 1 ̂  &, ΐ ^ ϊ, and extend by linearity to obtain the desired
pairing.

Our goal now is to show that this symmetric pairing on Sίf is
nondegenerate. To do this the following lemma is crucial.

LEMMA 3.7. If f^Z\^f,K) is invariant then

/(L [I2, «, U = /(Ii, [ϊ2, IJ, I3) + /(Ii, I2, [Is, IJ) ,

/or α τ̂/ ίi e .5^, 1 ^ i ^ 4.

Proo/. 0 - 0(10/ = dift)/ + i(ud/ = dift)/ by (ii) of § 1. Thus,
K) so that

2, Is], IJ = iOU/(P» IJ, Is) + ίdi)/(I2, [Is, IJ) .

This is the desired equality.

LEMMA 3.8. Let feZ\Jϊf,K) be a nonzero invariant element
and let ( , •)• ^fx^f -* K denote the corresponding symmetric
bilinear form defined by (hk, ht) = f(hk, ei9 ft) for 1 ̂  k, i ^ I. Then
the form ( , •) is nondegenerate.

Proof. Assume h e ̂  and (h, h') = 0 for all h' e ̂ f. We will
show that h = 0. We begin by noting that if 1 ̂  ΐ, j , k ^ I, then
/(Λo Λy, fcj = f(hi9 [e,Ί fj], hk) = / ( ^ , [β, , fej, /,-) + f(ht, es, [/,-, fcj), by
Lemma 3.7. Thus, /(/^, hj9 hk) = 0, so we get f(h, h', h") = 0 for any
ft', h" 6 ̂ T . Since (ft, ft') = 0 for all ft' e J T we have that/(ft, e<, / ) = 0
for 1 <; i <£ I. These facts, together with (3.4) and (3.5) imply that
/(ft, I, Γ) = 0 for any I, V 6 ££\. Now we use induction and assume
that /(ft, I, I') - 0 for any I, V e £fn where n ^ 1. Let a,βeJ, |I(α)| =

= n + 1, and let xa e £fai xβ e ̂ fβ. Then if a + β Φ 0, (3.4)
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implies f(h, xa, xβ) — 0. Assume aeA+ and that β~—a. Since
n + 1 ̂  2 we can assume that xa = [xr, e-\ for some 7 e J+, xr e £fu

and 1 ̂  i ^ ϊ. Then

f(h, xa, xβ) - f(h, [xr, et], xβ) = /(fe, [&r, #/*], e<) - f(h, xr, [xβ, et]) ,

by Lemma 3.7. By induction each of these terms is 0.
We now have that h e Rad(/), so since £f is simple, / Φ 0, and

Rad(/) is an ideal of ££>, it follows that h = 0 as desired.

THEOREM 3.9. C\^f, K) has a nonzero invariant element if
and only if the Cartan martrix defining J^ is symmetrizable.
Moreover, the space of invariant elements in G\^f \ K) is at most
one dimensional.

Proof. Let f e C%J*f 9 K) be a nonzero invariant element, and
let ( , •)• 3ίfy^£ίf-+K be the nondegenerate symmetric form associ-
ated to /. Recall that f(hk, eif /<) = Bki = (hk, ht) for 1 <̂  k, i ^ I.
We have that

Bki - f(hk9 ei9 A)=~ f(fi, [eif ΛJ, hk)
Δ

= ~ Λfu [e» hk], ht) - hfu et, [ht, ΛJ) ,
Δ Δ

by Lemma 3.7. Thus, since \hif hk] = 0, we obtain that

±Akiet,ft) = ±-AkiBiif for 1 ^ i, k ^ I .
Δ

Since ( , -)\ Sίf Y.£{f —>K is nondegenerate we obtain that Bit Φ 0
for 1 ̂  i <: ϊ. Thus, we can replace / by (l/JSn)/, if necessary, to
assume J5U = 1. Let s4 = l/2J?i{ for 1 g ΐ ^ I. Then we have that

A5iet = 1. A^Bw - Btf - 5 5 i = i- A^B^ = A i i £ i , for 1 ̂  i, i ^ I .

Since (Aiό) is indecomposable and integral, and since εx = 1/2, we see
that Sj e Q and εy > 0 for 1 ̂  i ^ ϊ. Thus, {Ati) is symmetrizable.
Moreover, all the ε/s are completely determined by the condition et

equals 1/2, and so it follows that the space of invariant elements in
C\J*f, K) is at most one dimensional.

We close by noting the following:

COROLLARY 3.10. If the Cartan matrix defining £έ> is sym-
metrizable then H\£f, K) Φ (0).

Proof. Let ( , -): ̂ fx^f —> K be any nondegenerate symmetric
associative bilinear form and let feZ\^f,K) be the invariant
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e l e m e n t d e f i n e d b y f(x, y , z) = (x, [y, z]), f o r a l l x,y,ze JZf. I t i s
enough to show that f£B\£f,K).

Assume fe B\^f, K) and choose g e C\£f, K) such that dg = f.
Let Sf be the subalgebra of type Ax in £? generated by the
elements eί9 h19f19 and let g denote the restriction of g to S^xS^.
Then g e C\S^, K) and if s e S^ then 0 = θ(s)f = θ(s)dg = dθ(s)g, and
this implies that θ(s)g e Z2(^f, K). Thus, θ{s)geZ\^9K) for all
s e S^. Since G\6^', if) is a finite dimensional ^-module, it is com-
pletely reducible, and so it follows, see [5], that g eZ\S^9 K)9 and
hence dg = 0. We have 0 = dg(hu e19 / J = dg(h19 el9 f,) = f(h19 eί9 Λ) =

(Λi, K /J) = ([Ai, ej, /i)= -2(β l, /,), so that (el9 A) = 0. From this it
easily follows that ( , •): £f x Jίf-* K is degenerate. This is the
desired contradiction.

REMARK 3.11. It would be of great interest to have more in-
formation on the cohomology of Jίf9 such as the dimension of
Hn{^f9 K) for n ^ 3, or the existence or nonexistence of invariant
elements in C\££?

9 K) for n ^ 4. This information would possibly
yield new isomorphism class invariants for standard CM. algebras.
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