T AS AN \mathscr{G} SUBMODULE OF G

W. J. Wickless

Let G be a mixed abelian group with torsion subgroup T. T is viewed as an \mathscr{E} submodule of G, where $\mathscr{E}=$ End G. It is shown that T is superfluous in G if and only if, \forall_{p}, either T_{p} is divisible or G / T_{p} is not p divisible. If G is not reduced, T is essential in G if and only if T contains a $Z\left(p^{\infty}\right)$. Let $I(G)[I(T)]$ be the \mathscr{E} injective hull of $G[T]$. Then $I(G)=$ $I(T) \oplus X$ with X torsion free divisible and T is a pure subgroup of $I(G)$. This can be used to obtain several results; for example, if $Q \nsubseteq I(T)$, TFAE: 1. Tess $G, 2 . I(G) \cong I(T)$ as abelian groups, 3. $Q \nsubseteq I(G)$. The condition T ess G is characterized if T is a summand or if G is algebraically compact. If T is bounded or if T is a p-group, $T^{1}=(0)$ and G is reduced cotorsion, T is not essential. In fact, for bounded T there is an \mathscr{E} isomorphism $I(G) \cong I(T) \oplus I(G / T)$. Some information is obtained on the p-basic subgroups of $I(T)$ as a function of those of T. A condition is given for $I(T) \supseteqq \bigoplus_{\mathrm{c}} Q$. These last theorems specialize to $\left.I_{E} T\right)$, where $E=$ End T.

Preliminaries. In the last fifteen years several authors have written papers concerning an abelian group G viewed as a module over \mathscr{E}, its ring of endomorphisms.

Let G be a mixed abelian group with maximal torsion subgroup T. In this paper we consider T as an \mathscr{E} submodule of G. We determine when T is superfluous in G and then study the more difficult question of determining when T is essential in G. (If (0) \neq $T \neq G$, it is easy to prove that T is neither essential nor superfluous as a Z submodule of G.)

The latter question leads to consideration of the injective hulls $I(T), I(G)$-taken with respect to \mathscr{E}.

Our notation, with minor exceptions, is that of [1].

1. T as a superfluous submodule of G. Henceforth, let G be a mixed abelian group, $T=t(G)$ its torsion subgroup and $\mathscr{E}=$ End G. To avoid stating the trivial cases of our results we always assume $(0) \neq T \neq G$. We begin by characterizing those mixed G for which ${ }_{8} T$ is superfluous in ${ }_{\mathscr{E}} G(T \ll G)$. In our context $T \ll G$ if and only if whenever K is a fully invariant subgroup of G with $K+T=G$, then $K=G$.

Lemma 1. Let $T=\bigoplus T_{p}$ be a decomposition of T into its p components. Then $T \ll G$ if and only if $T_{p} \ll G, \forall p$.

Proof. The only if part of the implication is immediate since submodules of superfluous submodules are superfluous.

Suppose $T_{p} \ll G, \forall p$, and $T \ll G$. Then we must have $T+K=G$ for some fully invariant $K \neq G$. Clearly, $K \nsupseteq T_{p}$ for some p. Let $K^{\prime}=K+\sum_{q \neq p} T_{q}$. Since K^{\prime} is fully invariant with $K^{\prime}+T_{p}=G$, $K^{\prime}=G$.

Let $t \in T_{p}$ and suppose that t has order $o(t)=p^{l}$. Write $t=x+y$ with $x \in K, o(y)=n,(n, p)=1$. If $a, b \in Z$ with $a p^{l}+b n=1$, then $t=\left(a p^{l}+b n\right) t=b n t=b n x \in K$. Thus, $T_{p} \subseteq K$, a contradiction.

Theorem 1. $T \ll G$ if and only if, $\forall p$, either T_{p} is divisible or G / T_{p} is not p divisible.

We prove the contrapositive in both directions.
Proof. Suppose $\exists p$ with T_{p} not divisible and $G / T_{p} p$ divisible. Then $T_{p} \not \equiv p G$ and $G=p G+T_{p}$. Thus, $T_{p} \nless G$ and, by Lemma 1, $T \nless G$.

Conversely, suppose $T \ll G$. Then $\exists p$ with $T_{p} \nless G$. Let K be a proper fully invariant subgroup with $K+T_{p}=G$. We cannot have T_{p} divisible, for then $K \supseteq \operatorname{Hom}\left(G, T_{p}\right) K=T_{p}$. (If $x \in K, o(x)=\infty$, and $t \in T_{p}$, the map $Z x \rightarrow Z t$ extends to G.)
G / T_{p} is p divisible if and only if $K \subseteq p G+T_{p}$. Assume that G / T_{p} is not p divisible. Then there is an $x \in K \backslash p G+T_{p}$. Therefore, $\forall t \in T_{p}$, the p-height of $x+t$ in $G, h_{p}^{G}(x+t)$, is zero.

Thus, for every positive integer $l, \bar{x}=x+p^{l} G$ must have order exactly p^{l} in $G / p^{l} G$. But then, $\forall t \in T_{p}$, we can construct an endomorphism of G mapping $x \rightarrow \bar{x} \rightarrow t$. This implies $K \supseteqq T_{p}$, a contradiction. The theorem follows.
2. T as an essential submodule of G-basic results. We next consider the more difficult problem of deciding when ${ }_{8} T$ is essential in $G(T$ ess $G)$. We first dispose of the nonreduced case.

Theorem 2. Let G be a nonreduced group. Then Tess G if and only if T contains a $Z\left(p^{\infty}\right)$.

Proof. If $T \supseteq Z\left(p^{\infty}\right)$ then, $\forall x \in G$ with $o(x)=\infty, \exists \alpha \in \mathscr{E}$ with $0 \neq \alpha(x) \in Z\left(p^{\infty}\right)$. This, clearly, is enough to imply T ess G.

Conversely, suppose T contains no $Z\left(p^{\infty}\right)$. Then, since G is not reduced, the maximum divisible subgroup D of G is nontrivial and torsion free. Hence $T \cap D=0$, so T is not essential in G.

From now on we assume G is reduced.
To investigate the question of when T ess G, it is natural to
consider the \mathscr{E} injective hulls. Let $I(G)$ be the injective hull of the module ${ }_{8} G$. Since ${ }_{8} T \leqq{ }_{8} G$ we can regard $I(T)$, the injective hull of $\mathscr{E} T$, as a maximal \mathscr{E} essential extension of T in $I(G)$. If $I(T)$ is constructed in this way we have an \mathscr{E} decomposition: $I(G)=I(T) \oplus$ X. Clearly, T ess G if and only if $X=(0)$.

Theorem 3. Let X be as above. Then X is torsion free divisible as an abelian group.

Proof. If $t(X)$, the torsion subgroup of X, were nonzero, then $I(T) \oplus t(X)$ would be an \mathscr{E} essential extension of T in $I(G)$ properly containing $I(T)$-a contradiction. Thus, X is torsion free. Since X is an injective module, X must also be divisible.

Corollary. Tess G if and only if $I(T)$ and $I(G)$ are isomorphic \mathscr{E} modules.

Proof. Suppose $\theta: I(T) \rightarrow I(G)$ is an \mathscr{E} isomorphism. Then $\theta(T)$ ess $I(G)$. By Theorem $3, \theta(T) \cap X=(0)$. Thus, $X=(0)$ and T ess G.

The next theorem is central for our results.
THEOREM 4. T is a pure subgroup of $I(G)(T \triangleleft I(G))$.
Proof. Let $D(G)$ be the Z injective hull of G and let A be the injective left \mathscr{E} module $\operatorname{Hom}_{Z}(\mathscr{E}, D(G))$. Regard $G \cong A$ via $G \cong$ $\operatorname{Hom}_{\mathscr{G}}(\mathscr{E}, G)$ and take $I(G)$ to be a maximal \mathscr{E} essential extension of G in A. It suffices to show $T \triangleleft A$. Let $\delta \in T$ with $p \delta=0$. Suppose $h_{p}^{\tau}(\delta)=m<\infty$, but $\delta=p^{m+1} \alpha, \alpha \in A$.

Write $\delta=p^{m} \delta^{\prime}, \delta^{\prime} \in T$. Then $T=\left\langle\delta^{\prime}\right\rangle \oplus T^{\prime}([1]$, Corollary 27.2). Let $\pi \in \mathscr{E}$ be projection onto $\left\langle\delta^{\prime}\right\rangle$. Then $\delta(\pi)=\pi(\delta)=\delta=p^{m+1} \alpha(\pi)=$ $\alpha\left(p^{m+1} \pi\right)=0-$ a contradiction. Thus, we have proved: $\delta \in T[p] \rightarrow$ $h_{p}^{T}(\delta)=h_{p}^{A}(\delta)$. This shows $T \triangleleft A$ ([1], (h), p. 114).

Corollary 1. If T is a torsion group, $E=\operatorname{End} T$, then $T \triangleleft$ $I\left({ }_{E} T\right)$.

This is proved by putting $G=T$ in the above.
Corollary 2. Suppose $T \subset G$ with $T^{1}=G^{1}, G / T$ divisible. Then T ess G. (Here $T^{1}\left[G^{1}\right]$ denotes the first Ulm subgroup of T [G].)

Proof. Since $T \triangleleft I(G), G / T$ divisible, we have $G \triangleleft I(G)$. If
$G^{1}=T^{1}$ and X is as in Theorem $3, X \cap G=(0)$, so $X=(0)$. Thus, T ess G.

Corollary 3. Let $T \subset G$ with $T^{1}=(0)$. Then $I(T)^{1}=(0)$.
Proof. $I(T)^{1}$ is an \mathscr{E} submodule of $I(T)$. Since $T^{1}=(0)$ and $T \triangleleft I(T), I(T)^{1} \cap T=(0) . \quad$ Thus, $I(T)^{1}=(0)$.

Theorem 5. Let $T \subset G$ with $Q \nsubseteq I(T)$. Then TFAE: 1. Tess G; 2. $I(T) \cong I(G)$ as abelian groups; 3. $Q \nsubseteq I(G)$. Moreover, if 1-3 hold, then $T^{1}=G^{1}$.

Proof. The implications $1 \rightarrow 2,2 \rightarrow 3$ are obvious. If $Q \nsubseteq I(G)$, then the X of Theorem 3 is zero, so T ess G.

To prove the additional statement, note that $I(T)$ is an algebraically compact group ([1], p. 178) which, by assumption, contains no Q's. Thus, there can be no elements of infinite order in $I(T)^{1}$. If $1-3$ hold, the same is true for $I(G)^{1}$. Thus, in this case, $G^{1}=T^{1}$.

Corollary. Let $T \subset G$ with $T^{1}=(0)$. Then conditions $1-3$ are equivalent. Moreover, if $1-3$ hold, then $G^{1}=(0)$.

Proof. If $T^{1}=(0)$, then $I(T)^{1}=(0)$, so $Q \nsubseteq I(T)$.
Theorem 5 raises the questions: When are $I(T)$ and $I(G)$ isomorphic as abelian groups? Is this sufficient for T ess G ? Here is a partial result.

Theorem 6. Let \bar{I} be the \mathscr{E} injective hull of the factor module G / T. Write $I(T)=H \oplus K$, where H is the maximal torsion free divisible subgroup of $I(T)$. Let $r=\operatorname{rank} H, \bar{r}=\operatorname{rank} \bar{I}$. If r is infinite and $r \geqq \bar{r}$, then $I(G) \stackrel{(}{\cong} I(T)$.

Proof. Embed $I(G)$ into $I(T) \oplus \bar{I}$ in the standard way (via $\alpha \oplus \beta$ where α and β are the extensions to $I(G)$ of $T \subset I(T)$ and $G \rightarrow$ $G / T \subset \bar{I}$ respectively). Then, as \mathscr{E} modules, $I(G) \oplus Y \cong I(T) \oplus \bar{I}$. Since $I(G)=I(T) \oplus X$, we have:

$$
\begin{equation*}
I(T) \oplus X \oplus Y \cong I(T) \oplus \bar{I} \tag{*}
\end{equation*}
$$

The additive group of \bar{I} is torsion free divisible, since \bar{I} is the injective hull of a module whose additive group is torsion free. Thus, the number of Q 's on the right-hand side of (*) is $r+\bar{r}=r$, so $\operatorname{rank} X \leqq r$. But then, $I(G)=I(T) \oplus X \xlongequal{\cong} I(T)$.

Example. For each prime p, let T_{p} be the group generated by $\left\{a_{i} \mid i=0,1,2,3, \cdots\right\}$ with relations $\left\{p a_{0}=0, p^{n} a_{n}=a_{0}, n=1,2,3\right.$, $\cdots\}$. Let $T=\bigoplus_{p} T_{p}$ and let $G=Q \oplus T$. Then $\bar{r}=1$ and (as we will see in Theorem 13) $r \geqq c$. Thus, $I(G) \cong I(T)$. Since T is reduced, T is not essential in G.
3. T as an essential submodule of G-some special cases. In this section we consider the essentiality of T in G in some special cases. First we consider the situation for bounded T. The following theorem shows if T is bounded, then T is never essential in G.

Theorem 7. Let $T \subset G$ with $n T=(0)$ and let $\bar{I}=I(G / T)$. Then:

1. $n I(T)=(0)$;
2. $I(G)$ is \mathscr{E} isomorphic to $I(T) \oplus \bar{I}$.

Proof. Let $D(G), D(T), D(G / T)$ be the Z injective hulls of G, $T, G / T$ and let A, B, C be the injective left \mathscr{E} modules $\operatorname{Hom}_{z}(\mathscr{E}, D(M))$ where $M=G, T, G / T$, respectively. As in Theorem 4, regard $T \subseteq$ $G \subseteq I(G) \subseteq A$. Suppressing the obvious isomorphism, write $A=B \oplus$ C-an \mathscr{E} direct sum. Under these identifications $T=B \cap G$.

To prove (1), recall $T \triangleleft A$, so in this case, $T \cap n A=n T=(0)$. Thus, if $x \in I(T)$ with $n x \neq 0$, then, for some $\lambda \in \mathscr{E}, 0 \neq \lambda(n x) \in$ $T \cap n A$-a contradiction.

To prove (2), first note that $B \cap I(G)$ is an essential extension of $T=B \cap G$. Choose $I(T) \subseteq I(G)$ as before-with the additional requirement $I(T) \supseteqq B \cap I(G)$.

Let $x \in I(T)$, say $x=b+c, b \in B, c \in C$. Since C is torsion free and $n x=0$, we must have $c=0$. Thus, $I(T) \subseteq B$. It follows that $I(T)=B \cap I(G)$.

Let $\pi \in \operatorname{Hom}_{\mathscr{E}}(A, C)$ be projection onto C and let $\pi^{\prime}=\left.\pi\right|_{I(G)}$. Clearly, $\operatorname{Ker} \pi^{\prime}=B \cap I(G)=I(T)$, so write $I(G)=I(T) \oplus Y$ with π^{\prime} a monomorphism on Y.

To finish the proof of (2), we claim $\pi^{\prime}(Y)$ is an \mathscr{E} injective hull of G / T. To see this, first note that if G / T is embedded in C via $e: g+T \rightarrow$ evaluation at $g+T$, we have $e(G / T)=\pi^{\prime}(G) \subseteq \pi^{\prime}(Y)$, so $\pi^{\prime}(Y)$ is an injective containing $e(G / T) \cong G / T$. Furthermore, if $0 \neq$ $\pi^{\prime}(y) \in \pi^{\prime}(Y)$, then $\exists \lambda \in \mathscr{E}$ with $0 \neq \lambda(y) \in G \cap Y$. Thus, $0 \neq \pi^{\prime} \lambda(y)=$ $\lambda \pi^{\prime}(y) \in \pi^{\prime}(G)=e(G / T)$. This proves that $e(G / T)$ ess $\pi^{\prime}(Y)$. The theorem follows.

Example. Let $T=\bigoplus_{p \in P} Z(p)$, where P is an infinite set of primes, and let $G=Z \oplus T$. Then T ess G, so $I(G)=I(T)$ and, in view of Theorem $4, I(T)^{1}=(0)$. Moreover, it is easy to see that $\bar{I} \cong{ }_{z} Q$. Thus, if T is an unbounded group direct summand of G, we need
not have the decomposition of $I(G)$ given in (2).
The following gives one characterization of T ess G in the splitting case.

THEOREM 8. Let $T=\bigoplus T_{p} \subset G$. Let $k_{p}=$ l.u.b. $\left\{l \mid G\right.$ has a $Z\left(p^{l}\right)$ summand $\}$ and let $H=\left\{x \in G \mid o(x)=\infty, h_{p}^{G}(x) \geqq k_{p} \forall p\right\}$. Then:
(1) If $H=(0), T \operatorname{ess} G$;
(2) If $G=T \oplus F$ and T ess G, then $H=(0)$.

Proof. (1) is clear. To prove (2) suppose $G=T \oplus F$ and $0 \neq$ $x \in H$. Then, for some positive integer $n, 0 \neq n x \in H \cap F$. Clearly, $n x$ cannot be mapped by an endomorphism of G onto any nonzero element of a bounded T_{p}.

If T_{p} is unbounded, then G has an unbounded p-basic subgroup, so $k_{p}=\infty$. Thus, $h_{p}^{G}(n x)=h_{p}^{F}(n x)=\infty$. If $\lambda \in \mathscr{E}$ with $0 \neq \lambda(n x) \in T_{p}$, then λ restricts to a nonzero map of the subgroup $\left\{m / p^{k}(n x) \mid m, k \in\right.$ $Z\} \subseteq F$ into T_{p}. This is impossible since T_{p} is reduced. Thus, $n x$ cannot be mapped by an endomorphism of G onto a nonzero element of any T_{p}. The result follows.

It is easy to describe when T ess G for algebraically compact G.
Theorem 9. Let $T=\bigoplus T_{p} \subset G$ with G (reduced) algebraically compact. Write G as a product of p-adic modules, $G=\Pi G_{p}$. Then T ess G if and only if, $\forall p$, either $T_{p}=G_{p}$ or T_{p} is unbounded.

Proof. It is immediate that T ess G if and only if, $\forall p, T_{p}$ ess G_{p}. If $\exists p$ with $T_{p} \neq G_{p}$ and T_{p} bounded, then T_{p} is not essential in G_{p}.

Conversely, by considering projections onto summands of a p-adic basis for G_{p}, it is easy to see that T_{p} unbounded implies T_{p} ess G_{p}.

We close this section with:
Theorem 10. Let $T \subset G$ with G (reduced) cotorsion, T a p-group, $T^{1}=(0)$. Then T is not essential in G.

Proof. If T is bounded, T is not essential. If T is an unbounded p-group, $(0) \neq P \operatorname{ext}(Q / Z, T)=[\operatorname{Ext}(Q / Z, T)]^{1}$. Since G is reduced cotorsion, $G \cong \operatorname{Ext}(Q / Z, G) \cong \operatorname{Ext}(Q / Z, T) \oplus \operatorname{Ext}(Q / Z, G / T)$ ([1] H, p. 234 and Lemma 55.2). Thus $G^{1} \neq(0), T^{1}=(0)$ and T cannot be essential in G.
4. The structure of $I(T)$. In this section we prove three
theorems concerning the structure of $I(T)$. With trivial modification, each of these theorems can be rewritten to give the same result for the injective hull of a torsion group over its own endomorphism ring.

Since $I(T)$ is algebraically compact, it is natural to try to find out what its p-basic subgroups look like as a function of the p-basic subgroups of T. In the case $T^{1}=(0)$, this information would characterize $I(T)$ as an abelian group. The next result shows that $I(T)$ is generally large with respect to T.

Theorem 11. Let $B\left[B^{\prime}\right]$ be a p-basic subgroup of $T[I(T)]$. Let $f=$ final rank B. If $Z\left(p^{k}\right)$ occurs in B, then B^{\prime} contains $\bigoplus_{r \in \bar{\sim}}\left\langle z_{r}\right\rangle$ with $|. \overline{\mathscr{A}}|=2^{2^{f}}, o\left(z_{\gamma}\right) \geqq p^{k}, \forall \gamma$.

Proof. Suppose B contains a $Z\left(p^{k}\right)$. Write $G=\langle b\rangle \oplus Y, o(b)=p^{k}$, and let $\bigoplus_{\alpha \in A}\left\langle b_{\alpha}\right\rangle \subseteq B$ with $|A|=f, o\left(b_{\alpha}\right) \geqq p^{k} \forall \alpha$.

Choose $\left\{A_{\beta} \mid \beta \in \mathscr{A}\right\}$ a collection of subsets of A such that: $|\mathscr{A}|=2^{f}$, if F is any finite subset of \mathscr{A} and $\beta_{0} \in F$ then $\left[A_{\beta_{0}} \mid \bigcup_{\beta \neq \beta_{0}, \beta \in F} A_{\beta}\right] \neq \varnothing$. (See [1[, Lemma 46.2.)

For $\beta \in \mathscr{A}$ define $\delta_{\beta} \in \operatorname{Hom}\left(\oplus\left\langle b_{\alpha}\right\rangle,\langle b\rangle\right)$ by $\delta_{\beta}\left(b_{\alpha}\right)=X_{\beta}(\alpha) b-X_{\beta}$ the characteristic function of A_{β}. Extend each δ_{β} to \mathscr{E}.

It is clear that the left ideals $\mathscr{E} \delta_{\beta}$ form a direct $\operatorname{sum} s$ in \mathscr{E}.
Let $\left\{C_{r} \mid \gamma \in \mathscr{A}\right\}$ be a family of subsets of . \mathscr{A} with the above independence property, $|. \Omega \overline{\mathscr{A}}|=2^{2 f}$. Consider:

Here λ_{Γ} is the \mathscr{E} map defined by $\lambda_{\Gamma}\left(\delta_{\beta}\right)=X_{C_{\gamma}}(\beta) b, X_{c_{\gamma}}$ the characteristic function of the subset C_{Y}, and λ_{r}^{\prime} is the map obtained by injectively.

Let $z_{r}=\lambda_{r}^{\prime}(1)$. We have $\delta_{\beta}\left(z_{r}\right)=X_{C_{r}}(\beta) b$. It is easy to see from this equation that $\left\{z_{X} \mid X \in \mathscr{A}\right\}$ is a p independent set of elements of order $\geqq p^{k}$. This can be included as a summand of B^{\prime}. The result follows.

Continuing with the same notation we have:
Theorem 12. If B^{\prime} contains a $Z\left(p^{k}\right)$ so does B.
Proof. If B^{\prime} contains $Z\left(p^{k}\right)$ then $I(T)$ has a $Z\left(p^{k}\right)$ summand.

Therefore, so does Hom ($\mathscr{E}, D(T))$. ($I(T)$ can be regarded as a direct summand of $\operatorname{Hom}(\mathscr{E}, D(T))$. Therefore, so does $\operatorname{Hom}\left(\mathscr{E}, D(T)_{p}\right)$.

The pure exact sequence $0 \rightarrow t(\mathscr{E}) \rightarrow \mathscr{E} \rightarrow \mathscr{E} / t(\mathscr{E}) \rightarrow 0$ yields $0 \rightarrow$ $[\mathscr{E} / t(\mathscr{E})]^{*} \rightarrow \mathscr{E}^{*} \rightarrow t(\mathscr{E})^{*} \rightarrow 0$, where $M^{*}=\operatorname{Hom}_{Z}\left(M, D(T)_{p}\right)$. This sequence is pure exact, so splits, since all its terms are algebraically compact. (In this proof "splits" means splits as an exact sequence of abelian groups.) Since $[\mathscr{E} / t(\mathscr{E})]^{*}$ is torsion free, $t(\mathscr{E})^{*}$ must have a $Z\left(p^{k}\right)$ summand.

Now $t(\mathscr{E})^{*}=\left[t(\mathscr{E})_{p}\right]^{*}$. Let B_{0} be a basic subgroup for $t(\mathscr{E})_{p}$. Repeat the above procedure with $0 \rightarrow B_{0} \rightarrow t(\mathscr{E})_{p} \rightarrow t(\mathscr{E})_{p} / B_{0} \rightarrow 0$ to conclude that B_{0}^{*} must have a $Z\left(p^{k}\right)$ summand.

Since B_{0} is a direct sum of cyclics, B_{0} itself must have a $Z\left(p^{k}\right)$ summand. Thus, \mathscr{E} and, therefore, Hom $\left(G, T_{p}\right)$ have $Z\left(p^{k}\right)$ summands.

Let \bar{B} be a p-basic subgroup for G. The p-pure exact sequence $0 \rightarrow \bar{B} \rightarrow G \rightarrow G / \bar{B} \rightarrow 0$ yields the p-pure exact sequence $0 \rightarrow(G / \bar{B})^{\square} \rightarrow$ $G^{\Delta} \rightarrow(\bar{B})^{4}$ where $M^{\Delta}=\operatorname{Hom}_{Z}\left(M, T_{p}\right)$. Since $(G / \bar{B})^{4} \cong W \oplus \oplus_{r} Q_{r}$, where W is the p-adic completion of a direct sum of copies of the p-adic integers, this sequence also splits. It's not hard to show that $(\bar{B})^{d}$ must have a $Z\left(p^{k}\right)$ summand.

Say $\bar{B}=\bar{B}_{1} \oplus \bar{B}_{2}$, where $\bar{B}_{1}=\bigoplus_{\alpha} Z\left(p^{l}\right)$ is a direct sum of finite p-power cyclics and $\bar{B}_{2}=\bigoplus_{\beta} Z_{\beta}$ is free. Then $\bar{B}^{4}=\left(\bar{B}_{1}\right)^{4} \oplus\left(\bar{B}_{2}\right)^{4}$, so one of these groups must contain a $Z\left(p^{k}\right)$ summand.

If $\left(\bar{B}_{1}\right)^{4} \cong \prod_{\alpha} T_{p}\left[p^{l_{\alpha}}\right]$ has a $Z\left(p^{k}\right)$ summand, then \bar{B}_{1} itself must, so T does.

If $\left(\bar{B}_{2}\right)^{4} \cong \Pi=\Pi_{\beta}\left(T_{p}\right)_{\beta}$ has a $Z\left(p^{k}\right)$ summand, again T does. (If $\Pi=\langle y\rangle \oplus Y, o(y)=p^{k}$, then $h_{p}^{\Pi}\left(p^{k-1} y\right)=k-1$. If $y=\left[y_{\beta}\right], y_{\beta} \in\left(T_{p}\right)_{\beta}$, then, for some $\beta_{0}, h_{p}^{\left(T p^{\prime}\right)^{\beta_{0}}}\left(p^{k-1} y_{\beta_{0}}\right)=k-1$ and, therefore, $o\left(p^{k-1} y_{\beta_{0}}\right)=p$. Thus, $y_{\beta_{0}}$ is contained in a $Z\left(p^{k}\right)$ summand of $\left(T_{p}\right)_{\beta_{0}}$.)

Thus, in either of the above cases, B contains a $Z\left(p^{k}\right)$.
In view of Theorem 5, it is of interest to discover when $Q \subseteq I(T)$. (Obviously, we must have $T^{1} \neq(0)$.) We are unable to decide if $T^{1} \neq(0)$ is also sufficient for $Q \subseteq I(T)$. We close the paper with a result in this direction. First, we need two lemmas.

Lemma 2. Let $T=\oplus T_{p} \subset G$ and suppose $T_{p}^{1} \neq(0)$ whenever $T_{p} \neq(0) . \quad$ Then ${ }_{8} T^{1} \operatorname{ess}_{\mathscr{E}} T$.

Proof. If $t \in T \backslash T^{1}$, then $\Pi(t) \neq 0, \Pi$ the projection onto $\langle a\rangle$, some $Z\left(p^{k}\right)$ summand of G. It is easy to construct $\theta \in \operatorname{Hom}_{z}\left(\langle a\rangle, T_{p}^{1}\right)$ with $\theta \Pi(t) \neq 0$. Thus, ${ }_{\mathscr{8}} T^{1} \operatorname{ess}_{\mathscr{8}} T$.

Let $\overline{\mathscr{E}}=\mathscr{E} / t(\mathscr{E})$. Since $t(\mathscr{E}) T^{1}=(0)$ we can regard T^{1} as an $\overline{\mathscr{E}}$ module.

Lemma 3. Let \mathscr{F} be the $\overline{\mathscr{E}}$ injective hull of T^{1} and let D be
the maximal divisible subgroup of $I(T)$. Then, under the assumption of Lemma 2, $\mathscr{J} \cong D$.

Proof. By Lemma 2, ${ }_{\delta} T^{1}$ ess $_{\mathscr{E}} T$, so $I_{\mathscr{E}}\left(T^{1}\right)=I(T)$.
Now \mathscr{F} is an \mathscr{E} essential extension of T^{1}, so we can regard $\mathscr{F} \subset I_{e}\left(T^{1}\right)=I(T)$. Since \mathscr{F} is an injective module over a ring with torsion free additive group, $\mathscr{F} \subseteq D$. But D is an $\overline{\mathscr{E}}$ essential extension of T^{1}. Thus, $\mathscr{F}=D$.

Theorem 13. Let $E=\operatorname{End} T, \bar{E}=E / t(E)$ and suppose $R: \overline{\mathscr{E}} \rightarrow$ \bar{E} is onto, where R is the restriction map. Then, if T^{1} is unbounded, $I(T) \supseteqq \bigoplus_{c} Q$.

Proof. Let $T_{1}=\left\{\oplus T_{p} \mid T_{p}^{1} \neq 0\right\}, \quad T_{2}=\left\{\oplus T_{p} \mid T_{p}^{1}=(0)\right\} . \quad$ Clearly, T_{1} and T_{2} are \mathscr{E} submodules and $I(T) \cong I\left(T_{1}\right) \oplus I\left(T_{2}\right)$. It suffices to show $I\left(T_{1}\right) \supseteq \bigoplus_{c} Q$, so, without loss of generality, assume $T=T_{1}$. Then Lemma 3 applies, so it is enough to construct c independent elements of infinite order in $\mathscr{F} \cong D$.

Choose $\left\{x_{i} \mid i=1,2,3, \cdots\right\} \subseteq T^{1}$ with $\left\{o\left(x_{i}\right)=p_{i}^{\left.s_{i}\right\}}\right.$ unbounded. For each fixed i, choose distinct $\bigoplus_{j=1}^{\infty}\left\langle b_{i j}\right\rangle$ part of a p_{i}-basic subgroup of T such that $\sum_{i, j}\left\langle b_{i j}\right\rangle$ is direct and such that $o\left(b_{i j}\right) \geqq p_{i}^{j^{2}}$. (Each T_{p} is reduced with $T_{p}^{1} \neq(0)$, thus has an unbounded basic.) Finally, choose $\left\{x_{i j}\right\} \subseteq T$ with $p_{i}^{j} x_{i j}=x_{i}$.

Now define $\delta_{i} \in \operatorname{Hom}_{Z}\left(\bigoplus_{j}\left\langle b_{i j}\right\rangle, T_{p_{i}}\right)$ by $\delta_{i}\left(b_{i j}\right)=x_{i j}$. Each δ_{i} is a small homomorphism (see [1], Lemma 46.3) so each δ_{i} extends to an endomorphism of $T_{p_{i}}$ and, thus, to an endomorphism of T. Still call this extension δ_{i}.

Lemma 4. $\quad \sum_{i} \overline{\mathscr{E}}_{\bar{\delta}}^{i}$ is an $\overline{\mathscr{E}}$ direct sum in \bar{E}. Here $\bar{\delta}_{i}=\delta_{i}+t(E)$ and \bar{E} is regarded as a left $\overline{\mathscr{E}}$ module in the natural way.

The proof of Lemma 4 is not difficult and is left to the reader.
Let $\left\{N_{\alpha} \mid \alpha \in A\right\}$ be a family of subsets of the natural numbers with $|A|=c$ such that if $F \cong A$ is finite and $\alpha_{0} \in F$ then $\left[N_{\alpha_{0}} \mid \bigcup_{\alpha \in F, \alpha \neq \alpha_{0}} N_{\alpha}\right]$ is countable.

For all $\alpha \in A$, consider the diagram of \bar{E} modules:

Here λ_{α} is the $\overline{\mathscr{E}}$ map defined by $\lambda_{\alpha}\left(\bar{\delta}_{i}\right)=X_{N_{\alpha}}(i) x_{i}, X_{N_{\alpha}}$ the characteristic function of N_{α}, and $\lambda_{\alpha}^{\prime}$ the $\overline{\mathscr{E}}$ map obtained by injectivity.

Set $z_{\alpha}=\lambda_{\alpha}^{\prime}(\overline{1}), \overline{1}$ the identity of the ring \bar{E}. Since $R: \overline{\mathscr{E}} \rightarrow \bar{E}$
is onto, choose $\bar{\sigma}_{i} \in \overline{\mathscr{E}}$ with $R\left(\bar{\sigma}_{i}\right)=\bar{\delta}_{i}$.
Then $\bar{\sigma}_{\imath}\left(z_{\alpha}\right)=\lambda_{\alpha}^{\prime}\left(\bar{\sigma}_{i} \overline{1}\right)=\lambda_{\alpha}^{\prime}\left(\bar{\sigma}_{i}\right)=X_{N_{\alpha}}(i) x_{i}$. This equation, together with $\left\{o\left(x_{i}\right)\right\}$ unbounded, easily implies that $\left\{z_{\alpha} \mid \alpha \in A\right\}$ is an independent set of elements of infinite order. Thus, $I(T) \supseteqq \bigoplus_{c} Q$.

Corollary. Let T be a torsion group with T^{1} unbounded and $E=\operatorname{End} T . \quad$ Then $I_{E}(T) \supseteqq \bigoplus_{c} Q$.

Added in proof. The proof of Theorem 13 can be modified, using a procedure similar to that of Theorem 11, to construct $\bigoplus_{2^{c}} Q \subseteq I(T)$.

References

1. L. Fuchs, Infinite Abelian Groups, Vol. 1, Academic Press, New York, (1970).

Received July 24, 1978 and in revised form November 6, 1978. This paper was written while I was visiting Tulane University. I would like to thank Professor Laszlo Fuchs for his generous advice and assistance during my visit.

The University of Connecticut
Storrs, CT 06268

