A GEOMETRIC INEQUALITY WITH APPLICATIONS TO LINEAR FORMS

Jeffrey D. VaAler

Let C_{N} be a cube of volume one centered at the origin in R^{N} and let P_{K} be a K-dimensional subspace of R^{N}. We prove that $C_{N} \cap P_{K}$ has K-dimensional volume greater than or equal to one. As an application of this inequality we obtain a precise version of Minkowski's linear forms theorem. We also state a conjecture which would allow our method to be generalized.

1. Introduction. Let $C_{N}=[-1 / 2,1 / 2]^{N}$ be the N-dimensional cube of volume one centered at the origin in \boldsymbol{R}^{N} and suppose that P_{K} is a K-dimensional linear subspace of \boldsymbol{R}^{N}. Dr. Anton Good has conjectured that the K-dimensional volume of $P_{K} \cap C_{N}$ is always greater than or equal to one. In case $K=N-1$ this has recently been proved by Hensley [6], who also obtained upper bounds for this volume. Our purpose in this paper is to prove the conjecture for arbitrary K and to give some applications to Minkowski's theorem on linear forms. In fact we prove a more general inequality for the product of spheres of various dimensions which contains the conjecture as a special case.

We write \bar{x} for the column vector $\left(\begin{array}{c}x_{1} \\ \cdots \\ x_{n}\end{array}\right)$ in \boldsymbol{R}^{n} and

$$
|\bar{x}|=\left(\sum_{j=1}^{n}\left(x_{j}\right)^{2}\right)^{1 / 2}
$$

for its length. We define the sphere S_{n} by

$$
S_{n}=\left\{\bar{x} \in \boldsymbol{R}^{n}:|\bar{x}| \leqq \rho_{n}\right\}
$$

where $\rho_{n}=\pi^{-1 / 2}\{\Gamma(n / 2+1)\}^{1 / n}$. It follows that $\mu_{n}\left(S_{n}\right)=1$ where μ_{n} is Lebesgue measure on \boldsymbol{R}^{n}. Also we let $\chi_{U}(\bar{x})$ denote the characteristic function of a subset U in \boldsymbol{R}^{n}.

Our first main result is contained in the following theorem.
Theorem 1. Suppose that $n_{1}, n_{2}, \cdots, n_{J}$ are positive integers, $Q_{N}=S_{n_{1}} \times S_{n_{2}} \times \cdots \times S_{n_{J}}$ is in $\boldsymbol{R}^{N}, N=n_{1}+n_{2}+\cdots+n_{J}$, and A is a real $N \times K$ matrix, $\operatorname{rank}(A)=K$. Then

$$
\begin{equation*}
\left|\operatorname{det} A^{T} A\right|^{-1 / 2} \leqq \int_{R^{K}} \chi_{Q_{N}}(A \bar{x}) d \mu_{K}(\bar{x}) \tag{1.1}
\end{equation*}
$$

where A^{T} is the transpose of A.

We note that if $\operatorname{rank}(A)<K$ then each side of (1.1) is infinite. From Theorem 1 we easily deduce a lower bound for $\mu_{K}\left(Q_{N} \cap P_{K}\right)$.

Corollary. Let Q_{N} be as in Theorem 1 and let P_{K} be a K dimensional subspace of \boldsymbol{R}^{N}. Then $\mu_{K}\left(Q_{N} \cap P_{K}\right) \geqq 1$.

Proof. Choose A in Theorem 1 so that the columns of A form an orthonormal basis for P_{K} in \boldsymbol{R}^{N}. Then the left hand side of (1.1) is 1 while the right hand side is $\mu_{K}\left(Q_{N} \cap P_{K}\right)$.

The corollary clearly contains Good's conjecture since $Q_{N}=C_{N}$ if $n_{j}=1$ and $J=N$.

Next we suppose that $L_{j}(\bar{x}), j=1,2, \cdots, N$ are N linear forms in K variables,

$$
L_{j}(\bar{x})=\sum_{k=1}^{K} a_{j k} x_{k},
$$

so that $A=\left(a_{j k}\right)$ is an $N \times K$ matrix. We assume that the forms L_{j} are real for $j=1,2, \cdots, r$ and that the remaining forms consist of s pairs of complex conjugate forms arranged so that $L_{r+2 j-1}=\bar{L}_{r+2 j}$ for $j=1,2, \cdots, s$. Thus $N=r+2 s$. Let $\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{N}$ be positive with $\varepsilon_{r+2 j-1}=\varepsilon_{r+2 j}$ for $j=1,2, \cdots, s$. We define the $N \times N$ diagonal matrix E by $E=\left(c_{j} \delta_{j k}\right)$ where $c_{j}=\varepsilon_{j}^{-1}$ if $j=1,2, \cdots, r, c_{j}=(2 / \pi)^{1 / 2} \varepsilon_{j}^{-1}$ if $j=r+1, r+2, \cdots, N$ and $\delta_{j k}$ is the Kronecker delta. Theorem 1 allows us to prove the following precise version of Minkowski's classical result on linear forms.

Theorem 2. Let M be a positive integer and suppose that

$$
\begin{equation*}
M\left|\operatorname{det} A^{*} E^{2} A\right|^{1 / 2} \leqq 1 \tag{1.2}
\end{equation*}
$$

where A^{*} is the complex conjugate transpose of the matrix A. Then there exist at least M distinct pairs of nonzero lattice points $\pm \bar{v}_{m}$, $m=1,2, \cdots, M$, such that

$$
\begin{equation*}
\left|L_{j}\left(\pm \bar{v}_{m}\right)\right| \leqq \varepsilon_{j} \tag{1.3}
\end{equation*}
$$

for each j and each m. In particular if $\left|\operatorname{det} A^{*} A\right|>0$ then there exists a pair of nonzero lattice points $\pm \bar{v}$ such that

$$
\begin{equation*}
\left|L_{j}(\pm \bar{v})\right| \leqq\left|\operatorname{det} A^{*} A\right|^{1 / 2 K} \tag{1.4}
\end{equation*}
$$

for $j=1,2, \cdots, r$, and

$$
\begin{equation*}
\left.\left|L_{j}(\pm \bar{v}) \leqq\left(\frac{2}{\pi}\right)^{1 / 2}\right| \operatorname{det} A^{*} A\right|^{1 / 2 K} \tag{1.5}
\end{equation*}
$$

for $j=r+1, r+2, \cdots, N$.

Theorem 2 was first proved in the case $N \leqq K$ and $M=1$ by Minkowski [8, p. 104]. Subsequently the extension of Minkowski's convex body theorem by van der Corput [5] allowed Theorem 2 to be proved for $N \leqq K$ and arbitrary M. Of course if $N=K$ then (1.2) becomes the more familiar condition

$$
M\left(\frac{2}{\pi}\right)^{s}|\operatorname{det} A| \leqq \varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{N}
$$

and if $N<K$ then (1.2) is trivially satisfied since the left hand side is zero. The novelty in our result is that Theorem 2 now holds for $1 \leqq K<N$. Previously in the case $1 \leqq K<N$ we knew only that (1.3) held if

$$
\begin{equation*}
2^{K} M \leqq \mu_{K}\left(\left(\bar{x} \in \boldsymbol{R}^{K}:\left|L_{j}(\bar{x})\right| \leqq \varepsilon_{j}, j=1,2, \cdots, N\right\}\right) \tag{1.6}
\end{equation*}
$$

We prove Theorem 2 by showing that the right hand side of (1.6) is bounded from below by $2^{K}\left|\operatorname{det} A^{*} E^{2} A\right|^{-1 / 2}$. As will be clear from the proof, Theorem 2 could be generalized to include linear forms with values in \boldsymbol{R}^{n} for various n.

In $\S 5$ we state a conjecture which would allow us to obtain a significant improvement in Theorem 1. Specifically, we deduce from this conjecture an analogue of Theorem 1 in which Q_{N} is replaced by an arbitrary closed, convex, symmetric subset of \boldsymbol{R}^{N} having N dimensional volume equal to one.

The author wishes to thank Professors Patrick Brockett, Douglas Hensley, and Bruce Palka for several helpful discussions on the subject of this paper.
2. Preliminary results. In this section we briefly summerize some facts about logarithmically concave measures and functions. A more detailed discription can be found in the papers of Kanter [7] and Prékopa [9].

A function $f: \boldsymbol{R}^{n} \rightarrow[0, \infty)$ is said to be log-concave if for every pair of vectors \bar{x}_{1}, \bar{x}_{2} in \boldsymbol{R}^{n} and every $\lambda, 0<\lambda<1$, we have

$$
f\left(\lambda \bar{x}_{1}+(1-\lambda) \bar{x}_{2}\right) \geqq\left(f\left(\bar{x}_{1}\right)\right)^{\lambda}\left(f\left(\bar{x}_{2}\right)\right)^{1-\lambda} .
$$

A probability measure ν defined on the measurable subsets of \boldsymbol{R}^{n} is log-concave if for every pair of open convex sets U_{1} and U_{2} in \boldsymbol{R}^{n} and every $\lambda, 0<\lambda<1$, we have

$$
\begin{equation*}
\nu\left(\lambda U_{1}+(1-\lambda) U_{2}\right) \geqq\left(\nu\left(U_{1}\right)\right)^{\lambda}\left(\nu\left(U_{2}\right)\right)^{1-\lambda}, \tag{2.1}
\end{equation*}
$$

where + on the left hand side of (2.1) indicates Minkowski addition of sets. Clearly (2.1) holds for all open convex sets U_{1} and U_{2} if and only if it holds for all closed convex sets U_{1} and U_{2}. The relationship
between log-concave measures and log-concave functions is contained in the following lemma.

Lemma 3. Let ν be a log-concave probability measure on \boldsymbol{R}^{n} and suppose that the support of ν spans the k-dimensional subspace P_{k} in \boldsymbol{R}^{n}. Then there is a log-concave probability density function f defined on P_{k} such that $d \nu=f d \mu_{k}$, where μ_{k} is k-dimensional Lebesgue measure on P_{k}. Conversely for any log-concave probability density function f defined on a k-dimensional subspace P_{k} in \boldsymbol{R}^{n}, the probability measure defined by $d \nu=f d \mu_{k}$ is log-concave, where μ_{k} is Lebesgue measure on P_{k}.

The first part of Lemma 3 is a result of Borell [2, p. 123] while the converse was proved by Prékopa [9], (see also Kanter [7, Lemma 2.1]).

Let ν_{1} and ν_{2} be probability measures on \boldsymbol{R}^{n}. We say that ν_{2} is more peaked than ν_{1} if

$$
\nu_{1}(U) \leqq \nu_{2}(U)
$$

for all closed, convex, symmetric subsets U in \boldsymbol{R}^{n}. (We recall that $U \subseteq \boldsymbol{R}^{n}$ is symmetric if $U=-U$.) If f_{1} and f_{2} are probability density functions on \boldsymbol{R}^{n} we say that f_{2} is more peaked than f_{1} if the measure $f_{2} d \mu_{n}$ is more peaked than the measure $f_{1} d \mu_{n}$. The notion of peakedness was introduced by Birnbaum [1] and Sherman [10]. A complementary relation is that of symmetric dominance in the sense of Kanter [7]. If ν_{3} and ν_{4} are measures on \boldsymbol{R}^{n} then ν_{3} symmetrically dominates ν_{4} if

$$
\nu_{3}\left(\boldsymbol{R}^{n} \backslash U\right) \geqq \nu_{4}\left(\boldsymbol{R}^{n} \backslash U\right)
$$

for all closed, convex, symmetric subsets U in \boldsymbol{R}^{n}. It is clear that if ν_{3} and ν_{4} are both probability measures then ν_{3} symmetrically dominates ν_{4} if and only if ν_{4} is more peaked than ν_{3}. For our purposes it is more convenient to work with the relation of peakedness.

If ν_{1} and ν_{2} are log-concave probability measures on \boldsymbol{R}^{n} then the convolution $\nu_{1}^{*} \nu_{2}$ is also log-concave on \boldsymbol{R}^{n} (Kanter [7, Lemma 2.3]). It follows that if ν_{1} and ν_{2} are log-concave probability measures on $\boldsymbol{R}^{n_{1}}$ and $\boldsymbol{R}^{n_{2}}$ respectively then the product measure $\nu_{1} \times \nu_{2}$ is logconcave on $\boldsymbol{R}^{n_{1}} \times \boldsymbol{R}^{n_{2}}$. Forming product measures also preserves the peakedness relation.

Lemma 4. Suppose that $\nu_{1}, \nu_{2}, \nu_{1}^{\prime}$ and ν_{2}^{\prime} are all log-concave probability measures such that ν_{1} is mome peaked than ν_{1}^{\prime} on $\boldsymbol{R}^{n_{1}}$ and
ν_{2} is more peaked than ν_{2}^{\prime} on $\boldsymbol{R}^{n_{2}}$. Then $\nu_{1} \times \nu_{2}$ is more peaked than $\nu_{1}^{\prime} \times \nu_{2}^{\prime}$ on $\boldsymbol{R}^{n_{1}} \times \boldsymbol{R}^{n_{2}}$.

For the proof of Lemma 4 we refer to Kanter [7, Corollary 3.2] where the result is obtained for the more general class of unimodal measures.
3. Proof of Theorem 1. We begin by proving the following lemma.

Lemma 5. Suppose that $n_{1}, n_{2}, \cdots, n_{J}$ are positive integers and $Q_{N}=S_{n_{1}} \times S_{n_{2}} \times \cdots \times S_{n_{J}}$ is in $\boldsymbol{R}^{N}, N=n_{1}+n_{2}+\cdots+n_{J}$. Then $\chi_{Q_{N}}(\bar{x})$ is more peaked than the normal density function $\exp \left\{-\pi|\bar{x}|^{2}\right\}$ on \boldsymbol{R}^{N}.

Proof. Since the measures $\chi_{Q_{N}}(\bar{x}) d \mu_{N}(\bar{x})$ and $\exp \left\{-\pi|\bar{x}|^{2}\right\} d \mu_{N}(\bar{x})$ are both product measures which factor in $\boldsymbol{R}^{n_{1}} \times \boldsymbol{R}^{n_{2}} \times \cdots \times \boldsymbol{R}^{n_{J}}$ it suffices to prove the peakedness relation in each factor space and then apply Lemma 4. Thus we need only show that for each positive integer $n, \chi_{S_{n}}(\bar{x})$ is more peaked than $\exp \left\{-\pi|\bar{x}|^{2}\right\}$ on \boldsymbol{R}^{n}. Of course it is trivial to verify that both of the density functions $\chi_{S_{n}}(\bar{x})$ and $\exp \left\{-\pi|\bar{x}|^{2}\right\}$ are log-concave on \boldsymbol{R}^{n}.

Let $\sum_{n-1}=\left\{\bar{x} \in \boldsymbol{R}^{n}:|\bar{x}|=1\right\}$ so that for each $\bar{x} \neq \overline{0}$ in \boldsymbol{R}^{n} we have the unique polar decomposition $\bar{x}=r \bar{x}^{\prime}$ where $r=|\bar{x}|$ and $\bar{x}^{\prime} \in \sum_{n-1}$. If U is a closed, convex, symmetric subset of \boldsymbol{R}^{n} then it follows that

$$
\begin{equation*}
\int_{U} \exp \left\{-\pi|\bar{x}|^{2}\right\} d \mu_{n}(\bar{x})=\int_{\Sigma_{n-1}} \int_{0}^{\infty} \chi_{U}\left(r \bar{x}^{\prime}\right) \exp \left\{-\pi r^{2}\right\} r^{n-1} d r d \bar{x}^{\prime}, \tag{3.1}
\end{equation*}
$$

where $d \bar{x}^{\prime}$ is the induced Lebesgue measure on \sum_{n-1}. Now for each fixed $\bar{x}^{\prime} \in \sum_{n-1}$ we have either

$$
\begin{equation*}
\chi_{U}\left(r \bar{x}^{\prime}\right) \leqq \chi_{S_{n}}\left(r \bar{x}^{\prime}\right), \quad 0 \leqq r<\infty \tag{3.2}
\end{equation*}
$$

or

$$
\begin{equation*}
\chi_{S_{n}}\left(r \bar{x}^{\prime}\right) \leqq \chi_{V}\left(r \bar{x}^{\prime}\right), \quad 0 \leqq r<\infty, \tag{3.3}
\end{equation*}
$$

since S_{n} and U are convex. If (3.2) holds at \bar{x}^{\prime} then

$$
\begin{align*}
& \int_{0}^{\infty} \chi_{U}\left(r \bar{x}^{\prime}\right) \exp \left\{-\pi r^{2}\right\} r^{n-1} d r \\
& \quad \leqq \int_{0}^{\infty} \chi_{U}\left(r \bar{x}^{\prime}\right) r^{n-1} d r=\int_{0}^{\infty} \chi_{U}\left(r \bar{x}^{\prime}\right) \chi_{S_{n}}\left(r \bar{x}^{\prime}\right) r^{n-1} d r \tag{3.4}
\end{align*}
$$

If (3.3) holds at \bar{x}^{\prime} then

$$
\begin{align*}
& \int_{0}^{\infty} \chi_{U}\left(r \bar{x}^{\prime}\right) \exp \left\{-\pi r^{2}\right\} r^{n-1} d r \\
& \quad \leqq \int_{0}^{\infty} \exp \left\{-\pi r^{2}\right\} r^{n-1} d r=n^{-1} \pi^{-n / 2} \Gamma\left(\frac{n}{2}+1\right) \tag{3.5}\\
& \quad=\int_{0}^{\infty} \chi_{S_{n}}\left(r \bar{x}^{\prime}\right) r^{n-1} d r \\
& \quad=\int_{0}^{\infty} \chi_{U}\left(r \bar{x}^{\prime}\right) \chi_{S_{n}}\left(r \bar{x}^{\prime}\right) r^{n-1} d r
\end{align*}
$$

Combining (3.1), (3.4) and (3.5) we obtain

$$
\int_{U} \exp \left\{-\pi|\bar{x}|^{2}\right\} d \mu_{n}(\bar{x}) \leqq \int_{\Sigma_{n-1}} \int_{0}^{\infty} \chi_{U}\left(r \bar{x}^{\prime}\right) \chi_{S_{n}}\left(r \bar{x}^{\prime}\right) r^{n-1} d r d \bar{x}^{\prime}=\int_{U} \chi_{S_{n}}(\bar{x}) d \mu_{n}(\bar{x})
$$

Thus $\chi_{S_{n}}(\bar{x})$ is more peaked than $\exp \left\{-\pi|\bar{x}|^{2}\right\}$ on R^{n} and the lemma is proved.

We now prove Theorem 1. If $N=K$ then (1.1) is trivial so we may suppose that $K^{\prime}=N-K$ is positive. Let P_{K} be the K-dimensional subspace of R^{N} spanned by the columns of A. Next let W be an $N \times N$ matrix whose first K columns are the columns of A and whose next K^{\prime} columns are the columns of an $N \times K^{\prime}$ matrix B. We choose the columns of B so that they form an orthonormal basis in \boldsymbol{R}^{N} of the K^{\prime}-dimensional subspace which is orthogonal to P_{K}. Identifying \boldsymbol{R}^{N} with $\boldsymbol{R}^{K} \times \boldsymbol{R}^{K^{\prime}}$ we may write each $\bar{z} \in \boldsymbol{R}^{N}$ as $\bar{z}=(\bar{x} / \bar{y})$ where $\bar{x} \in \boldsymbol{R}^{K}$ and $\bar{y} \in \boldsymbol{R}^{K^{\prime}}$. For each $\varepsilon, 0<\varepsilon \leqq 1$ we define

$$
H_{\varepsilon}=\left\{\bar{z} \in \boldsymbol{R}^{N}: z=\left(\frac{\bar{x}}{\bar{y}}\right), \max _{1 \leqq j \leqq K^{\prime}}\left|y_{j}\right| \leqq \frac{\varepsilon}{2}\right\}
$$

and

$$
H_{\varepsilon}^{\prime}=\left\{\bar{y} \in \boldsymbol{R}^{K^{\prime}}: \max _{1 \leqq j \leqq K^{\prime}}\left|y_{j}\right| \leqq \frac{\varepsilon}{2}\right\}
$$

Clearly H_{ε} is a closed, convex, symmetric subset of \boldsymbol{R}^{N} and so is the image of H_{ε} under the nonsingular linear transformation determined by W. Thus by Lemma 5 ,

$$
\begin{equation*}
\int_{H_{\varepsilon}} \exp \left\{-\pi|W \bar{z}|^{2}\right\} d \mu_{N}(\bar{z}) \leqq \int_{H_{\varepsilon}} \chi_{Q_{N}}(W \bar{z}) d \mu_{N}(\bar{z}) \tag{3.6}
\end{equation*}
$$

Multiplying each side of (3.6) by $\left\{\mu_{K^{\prime}}\left(H_{\varepsilon^{\prime}}^{\prime}\right)\right\}^{-1}=\varepsilon^{-K^{\prime}}$ and factoring H_{s} into $\boldsymbol{R}^{K} \times H_{\varepsilon}^{\prime}$ we find that

$$
\begin{align*}
& \varepsilon^{-K^{\prime}} \int_{R^{K}} \int_{H_{\varepsilon}^{\prime}} \exp \left\{-\pi|A \bar{x}+B \bar{y}|^{2}\right\} d \mu_{K^{\prime}}(\bar{y}) d \mu_{K}(\bar{x}) \tag{3.7}\\
& \quad \leqq \varepsilon^{-K^{\prime}} \int_{R^{K}} \int_{H_{\varepsilon}^{\prime}} \chi_{Q_{N}}(A \bar{x}+B \bar{y}) d \mu_{K^{\prime}}(\bar{y}) d \mu_{K}(\bar{x})
\end{align*}
$$

By the orthogonality condition $|A \bar{x}+B \bar{y}|^{2}=|A \bar{x}|^{2}+|B \bar{y}|^{2}$ and so as $\varepsilon \rightarrow 0+$ the left hand side of (3.7) clearly converges to

$$
\int_{R^{K}} \exp \left\{-\pi|A \bar{x}|^{2}\right\} d \mu_{K}(\bar{x})=\left|\operatorname{det} A^{T} A\right|^{-1 / 2}
$$

To evaluate the corresponding limit on the right hand side of (3.7) we observe that for $0<\varepsilon \leqq 1$ and each $\bar{x} \in \boldsymbol{R}^{K}$,

$$
\varepsilon^{-K^{\prime}} \int_{H_{\varepsilon}^{\prime}} \chi_{Q_{N}}(A \bar{x}+B \bar{y}) d \mu_{R^{\prime}}(\bar{y}) \leqq 1
$$

Since Q_{V} and H_{ε}^{\prime} are both bounded we have

$$
\varepsilon^{-K^{\prime}} \int_{H_{\varepsilon}^{\prime}} \chi_{Q_{N}}(A \bar{x}+B \bar{y}) d \mu_{K^{\prime}}(\bar{y})=0
$$

for sufficiently large $|\bar{x}|$ independent of ε. Thus by dominated convergence the limit on the right of (3.7) as $\varepsilon \rightarrow 0+$ is

$$
\begin{equation*}
\int_{R^{K}}\left\{\lim _{\varepsilon \rightarrow 0+} \varepsilon^{-K^{\prime}} \int_{H_{\varepsilon}^{\prime}} \chi_{Q_{N}}(A \bar{x}+B \bar{y}) d \mu_{K^{\prime}}(\bar{y})\right\} d \mu_{K}(\bar{x}) . \tag{3.8}
\end{equation*}
$$

Clearly

$$
\lim _{\varepsilon \rightarrow 0+} \varepsilon^{-K^{\prime}} \int_{H_{\varepsilon}^{\prime}} \chi_{Q_{N}}(A \bar{x}+B \bar{y}) d \mu_{K^{\prime}}(\bar{y})=\chi_{Q_{N}}(A \bar{x})
$$

except possibly when $A \bar{x}$ is a boundary point of $Q_{N} \cap P_{K}$, Since this boundary has K-dimensional measure zero we see that (3.8) is equal to

$$
\int_{R^{K}} \chi_{Q_{N}}(A \bar{x}) d \mu_{K}(\bar{x}) .
$$

We have now shown that as $\varepsilon \rightarrow 0+$ on each side of (3.7) we obtain (1.1) and this proves the theorem.
4. Proof of Theorem 2. By van der Corpuṭ's extension of Minkowski's convex body theorem [5] (see also Cassels [4, Chapter III, Theorem II]) the condition (1.6) implies that there exist at least M distinct pairs $\pm \bar{v}_{m}, m=1,2, \cdots, M$, of nonzero lattice points such that (1.3) holds. If $\operatorname{rank}(A)<K$ then (1.2) and (1.6) are both trivially satisfied. Thus to eatablish the first part of Theorem 2 it suffices to show that if $\operatorname{rank}(A)=K$ then

$$
\begin{equation*}
2^{K}\left|\operatorname{det} A^{*} E^{2} A\right|^{-1 / 2} \leqq \mu_{K}\left(\left\{\bar{x} \in \boldsymbol{R}^{K}:\left|L_{j}(\bar{x})\right| \leqq \varepsilon_{j}, j=1,2, \cdots, N\right\}\right) \tag{4.1}
\end{equation*}
$$

Let $G_{j}(\bar{x}), j=1,2, \cdots, N$ be linear forms defined by $G_{j}(\bar{x})=L_{j}(\bar{x})$ for $j=1,2, \cdots, r$ and

$$
\begin{aligned}
G_{r+2 j-1}(\bar{x}) & =\sqrt{2} \operatorname{Re}\left\{L_{r+2 j-1}(\bar{x})\right\}, \\
G_{r+2 j}(\bar{x}) & =\sqrt{2} \operatorname{Im}\left\{L_{r+2 j-1}(\bar{x})\right\}
\end{aligned}
$$

for $j=1,2, \cdots, s$. We write $B=\left(b_{j_{k}}\right)$ for the corresponding real $N \times K$ matrix so that

$$
G_{j}(\bar{x})=\sum_{k=1}^{K} b_{j_{k} x_{k}}
$$

Next we let $Q_{N}=S_{n_{1}} \times S_{n_{2}} \times \cdots \times S_{n_{r+s}}$ where $n_{j}=1$ for $j=$ $1,2, \cdots, r$ and $n_{j}=2$ for $j=r+1, r+2, \cdots, r+s$. It follows that $\left|L_{j}(\bar{x})\right| \leqq \varepsilon_{j}$ if and only if $1 / 2 \varepsilon_{j}^{-1} G_{j}(\bar{x}) \in S_{n_{j}}, j=1,2, \cdots, r$, and

$$
\left|L_{r+2 j-1}(\bar{x})\right|=\left|L_{r+2 j}(\bar{x})\right| \leqq \varepsilon_{r+2 j}
$$

if and only if

$$
(2 \pi)^{-1 / 2} \varepsilon_{r+23}^{-1}\binom{G_{r+2 j-1}(\bar{x})}{G_{r+2 j}(\bar{x})} \in S_{n_{r+j}}
$$

$j=1,2, \cdots, s$. Therefore

$$
\begin{aligned}
& \mu_{K}\left(\left\{\bar{x} \in \boldsymbol{R}^{K}:\left|L_{j}(\bar{x})\right| \leqq \varepsilon_{j}, j=1,2, \cdots, N\right\}\right) \\
& \quad=\mu_{K}\left(\left\{\bar{x} \in \boldsymbol{R}^{K}: \frac{1}{2} E B \bar{x} \in Q_{N}\right\}\right)=\int_{\boldsymbol{R}^{K}} \chi_{Q_{N}}\left(\frac{1}{2} E B \bar{x}\right) d \mu_{K}(\bar{x}) \\
& \quad \geqq\left|\operatorname{det}\left(\frac{1}{2} E B\right)^{T}\left(\frac{1}{2} E B\right)\right|^{-1 / 2}=2^{K}\left|\operatorname{det} B^{T} E^{2} B\right|^{-1 / 2} .
\end{aligned}
$$

An easy computation shows that $B^{T} E^{2} B=A^{*} E^{2} A$ and so completes the proof of (4.1).

To prove the second part of Theorem 2 we choose $\varepsilon_{j}=\left|\operatorname{det} A^{*} A\right|^{1 / 2 K}$ for $j=1,2, \cdots, r$ and $\varepsilon_{j}=(2 / \pi)^{1 / 2}\left|\operatorname{det} A^{*} A\right|^{1 / 2 K}$ for $j=r+1, r+2$, \cdots, N. Then

$$
\left|\operatorname{det} A^{*} E^{2} A\right|=1
$$

and so (1.4) and (1.5) follow from the first part of the theorem.
5. Lower bounds for arbitrary convex bodies. In this section we suppose that Q_{N} is a closed, convex, symmetric subset of R^{N} with $\mu_{N}\left(Q_{N}\right)=1$. If A is an $N \times K$ matrix, $\operatorname{rank}(A)=K$, we will be interested in the problem of finding a lower bound for

$$
\begin{equation*}
\int_{R^{K}} \chi_{Q_{N}}(A \bar{x}) d \mu_{K}(\bar{x}) . \tag{5.1}
\end{equation*}
$$

The method used to deduce Theorem 1 from Lemma 5 will also lead to a lower bound in this more general situation, provided that we
can find a suitable normal density function on \boldsymbol{R}^{N} which is less peaked than $\chi_{Q_{N}}(\bar{x})$. We succeeded in proving Lemma 5 because the special structure imposed on Q_{N} allowed us to appeal to Lemma 4. We now describe an alternative method which leads to a conjectured lower bound for (5.1).

We write Q for Q_{N} and we assume that Q is a fixed, closed, convex, symmetric subset of $\boldsymbol{R}^{N}, \mu_{N}(Q)=1$. For each positive integer m let

$$
\chi_{Q}^{(m)}(\bar{x})=\chi_{Q}^{*} \chi_{\vec{Q}}^{*} \cdots \chi_{Q}(\bar{x})
$$

be the m-fold convolution of χ_{Q}. We define the dilation operator D_{λ} for $\lambda>0$ and for integrable real valued functions f on R^{v} by

$$
D_{\lambda}(f)(\bar{x})=\lambda^{N} f(\lambda \bar{x}) .
$$

Next we define a sequence of positive numbers $\lambda_{m}, m=1,2, \cdots$ by

$$
\left(\lambda_{m}\right)^{v i} \chi_{Q}^{(m)}(\overline{0})=1 .
$$

With this notation we have the following
Conjecture 6. For each positive integer $m, \chi_{Q}(\bar{x})$ is more peaked than $D_{\lambda_{m}} \chi_{Q_{e}^{m}}{ }^{\text {m }}(\bar{x})$.

Now let Ω be the $N \times N$ covariance matrix determined by a random vector which is uniformly distributed on the convex body Q. That is $\Omega=\left(\omega_{r s}\right)$ is the $N \times N$ matrix defined by

$$
\omega_{r s}=\int_{R^{N}} y_{r} y_{s} \chi_{Q}(\bar{y}) d \mu_{N}(\bar{y}),
$$

where y_{r} and y_{s} are the r th and sth co-ordinate functions of $\bar{y}, r=$ $1,2, \cdots, N$, and $s=1,2, \cdots, N$. It is clear that Ω is symmetric and nonsingular since Q has a nonempty interior. By the Central Limit Theorem (Breiman [3, Theorem 11.10]) we have

$$
\lim _{m \rightarrow \infty} D_{\sqrt{m}}\left(\chi_{Q}^{(m)}\right)(\bar{x})=(2 \pi)^{-N / 2}(\operatorname{det} \Omega)^{-1 / 2} \exp \left\{-\frac{1}{2} \bar{x}^{T} \Omega^{-1} \bar{x}\right\}
$$

uniformly for $x \in \boldsymbol{R}^{N}$. It follows that

$$
\lim _{m \rightarrow \infty} \frac{\lambda_{m}}{\sqrt{m}}=(2 \pi)^{1 / 2}(\operatorname{det} \Omega)^{1 / 2 N}
$$

and hence

$$
\lim _{m \rightarrow \infty} D_{\lambda_{m}}\left(\chi_{\theta}^{(m)}\right)(\bar{x})=\exp \left\{-\pi(\operatorname{det} \Omega)^{1 / /} \bar{x}^{r} \Omega^{-1} \bar{x}\right\}
$$

uniformly for $x \in \boldsymbol{R}^{N}$. If the Conjecture 6 is true then for each
positive integer m and each closed, convex, symmetric subset U of \boldsymbol{R}^{N}

$$
\begin{equation*}
\int_{U} D_{\lambda_{m}}\left(\chi_{Q}^{(m)}\right)(\bar{x}) d \mu_{N}(\bar{x}) \leqq \int_{U} \chi_{Q}(\bar{x}) d \mu_{N}(\bar{x}) . \tag{5.2}
\end{equation*}
$$

Letting $m \rightarrow \infty$ on the left hand side of (5.2) and we have proved that $\chi_{Q}(\bar{x})$ is more peaked than $\exp \left\{-\pi(\operatorname{det} \Omega)^{1 / N} \bar{x}^{T} \Omega^{-1} \bar{x}\right\}$ on \boldsymbol{R}^{N}. By the same method used to prove Theorem 1 we obtain

Theorem 7. Assume that the Conjecture 6 holds and let A be a real $N \times K$ matrix, $\operatorname{rank}(A)=K$. Then

$$
\begin{equation*}
(\operatorname{det} \Omega)^{-K / 2 N}\left|\operatorname{det} A^{T} \Omega^{-1} A\right|^{-1 / 2} \leqq \int_{R^{K}} \chi_{Q}(A \bar{x}) d \mu_{K}(\bar{x}) . \tag{5.3}
\end{equation*}
$$

If the set Q in Theorem 7 is such that Ω is a constant multiple of the identity matrix then the left hand side of (5.3) is simply $\left|\operatorname{det} A^{T} A\right|^{-1 / 2}$. Just as in our proof of the corollary to Theorem 1, we deduce that in this case $\mu_{K}\left(Q \cap P_{K}\right) \geqq 1$, where P_{K} is a K-dimensional subspace of \boldsymbol{R}^{N}. There is also an application of Theorem 7 to linear forms. If $L_{j}(\bar{x}), j=1,2, \cdots, N$, are N linear forms in $K-$ variables we could determine precise conditions under which

$$
\left(\sum_{j=1}^{N}\left|L_{j}(\bar{v})\right|^{p}\right)^{1 / p} \leqq \varepsilon
$$

at a nonzero lattice point \bar{v} for any $p \geqq 1$ and $\varepsilon>0$. At present, however, these results remain hypothetical since they depend on the open problem stated in Conjecture 6.

References

1. Z. W. Birnbaum, On random variables with comparable peakedness, Ann. Math. Stat., 19 (1948), 76-81.
2. C. Borell, Convex set functions in d-space, Period. Math. Hungar., 6 (1975), 111-136.
3. L. Breiman, Probability, Addison-Wesley, Reading, Mass., 1968.
4. J. W. S. Cassels, An Introduction to the Geometry of Numbers, Grundl. Math. Wiss. 99. Springer-Verlag, 1971, Berlin.
5. J. G. van der Corput, Verallgemeinerung einer Mordellschen Beweiismethode in der Geometrie der Zahlen, Acta Arith., 2 (1936), 145-146.
6. D. Hensley, Slicing the cube in \boldsymbol{R}^{n} and probability, Proc. Amer. Math. Soc., (to appear).
7. M. Kanter, Unimodality and Dominance for symmetric random vectors, Trans. Amer. Math. Soc., 229 (1977), 65-85.
8. H. Minkowski, Geometrie der Zahlen, 1910, Leipzig.
9. A. Prekopa, On logarithmically concave measures and functions, Acta. Math. Acad. Hungar, (1973), 335-343.
10. S. Sherman, A theorem on convex sets with applications, Ann. Math. Stat., 26 (1955), 763-766.

Received November 21, 1978 and in revised form February 19, 1979. This research was supported by the National Science Foundation, grant number MCS77-01830.

The University of Texas
Austin, TX 78712

