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ON BANACH SPACES HAVING
THE PROPERTY G. L.

SHLOMO REISNER

A Banach space E has the property G. L. if every
absolutely summing: operator defined on E factors through
an Lα-space. Some properties of spaces having G. L.
property are investigated, using methods of Banach ideals
of operators.

1* Introduction and notations* The property G. L. is known
to be shared by a number of important classes of Banach spaces: in
[6] it is shown that if E" is isomorphic to a complemented subspace
of a Banach lattice (in particular, if Έ has local unconditional struc-
ture in the sense of [4]) then E has the G. L. property. Subspaces
of Lt spaces as well as quotients of C(K) spaces have G. L. property.
Moreover, in [17] it is shown that if E is a subspace of a Banach
space F s.t. Π^Sf^ F) = £?{£?„, F) (in particular if F has cotype
2) and F has the property G. L. then E has the property G. L. In
fact, it is easy to see that it is enough for E to be finitely re-
presented in F. In this paper, we try to investigate the property
G. L. using methods of Banach ideals of operators. It is shown
that this property is characterized by a perfect ideal [Γ, Y]. We
obtain a description of the conjugate ideal [Γ*, 7*] and deduce that
[Γ, 7] is a symmetric ideal hence E has G. L. iff E' has it.

It is also shown that a number of properties, known to hold
for spaces having l.u.st. in the sense of [4] are common to all the
spaces having G. L. For example, if E is a space having G. L.
which does not contain ll-s uniformly, then either E contains l*-s
uniformly and uniformly complementary, or E does not contain
l?-8 uniformly at all.

It follows that if E is a space having G. L. and F a Banach
space, then there exist compact nonnuclear operators from E to F
and from F to E. These are partial generalizations to results of
Davis and Johnson (see [2] and [9]). We show also that for spaces
having G. L. the property /72CS^, E) = £?(£?„, E) implies that E
is of cotype 2; we show a dual implication as well.

The paper is divided into two parts. In §2 we describe some
tools in Banach ideals of operators; in §3 we use these tools in
investigating spaces having G. L. It seems to us that these tools
may be useful in other contexts.

The notations are of two kinds:
(1) General notations. We use standard notations of Banach
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space theory. If E is a Banach space its dual space is Ef and for
xeE, xf eE' we denote by ζx, x'} the scalar product of x and %'.

We deal with Banach spaces over the field of real numbers.
Modification to the complex numbers case is straightforward. For
a positive measure space (Ω, Σ, μ) and 1 ^ p ^ oa we denote by Lp(μ)
the Banach space of scalar, /^-measurable functions / with \f\p

integrable (with classical modification for p — oo) with the usual
norm.

We denote by LV{E) = Lp(μ, E) the space of Bochner measurable
unvalued functions with \\f(-)\\e Lp(μ) equipped with the norm

11/11 = 11 ll/( )ll IU,</o.
The term "operator" means "bounded linear operator between

Banach spaces". If E, F are Banach spaces, <S?(E, F) is the Banach
space of operators from E into F equipped with the norm of
operators.

Let E, F be Banach spaces; we say that E is finitely represented
in F (abbreviation: Ef.rF) if for every finite dimensional subspace
Ex of E and ε>0 there exists a subspace Fx of F and an isomorphism
u: E1 —> F1 with \\u\\ \\u~ι\\ <; 1 + ε. If P is a property which makes
sense for Banach spaces we say that E has super-P if every space F
with Ff.rE has the property P.

(2) Definitions and notations concerning Banach ideals of
operators and tensor products of Banach spaces. A standard
reference in Banach ideals of operators is [8] (see also, [15] and [14]);
as a reference concerning tensor products one can use [20]. If [A, a]
is a Banach ideal of operators we denote by [A*, α*] the conjugate
ideal and say that [A, a] is perfect if [A, a] — [A**, α**]. [A', a'] is
the adjoint ideal (Te A'(E, F) iff T e A(F', E')).

Let [A, α] be a normed ideal of operators and E, F Banach spaces,
a norm (called "an ideal norm") is naturally induced on the tensor
product E (x) F by considering it as algebraically contained in
Sf{E\F\ We denote E®F with this norm by E®aF and its
completion by E <§)α F. Let E, F be Banach spaces and ue E (x) F.
Let Ei, JP\ be subspaces of E and F respectively s.t. there is a
representation of u as u = ΣΓ=i χι ® V% with xt e Eί9 yte F1 for all i.
We denote by a(u, Eu JP\) the norm of u as an element of Eί ®α 2^.
If E and i*7 are not considered as subspaces of some other spaces
we denote a(u, E, F) = a(u).

We say that an ideal norm a is semi-tensorial norm if for every
pair of Banach spaces E, F, one which is finite dimensional, and
every ueE®F hold: a{u) = inf {a(u, E19 FJ; E, czEf F,cz F, E1 and
Fλ finite dimensional and ue Eλ0 JPJ.

We list here a number of ideals that we shall use in the
sequel.
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(a) [j2^ || ||] the ideal of all bounded operators.
(b) [Πp, πp] (1 g p <Ξ: OO) the ideal of p-summing operators.
(c) [Ip, ίp] the ideal of p-integral operators. Ue IP[E, F] if there

exists a probability space (Ω, Σ, μ) and operators Ve J*f(E, L^μ)),
We^f{Lp{μ),F") s.t.WiV = jFU where i is the formal "inclusion"
map of Lj^μ) into Lp(μ) and j F the canonnical inclusion of E into
E".

We define ip(U) = inf {\\V\\ \\ W\\; V, W, (Ω, Σ, μ) as in the defini-
tion}. We say that U is strongly ^-integral if the preceeding
factorization is for U instead of jFU.

(d) [NP9 vp] 1 ^ p < co the ideal of p-nuclear operators.
(e) [Γp, 7p] the ideal of operators factorizable through Lp. Ue

ΓP(E, F) if there exists an Lp(μ) space and operators A e Jzf(E, Lp{μ))>
BeJ^(Lp(μ),F") s.t.jFU = BA. We define ΎP(U) - inf | | JB| | || A\\.

(f) (A new definition). [M, μ] the ideal of operators factorizable
through a Banach lattice. Ue M(E, F) iff there exists a Banach
lattice L and Ae£?(E,L), Be ^(L, F")s.t.jFU = BA. μ{U) =
inf \\B\\ || A||. Using ultraproducts of Banach spaces ([1]) or the
methods of [5] one can show that [M, μ] = [Jϊ**, η**] where [H, η]
is the ideal of weakly nuclear operators introduced in [7]. Therefore
a Banach space E has l.u.st in the sense of [6] iff E" is isomorphic
to a complemented subspace of a Banach lattice ([5]).

It is known that the ideals in (a), (b), (c) and (e) are perfect
and the same is true for the ideal in (f). It is also not hard to
check that all the ideal norms on tensor products induced by the
above ideals are semi-tensorial.

Let E, F be Banach spaces, the greatest tensor-norm, π, is de-
fined on E(g)F by π(u) = mf{ΣU\\xt\\\\vΛ\; u = Σ?=i ^ ® ί/J for
ueE®F. There is an identification (E®κF)f = J^{F, Er) defined
by

<u, Γ> = trace Tu - Σ <«„ Γ^>
ΐ = l

for

2. Let / be an index set and {[Ai9 cLi\}ieI a family of normed
ideals of operators.

DEFINITION 2.1. (a) The greatest lower bound [Λ*^> Λΐ°kl of
the family is defined by:
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(A A)(E, F) = {TeJίf(E9 F); vi, TeA^E, F)

and sup at(T) < co}

for Γ

(b) The least upper bound [Vi^«, V< α«] °f the family is defined
by:

( ) , F) = {Te £?{E, F); T = Σ Ts\ Jal, J finite

and for all jeJ T3 e Aό{E, F)}

[ ] for Te(y At>J(E, F) ,

t h e inf being taken over all finite subsets Jal s.t. t h e r e is a r e ]

presentat ion T = Σ i e j Tό w i th Γ,. e A, (E, F).

PROPOSITION 2.2. (a) [A* Ai9 Ai a>i\ and [Vi At, V* αϊ] are normed
ideals of operators.

(b) If for all i [Ai? at] are Banach ideals then so is [A* Ai9 Ai °kl
and if, in addition, I is finite, then [\fiaίf V* α<] is αϊso α Banach
ideal.

(c) If for all i [Aif at] are perfect then so is [A<-^« Ai^il

The proof is routine.

PROPOSITION 2.3. [A, A}9 A. α?] - [(V, A,)*, (V. a<)].

Proof. Consider the following diagram, in which E9 F are Banach
spaces, E19 F1 finite dimensional Banach spaces and T, U, S, V
operators.

T

E-^F

v\ \u

(a) Suppose Te{\f'tAt)*(E, F) then

I trace TVSU\ £ (v at)\τ)\\V\\\\U\\(y at)(S) ,

hence, for all i e I

I trace TVSU\ £ (γα ()*(Γ)||7|| | |J7||α4(S) ,
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therefore Vie I af(T) ^ (V^ΠΓ) a n d it follows that

Te(AAf\E,F) and (A af)(T) £ (A aX(T) .

(b) Suppose Te At A*(E, F). Let J c / be finite and S -
be a representation of fif s.ί.

We have:

I trace TFSt/j ^ Σ | trace
3 6 ./

^ sup aΐ(T) || 7 | | || Z

£ (A αf

therefore Te(V4Λ)%δ7,-F) and (V.α.HΓ) ^ (A, of)(Γ).

COROLLARY 2.4. 1/ [A4, α,] αi e perfect, then

m particular, if E and F are finite dimensional then {without
assuming perfectness of [A%, αj) for every Te J£?(E, F) (At α, )*(T) =

Proof. Since for all i [Aίf αj = [A?*, a**] we get

= \(VA?)*Ύ = (VA*

with equality of the norms. The second assertion is an obvious con-
sequence of the first.

DEFINITION 2.5. (a) Let [A, a] and [B, b] be normed ideals of
operators and G a fixed Banach space. We define for Banach spaces
E, F:

) , F); VUeB(F, G) UTeA(E, G)} .

From the closed-graph theorem it follows that for every Te
(A/B)a(E.F) there exists a k > 0 s.t. for all UeB(F,G)a (UT) ^
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kb{U). We define (a/b)G(T) = inf {k; k as above}.
(b) Let [A, a] and [B, b] be normed ideals of operators, E and

F Banach spaces. We define

—(E, F) = {Te^(E, F); for every Banach
B

space G and Ue B(F, G) UTe A{E, G)} .

It can be shown in a standard way that for every TeA/B(E, F)
there exists a k > 0 s.t. for every Banach space G and UeB(F, G)
a(UT) S kb(U). We define a/b(T) = inf {k; k as above}.

(c) Let [A, a], [B, b], E and F be as in (b). We define

4tf(E, F) = {Ts £?(E, F); 3A; > 0 s.t. for every Banach space

G of finite dimension and Uej5f(F, G) a(UT) ̂  kb(U)}

—f(T) - inf {fc, k as above} for Te^f(E, F) .

PROPOSITION 2.6. [(A/JB)σ, (α/fty, [A/B,a/b] and [A/Bf,a/bf]
are normed ideals of operators.

If [A, a] is a Banach ideal then these ideals are Banach ideals.
If [A, a] is perfect then \A\B, a/b] = [A/Bf a/b / ] .

Proof. The verification of the first and third assertions is
routine. We prove the second assertion for A/B.

Let {Tn}nQN be a Cauchy sequence in A/B (Ef F). It is easy to
check the following facts:

(1) There exists an operator TeA/B(E, F) s.t. for every Banach
space G and Ue B(F, G) a{UTn - UT) > 0.

%—» CO

(2) The numerical sequence a/b(Tn — T) is Cauchy, hence
a/b(Tn - T)—*l ^ 0.

It is left to show that I — 0. Suppose I > 0. By (2) there is
an integer n0 s.t. for any n^n0 there exists a Banach space Gn and
an operator UneB(F,Gn) with b(Un)£l s.t. a(Un(Tn - Γ)) > 1/2.
We get for m > n ^ nQ.

(3) ί/2 < a(Un(Tn - Γ)) ̂  a(Un(Tn - ΓJ) + α(C/w(Γm - T)).
Choose nt > n0 s.t. for all [/ with b{U) ̂  1 and n, m ^t nt we

have a(U(Tn - ΓJ) < Z/8 (which is possible since {ΓJ is Cauchy in
A/B{E, F)). Fix ti > ^ and let mx > nγ be s.ί. for m > mλ we have
a(Un(Tm - T)) < Z/8 (such mx exists by 1).

Applying (3) to the fixed n and some m > mλ we get 1/2 < Z/4
which is a contradiction that completes the proof.
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PROPOSITION 2.7. Let [A, a] and [B, b] be normed ideals of
operators such that [A, a] is perfect and b is a semi-tensorial norm.
Then [AjBy a/b] is perfect.

Proof. By Proposition 2.6 it is enough to show that [A/Bff a/b f]
is perfect. Let Te (A/B f)**(E, F), then for every finite dimensional
subspace M of E and finite codimensional subspace N of F
Φ /(QNTΪM) ^ (Φf)**(T) where iM: M~> E is the inclusion map and
qN: N~> F/N the canonical surjection. Let G be a finite dimensional
Banach space and UeB(F, G), since b is semi-tensorial we have:

b(U) = inf {&([/, F\ G); Fι finite dimensional subspace of F'}

the last infinum is taken over all operators Uι and finite codimen-
sional subspaces N of F such that U has a factorization of the form:

(l)
[ L )

 QN\

F/N

For given ε > 0 let N and Uί be as in (1) with bCU,) ^b(U) + ε.
We have a(UTiM) = a(UιqNTiM)^b(U1)a/bf(qNTiM)^(b(U) + ε)(a/bfr%T).
Since ε is arbitrary and [A, a] is perfect it follows that a(UT) ̂
b(U)(a/bY*(T), therefore TeA/Bf(E, F) and a/bf(T) - (a/b f)**(T).

PROPOSITION 2.8. Let [A, α] and [B, b] be normed ideals of
operators, E and F Banach spaces of finite dimension and Te j*f(E,F).
Then (a/b fY(T) = inf Σ?=i Λ*(t7<)6( F*), the infinum being taken over
all representations of T of the form T= Σ?=i Ut V, with Vt e £f(E, Gt);
Ui G £>?(GU F) and Gx finite dimensional Banach spaces.

Proof. For fixed finite dimensional G and S e ,£f(F, E) we have

(±) (S) = sup {a(US); Ue £f(E, G), b(U) ^ 1} .
\6 /G

Define the operator §: B(E, G) -> A(F, G)

by S(U)= US . Then

(-J-) (S) = ^(
G

The correspondence S <-> S enable us to identify (A/B)G(F, E) with
a subspace of jS?(B(Ey G\ A(F, (?)). Therefore (A/B)*(E, F) -
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[(A/B)β(F, E)]' is a quotient space of A%G, F) ®r B(E, G) with the
following identification: for ψ = Σ?=i Uτ (g) Vt e A*(G, F) ®Γ B(E, G)
and Se(A/B)G(F, E) we define

= Σ < ^ , V,S> = Σ trace IT", F,S = trace ΓS

where

i = l

From the last discussion it follows that for Te £f{E, F)

f)\T) = inf JΣα*(^)δ(F,); T - ± U.V,;

We complete the proof by noting that

[4/,£/ι=r Λ (4), A
and by using Corollary 2.4 which shows that for finite dimensional
E and F

\(Afγ (±f)l = [ v (±Y v (-

L\B / \& / J Ldim 6'<oo \B/G dim^<oo\

3.

DEFINITION 3.1. We define the ideal [Γ, 7] by:

[Γ, 7] = Γ-5-, — Ί Explicitly:
TeΓ(E,F) iff for every Banach space G and UeΠ^F.G) UTeΓL(E,G).
For such an operator T i(T) = supτx(ί7Γ), the supremum being
taken over all Banach spaces G and UeΠ^F, G) with π^U) = 1.

DEFINITION 3.2. We say that a Banach space E has the property
G. L. (Gordon-Lewis) if for every Banach space G Πt(Ef G) c Γ^E, G).
Of course, E has property G. L. iff the identity operator on E is
in Γ(E, E).

PROPOSITION 3.3. A Banach space E has the property G. L. if
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and only if there exist k > 0 s.t. for every finite dimensional
Banach space G and Ue£f(E, (?) 7i(ϊ7) <, kπ^U).

Proof, This is a result of the equality

In,' πj In/' π/
which is, in turn, a consequence of Proposition 2.6 and the fact that
[Γ19 Ti] is perfect.

PROPOSITION 3.4. Let E and F be finite dimensional Banach
spaces and Te^f(E,F). Then (a) τ*(T) = inf [Σ^i^ί(^K(^)],
the infinum being taken over all representations of the form T =
Σ?=i UiVt with Vi e Π^E, (?<), Ut e Π[(Git F) and Gt finite dimensional
Banach spaces.

(b) 7*(Γ) = inf [Σ?=i llj"<llll^ill]» the infimum being taken over

all representations of the form T = Σ?=i Ti s.t for all i there exist
positive Radon measures, μ% on the unit ball B(E') of Ef and v{ on
the unit ball B{F) of F s.t. for all xeE, y' eF' and 1 <̂  i <; n hold:

I < Ttx, yf) I ̂  ( I <x, x'> I dμlx') \ I <y, y'} \ dv^y).

Proof, (a) Follows from Propositions 2.8 and 3.3 combined with
the fact ([10]) that [Γ*, 7ί] - [Π[, π[].

(b) Is a consequence of (a) and the following lemma which is
proved by methods of [10].

LEMMA 3.5. (c) Let Te^f(E, F) (E, F not necessarily finite
dimensional) then

(1) iirfJc;(t7X(7) = inf |M| | | ί£ | |

where the infinum on the left is taken over all Banach spaces G and
representations jT — UV with j the canonical inclusion of F into
F", UeΠ[(G,F") and VeΠ^E.G). The infimum on the right is
taken over all positive Radon measures μ on B{E') and v on B{F")
{with the relative ω*-topologies) s.t. for all x e E, yr e F' hold

I < Tx, y'} I ̂  ( I (x, x') I dμ(x') \ | <y', y") | dv(y") .
JBiE') JB{F")

(d) // in (c) E and F are finite dimensional then the infinum
on the left hand side of (1) can be taken over all finite dimensional
Banach spaces G.
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Proof, (d) follows from (c) since πι and π[ are semi-tensorial (in
fact, tensorial) norms. We prove (c).

Let jT = UV be a factorization of jT with UeΠ[(G,F") and
VeΠ^E, G). By the Pietsch factorization theorem there exist posi-
tive Radon measures, μ on B(Ef) and v on B{F") s.t. for xeE, y' eF'

\\Vx\\^\ \(x, xr)\dμ{x'\ || U'\F,y'\\ S \ \<v', y")\dv{y") and
JB(E') JB{F")

\\(V) || \\ ' f || | | | | '
J( JB{F)

^π1(V) + ε, || v\\ ^ π^U') + e. Therefore | | v | | | | ju| | ^ (^'(C/) + e)
ε) and

( 2 ) \ ( T x , y ' ) \ = \ ( V x , U ' y ' ) \ ^ \ \(x,x'}\dμ\ \ ( y ' , y " ) \ d v .
JB(E') JB{F")

On the other hand, suppose μ and v are Radon measures on
B{Ef) and S(F") respectively s.t. (2) hold for every xeE, y'eF'
then we define operators:

U0:F' >L1(v);

and

Let H= U0(F'), G - VΌCE7) and let «•» be t h e bilinear form on
VIE) x U0(F') defined by {(Vox, Uoy')) = (Tx, yr), from (2) it follows
that this form is well defined and bounded with norm <̂  1, hence it
defines an operator We^f{G, H') with ||TΓ|| ^ 1 and (Vox, UQy')) =
(WVQx, Uoy'). We have then the following commutative diagram:

E T > F J > F"

where ί/i and T^ are ί70 and Vo considered as operators into G and
H respectively. Of course π^U^ ̂  \\μ\\ and π^VΊ) ^ \\v\\ which
completes the proof of Lemma 3.5 and Proposition 3.4.

REMARK 3.6. In [7] Gordon and Lewis show that for all E, F
and Te£f(E, F)

( 1 ) jκ*(Γ) = inf \\μ\\,

the infinum being taken over all positive Radon measures on B(Er) x
B(F") (with the product of the ω*-topologies) which satisfy for all

( 2 ) I (Tx, y') I ̂  [ I <s, «'><»', »"



ON BANACH SPACES HAVING THE PROPERTY G. L. 515

In fact, using compactness of the unit balls it is not hard to check
that for finite dimensional E and F we can replace "inf \\μ\\" by
"inf Σ?=i llj"illll^tH" i n (1); i"i> »i positive Radon measures on B(E')
and B(F) respectively s.t. for all x, yf

( 3 ) I < Tx, y'} I ̂  Σ ( !<*,*'>! <*]"*(&') ( I <!/, ϊ/'> I dvt(y)
i = l JB{E') JB(F)

(all the μi (g) v{ but one may be taken as scalar multiples of δ(x't) (x)
KVτ) — the products of valuations at points x^eBiE'), y^BiF), the
one μt (x) vt left may be a scalar multiple of the product of Lebesgue
measures on B{E') and B(F)). The difference between μ* and 7* is
therefore the possibility to represent T as a sum Σ?=i 2"1, where each
Ti is "majorized" by the product μt (x) vim It follows of course that
μ* <̂  7*, hence μ ^Ύ and we get the result of [6]: if E" is isomor-
phic to a complemented subspace of a Banach lattice then E has
property G. L.

COROLLARY 3.7. [Γ, 7] = \Γ\ 7'], therefore E has the property
G. L. if and only if Ef has it.

Proof. [Γ*, 7*] = [Γ*', 7*']; this is obvious for pairs of finite
dimensional Banach spaces from (a) or (b) of Proposition 3.4 and
passes over to all pairs of Banach spaces since [Γ*f 7*] is perfect.
Now perfectness of [Γ, 7] gives [Γ, 7] = [Γ**, 7**] = [Γ*'*9 7*'*] -
[Γ**', 7**'] = [Γ\ 7'].

The last corollary enables us to prove that a number of proper-
ties known to hold for spaces shaving l.u.st. are true also for spaces
having the property G. L.

We use the next lemma of Pisier ([16] and [17]) which was
originally proved for spaces E with E" isomorphic to a complement-
ed subspace of a Banoch lattice. However, Pisier's proof uses only
the fact that such an E, and also E', has the property G. L.

LEMMA 3.8. Let E have the property G. L.
(a) // E does not contain Z*'s uniformly, then there exist

q, 2 ^ q < 00 and C > 0 s.t.
(1) For any E valued operator Aπq(A) <; Cπ[(A).
(b) // neither E nor E' contain Z*'s uniformly, then there

exist q,2 ^ q < oof p9 1 < p ^ 2 and C > 0 s.t.:
(2 ) For any E-valued operator Aπq(A) <Ξ Cπ'p(A).

The next theorem and its corollary is in a certain way a
generalization of results of Johnson and Davis ([9] and [2]).
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THEOREM 3.9. Let E be finitely represented in a Banach space
F such that F has the property G. L. and F does not contain Zj-'s
uniformly. Then either E contains ZΓ-'s uniformly and uniformly
complementary or E does not contain Zf-'s uniformly.

We need two lemmas.

LEMMA 3.10. Let [A, a] and [B, b] be normed ideals of operators
s.t. a is a semi-tensorial norm and [B, b] is perfect and right infec-
tive {which means', if E, F, G are Banach spaces, FaG and Te
^f{E, F) then the b-norms of T considered as operator from E to
F or from E to G are the same).

Let F be a Banach space s.t. the following holds:
(1) There exists a k > 0 s.t. for every Banach space G and

TeA(G, F) b(T)^ka(T).
Let E be a Banach space s.t. Ef.r.F then (1) is true for E as

well.

Proof. Let G be a Banach space and Te A(G, E). Let Gx be a
finite dimensional subspace of G and 2\ = T\Gl: G1 -> E. Then α(2\) ^
a(T). Since a is semi-tensional and Gλ finite dimensional then
α(2\) = inf {α(2\: G1-^N)\ N a finite dimensional subspace of E with
T^GJczN}. Given ε > 0 there exists therefore a finite dimensional
subspace NaEwith T^GJczN s.t. T1:Gί-*N — the astriction of
T19 satisfies α(7\) ^ (1 + ε)α(T1). We can find a N^F and an iso-
morphism i: N-^ JVΊ with | | i | | ^ l ; Hi"1!! <; 1 + e. Let jiN.-^Fbe
the inclusion map from JVi into F, then a(jiTj) ^ (1 + ε)a(T) and
(1) gives:

bϋifj ^ k(l + ε)a(T) , injectivity of [B, b]

implies now that 6(ΐ2\)-^ fc(l + ε)α(Γ). Therefore 6(2\) ^ A?(l + ε)2α(T)
which implies δ(2\) ^ fc(l 4- έfa(T). Since ε is arbitrary and [5,6]
perfect we conclude that b{T) ^ ka(T).

We say that a Banach space E has property I — K (respectively
/ — Nr) if for every Banach space G and strongly integral operator
T:G —> E T is compact (respectively — Γ is r-nuclear). It is known
(combining results of Diestel [3] and Pisier [18]) that the property
super (/ — Ny) is super reflexivity.

LEMMA 3.11. The following are equivalent:
(a) E has the property super (I — K).
(b) E does not contain if's uniformly.
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Proof, It is known that if E contains Zf-s uniformly than l19

as well as LJO, 1] are finitely represented in E. The formal "inclu-
sion" map LTO[0, 1] —> L^O, 1] is strongly integral, noncompact opera-
tor, therefore in this case E fails to have super (/ — K). Suppose,
on the other hand, that E does not contain ϊf-s uniformly but there
exists an integral noncompact operator into E. The adjoint of this
operator is a strongly integral noncompact operator T defined on Ef,
hence it is a Dunford-Pettis operator (which means that it takes ω-
Cauchy sequences into norm convergent sequences). Since E does
not contain Zf-s uniformly — Er does not contain an isomorph of lu it
follows from a result of Rosenthal [19] that every bounded sequence
in EF contains a &)-Cauchy subsequence, but then T must be compact
— a contradiction. Therefore E has (/ — K). Since "not containing
Zf-'s uniformly77 is a super-property it turns out that E has in fact
super (/ — K).

Proof of Theorem 3.9. From Lemma 3.8 follows the existence
of c > 0 and 2 <£ q < co s.t for every Banach space G and A: G —» F

(1) πq(A) ^ cπ[{A) .

From Lemma 3.10 we deduce that (1) holds for E as well. If E
does not contain ϊf-s uniformly and uniformly complementably E'
does not contain J*-s uniformly and follows as in [16] the existence
of d>0 and ±<p<>2 s.t. for every G and A:G-+E π[(A)£dπ'p(A).
Therefore there exists k > 0 2 < J g < co? 1<£><^2 s.t for every G
and A as above

( 2 ) ττff(A) ^ for (A) .

By Lemma 3.10 (2) is true for every Banach space which is finitely
represented in E. Now, let G be a Banach space and T: G —> E a
strongly integral operator. Then T has a factorization

T

G ^̂  > #

( 3 ) -

with (,£?, //) a probability space and i the formal "inclusion" map.
We look at the factorization

Lm(Ω,μ) 3 >Lι{Ω,μ)

(4) X /
L,.ψ, μ)
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where 1/p + l/pf = 1 and i19 i2 are the formal "inclusion" maps. Then
Ai2 e π'p(LP'(μ), E) and from (2) follows Ai2 e πq(LP'(μ), E), a known
result of Persson and Pietsch [14] combined with the fact that ixB
is strongly pf integral then shows that

T = Ai2i,B 6 Nr(G, E) with — = — + — .
r p q

Since the same is true for every Banach space finitely represented
in E, E has super (/ — Nr) and of course it has super (/ — K).
Lemma 3.11 then shows that E does not contain Zf-s uniformly.

REMARK. We do not know if the property super (/ — Nr) is in
fact strictly stronger than "not containing Zf-'s uniformly".

COROLLARY 3.12. Let Ebe α Bαnαch space which either has the
property G. L. or is finitely represented in a Banach space F s.t.
F has property G. L. and does not contain ll-'s uniformly. Then
for any Banach space G there exist compact nonnuclear operators
from E into G and from G into E.

Proof. From Theorem 3.9 it follows that in both cases one of
the three possibilities hold: (a) E contains Z*-s uniformly.

(b) E contains Zf-s uniformly and uniformly completably.
(c) E does not contain ϊf-s uniformly.

In each of these cases the result follows, in (a) or (b) from results
of [9] and in (c) from the result of [2].

Let E be a Banach space. We say that E has Grothendieck
property (G. P.) if i72(j2^, E) = £?(£?„, E) (see [4] for discussion
of this property). Maurey [12] showed that if E has cotype-2 then
E has G. P., Pelczynski [13] shows that the inverse implication is
true if E has l.u.st. We can generalize:

THEOREM 3.13. Let E be a Banach space having the property
G. L. Then

(a) E has G. P. if and only if E is of cotype-2.
(b) E' has G. P. and Ef does not contain Zf-s uniformly if and

only if E is of type 2.

Proof. In both assertions only the "only-if" parts are new and
will be proved.

By Corollary 3.7 we know that Ef also has the G. L. property.
(a) Suppose E has G. P. As in [16] the fact that £?(£?„, E) =

Π2(j^?

oof E) combined with the G. L. property of Er shows that there
exists c > 0 s.t. Any E-valued operator A satisfies
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( 1 ) π2(A) ^ cπ[(A) .

By [16] (1) is equivalent to the following condition:
(2 ) Let S be a subspace of an Lx{μ) space and ω: S —• L2{v) a

bounded operator. Then ω®IE (IE — the identity operator of E) can
be extended to a bounded operator S®ΔlE-> L2(F) (for a subspace
S of Lp(μ), Δp denotes the norm on S ® E as a subspace of Lp(μ, E):
of course Lp(μ) ®J j ? E = Lp(μ, E)).

We choose S to be the closed linear span in L^O, 1] of the
Rademacher functions {rj. (rn(t) = sign2nπt; n = 0, 1, •.) It is
known that S is isomorphic to l2. Let ω be the isomorphism from
S to ί2:

= (bn)ne

From (2) it follows that

is bounded. Therefore, for xlf , xneE we have:

α/2 I

ΣI
5 = 1

^ Woo 8) I*

= W(ύ6HIκ

Σ ^

i
therefore E is of cotype 2.

(b) Let E' have G. P. and suppose E' does not contain ff-'s
uniformly. Then E does not contain C>-'s uniformly and Pisier's
method ([16]) yields the existence of C > 0 and 1 < p ^ 2 s.£. Any
.©'-valued operator A satisfies

( 3 ) £ Cπ'p(A) .

(3) is equivalent to
( 4 ) Let ω be a bounded operator ω: Lp(μ) —> L2(v), then α) (x) Ẑ ,

is extendable to a bounded operator ω (x) 7^: Lp(/i, E') —> L2(v, E').
For such a ω we get therefore that

(ω [Lp(μ, E')]'

is bounded.
It is easy to check (identifying L2(v, E") and Lp>(μ, E") with

subspace of [L2(v, E')]' and [Lp(μ, E')}') that
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IB.y = ω'

considered as operators L2(v, E") -+Lp>(μ9 E").
Therefore ωf (x) IE,, is well defined and bounded. Now, take

Llv) = l2, Lp(μ) = Lp[0, 1] and ω: Lp[0, 1] -> l2 defined by

= «/, rn})neN .

to is bounded and ω'\ l2^ Lp\0f 1] is t h e embedding of l2 in LP>[Q, 1]:

<*>'(ff) = Σ 0i?V for g = (flr^ eΛΓ e Z2 .

W e g e t f o r x l 9 >-,xneE:

G in p' \l/p/ n

"V a* (f\rr rlt \ — V w (Q\ Ύ»
0 j = l / 3=1

Σ
1/2

Oy being the unit vectors in l2). Therefore E is of type 2.

Some concluding remarks. The property G. L. as it is defined
is in some sense an "external" property. It is interesting to find
some "internal" geometric characterization of this property. Up to
now we know of no example of Banach space having the G. L.
property for which E" is not isomorphic to a complemented subspace
of a Banach lattice, though Remark 3.6 hints that the existence of
such example is probable (a result of Lewis [11, Cor. 4.2], together
with the fact that each subspace of l± has G. L. constant 1, shows
that the two norms are not equal).

Another course of problems may arise with respect to properties
of spaces having the G. L. property, e.g., how far properties of
spaces having l.u.st or isomorphic to complemented subspaces of
Banach lattices pass over to spaces having G. L. property. Also
one can ask how one can use such properties to the solution of
problems concerning general Banach spaces. For example with
respect to the problem of compact-nonnuclear operators arises the
problem: suppose E satisfies J*f(JS9 l2) — Π^E, i2), does this imply
that E can be embedded in a space having G. L. property which
does not contain Z~-s uniformly?
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