
PACIFIC JOURNAL OF MATHEMATICS
Vol. 83, No. 2, 1979

AN EXPLICIT FORMULA FOR THE FUNDAMENTAL
UNITS OF A REAL PURE SEXTIC NUMBER

FIELD AND ITS GALOIS CLOSURE

KEN NAKAMULA

The object of this paper is to give a set of fundamental
units of a real pure sextic number field K~Q( VaQ — 1),
where a is a special type of natural number and αβ — 1 is
not necessarily 6th power free. It is also shown that a set
of fundamental units of the galois closure L = K{ V — 3) of
K is formed by a real unit and its conjugates.

Let d be a 6th power free natural number which is not a perfect
square or a perfect cube in the rational number field Q. Put θ— Vd\
then K = Q{β) is a real pure sextic number field. We investigate
the group of units of K for a special type of d as follows. Let d
be given by

( 1 ) d = c(¥c ± 2)(b12c2±b6c + l)(6V±8δβc + 3)

with natural numbers b and c. Put

( 2 ) a = b6c ± 1 .

(The ± signs correspond respectively throughout this paper.) Then

(3 ) b6d = α6 - 1

and K=Q( VaΓ^ΐ).

THEOREM 1. The notation being as above, we assume that d > 1
and d is square free. Then

( 4 ) ζι = a - bθ , ξ2 = a + bθ , ξ8 = a2 + α&0 + &202

/orm α se£ o/ fundamental units of K.

As to explicit formulas for the fundamental units of number
fields, G. Degert [2] has given one for certain real quadratic fields.
As an application of the Jacobi-Perron algorithm (J.P.A.), L.
Bernstein, H.-J. Stender and R. J. Rudman has extended Degert's
result to certain real pure cubic, quartic and sextic fields (see [9]
and [10]). On the other hand, H. Yokoi has given a different
formula for the fundamental units of real quadratic and pure cubic
number fields in [11], [12] and [13]. Theorem 1 is an extension of
Yokoi's result to real pure sextic fields. A similar formula can be
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obtained for the fundamental units of real pure quartic fields (see
[7]). Theorem 1 is not included in Stender's result when b > 1 (see
Remark 4).

THEOREM 2. Under the same assumption as in Theorem 1,
any 5 of 6 conjugates of ^ form a set of fundamental units of

Theorem 2 gives an example of a real Minkowski unit of a
non-abelian galois extension K(τ/~^S)/Q (see [1]).

To prove Theorem 1, we use the same method as in Stender [8].
Let K2 and K3 be the quadratic Jand Vubic subfields of K respec-
tively, and let E be the group of units of K. Define the group H
of positive relative units of K with respect to K2 and K3 by

(5) H={ξeE\N2(ζ) = N3(ζ) = l},

where N2 and N3 denote the relative norm maps from K to K2 and
K3 respectively. Then H is a free abelian group of rank 1. The
fundamental units of the subfields will be determined in §1. A
generator of H will be determined in §2. In §3, we shall prove
Theorem 1 and show the existence of infinitely many fields which
satisfy the condition of Theorem 1. In §4, we shall prove Theorem 2.

The author wishes to thank Prof. H. Yokoi for his advice during
the preparation of the manuscript, and Prof. H.-J. Stender for sending
a copy of his paper [10] in manuscript.

1* Fundamental units of the subfields* Let i be a natural
number given by (1) with natural numbers b and c, and define a as
in (2). Assume that d is neither a perfect square nor a perfect cube
in Q. Then K = Q(θ), where θ = fy~d~, is of degree 6 over Q, and
it contains the quadratic subfield K2 = Q{ΘZ) and the cubic subfield K3 —
Q(θ2). Denote respectively by η2 and rj3 the fundamental units of K2

and Kz which are larger than 1. Define the algebraic integers ζίf ξ2, ξ3

as in (4). Then it immediately follows from (3) that their absolute
norms are all equal to 1; hence they belong to the group E of units
of K. We also see that 1/&& = α3 + bΨ belongs to E Π K2, and that
1/Sifs = α4 + α W + bΨ belongs to E n K3.

PROPOSITION 1. If d > 1 and is square free, then η2 = l/fif3 =

Proof. Since 1/&& > 1, we have rjζ = α3 + 6303 with a natural
number n. Let us assume n ^ 2. We can write η2 = (f + uθ*)/2
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with nonzero rational integers t and u, because d is square free.
Then u = (η2 — η'2)jθz

9 where η[ = (ί — uθ*)j2. Taking into account
that uΦQ,\η'2\ = l/^2 < 1, w ^ 2 and α3 + 6303 > 1, we see that

1 ^ N ^ (% + l^l)/03 < l/(α3 + bΨ)/d +

From (3), bθ < a and 1/d - 66/(α6 - 1). Therefore

1 < τ/2α366/(α6 - 1) + l/66/(α6 - 1) .

From (2), bG ̂  a + 1. Then

τ/2α3(α + l)/(α6 - 1) + V(a

However, the right side of the last inequality is smaller than 1
for a ^ 3, which is a contradiction. When a = 2, we see from (3)
that 6 = 1, and then d = 63 is not square free. Since a ^ 2 by (3),
w = 1 under our assumption, and the proposition follows.

REMARK 1. When d has a square factor, the conclusion of
Proposition 1 does not necessarily hold. For example, set b = 1 and
e = 22 in (1) and (2) for the plus case, i.e.,

d = 22(22 + 2)(222 + 22 + 1)(222 + 3-22 + 3) , a = 22 + 1 .

Then d = 24 32 7 11 132 79, α = 23, and

τ)2 = 2-3-13 + 1/7-11-79, $ = α3 + 6808 .

When the square factor of d is small, Proposition 1 is also true as
is seen from the proof.

PROPOSITION 2. If d > 1 and is cube free, then ηs = 1/&& =
α4 + α W + δ4tf4.

Proof. It follows from T. Nagell [5] (see also [13]), that the
binomial unit ££2 = a2 — b2θ2 is either fundamental unit of K3 or its
square, and the latter occurs only for d = 20, 50 and a finite number
of i = ±l(mod9). Now we assume 1/ηl = a2 - 6202. Let d = fg2

with relatively prime natural numbers / and g, and write 1/% =
{x + 2/#2 + {zjg)θ*}l% with rational integers α?, y and 2. Then

follows similarly as in [5]. Note J, 1. Here

l/(α2 - b2θ2) = α4 + αW2 + δ4tf4 < 3α4

and
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are obtained as before, and hence

\y\< V(a + l)/(α6 - 1) + 2 V 3 Va\a + 1)1 (a6 - 1) .

When a ^ 6, the right side of the last inequality is smaller than 1.
Therefore y = 0 and 1/% = {x + (z/g)θ4}/3. This is a contradiction,
because the square of a binomial unit cannot be binomial. When
a — 2, 3, 4 or 5, α6 — 1 is 6th power free, and, by (3), 6 = 1 and
d = α6 - 1. For α = 2, 4 or 5, we have d ^ O ί ±l(mod 9). For

α = 3, we see that d is not cube free. This completes the proof.

REMARK 2. By the same method as in the proof of Proposition
2, we can verify that the exceptional case of Theorem 6(iii) of [10]
occurs only when (u, n) — (1, 4), i.e., d — 28.

REMARK 3. As we have seen in the end of the proof of Proposi-
tion 2, we have a ^ 6 when 6 ^ 2 . This fact will be used in the
next section.

2* Relative fundamental unit* Let d, a and K be as in §1.
We keep the notation as before. Let H be the group of positive
relative units of K with respect to K2 and K3 which is defined by
(5). Then, as in [8], §1, II, 8, the group His a free abelian group of
rank 1. We denote by ε1 the generator of H which is larger than 1.

Suppose d>l and is square free. Then, by Propositions 1 and 2,

( 6 ) η2 = 1/ςA = α3 + bΨ , ηz = 1/&& = α4 + α W + 6404 .

The field belongs to Klasse I of [8], because

(7) N2(llξι) = y2, ^.(1/^) = % .

Put now ε = llξ%η\η\9 then ε e H and

e = ξlξl/ξ, = (α + bθ)\a2 + abθ + bΨ)\aδ + a'bθ + + 6505)

by (3) and (6).

PROPOSITION 3. If d> 1 and is square free, then ε, = ε = £2£|/£1.

Proof. When δ = 1, d = α6 — 1 by (3), and then Stender has
shown that εx = e in [8], Hilfssatz 7. Let 6 ^ 2 . Since ε > 1 and
ε 6 H, εl = ε with a natural number w. Assume w ^ 2. The relative
unit ε = l\&]\r]\ can be neither a square nor a cube in K by [8],
Hilfssatz 1. Therefore n ^ 5. Now we can write ex = 1/6 Σ?=o a ^ " 1
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with rational integers xd(j = 0,1, •••, 5) according to [8], Hilfssatz
2. Note that d divides x0 and that either x0 or xδ is distinct from
zero by [9], Hilfssatz 3. On the other hand, by [8], (1.6),

\xό\ < θι-*A(j = 0, 1, , 5) with A = VΓ+ 2 ^ Γ + 3 ,

since n ^ 5 and ε > 1. Hence either

d = θ6^ \xo\ <ΘA

or

should hold. From the fact that θ > 1, we obtain

1 < A/θ4 = A

Taking into account that bθ < a and 1/d = 66/(α6 - 1) ^ (α + l)/(α6 - 1 )
as before, we can derive

10

1 < V(a + l)2/(α6 - 1)2( ^24 3V2 + 2 V24 33α12 + 3) .

However, since a ^ 6 as we have mentioned in Remark 3, the right
side of the last inequality is smaller than 1. This is a contradiction.
Thus εx = ε for b ^ 2, too.

3. Fundamental units of K. For natural numbers b and c,
let d and α be given by (1) and (2). Let K = Q(0), where θ = VcL
Further let &, f2, f3 be given by (4).

THEOREM 1. (i) If d > 1 αmϊ is square free, then ξιy ξ2f ξ3form
a set of fundamental units of K.

(ii) For a fixed natural number b, there are infinitely many
values of c which make d square free.

Proof, (i) Recall that K belongs to Klasse I of [8] by (7). It
follows from Propositions 1, 2 and 3 that

These three units form a set of fundamental units of K by [8], Satz
1'. Hence the assertion is obvious.

(ii) Let

f{X) = X(b6X ± 2)(δ12X2 ± bβX + 1)(612X2 ± 366X + 3) .

We shall find infinitely many square free natural numbers in the
sequence {/(c)}Γ=i by the help of Nagell [2], §2. Evidently, (I) the
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degrees of the irreducible factors of f(X) are at most 2; (II) the
discriminant of f{X) is not zero. For a prime number p, there is
a natural number e such that 66/(e) = (We ± I)6 - 1 =£ 0(mod p2) if
b •=£ O(modp), and there is a c' such that f(c') = 6c' Ξ£ 0(modp2) if
6 = 0(mod p). This implies that (IV) there is no prime number p
such that f(c) = 0(mod p2) for all natural numbers c = 1, 2, . Now
let us assume that b is prime to 6. Then (III) the polynomial f(X)
is primitive. From (I), (II), (III) and (IV), we can apply [2], §2, I,
and find infinitely many square free natural numbers in {/(e)}Γ=i.
When b is not prime to 6, we apply NagelΓs result to (l/2)/(2X + 1),
(l/3)/(3X+l) or l/6/(6X+l) in a similar but slightly different manner
from the above in order to prove the assertion.

REMARK 4. Stender has given in [10] an explicit formula for
the fundamental units of Q( VM), where M — N6 ± n(>l) with natural
numbers N and n such that n is 6th power free and divides N5,
assuming that (N6/n) ± 1 or N6/n is square free. We will see that
Theorem 1 is contained in his result only if & = 1. Let n = pi1

pls{vό = 1, 2, , 5) with distinct prime numbers plf , ps. Write
(N6/n) ± 1 — mx6 with natural numbers m and x, where m is 6th
power free. Put m' = (p1 psf/n; then mr is also 6th power free.
When M — N6 + n, the diophantine equation mX6 — m'Y6 = 1 belongs
to the field Q( VM) in the sense of [10], Definition 1, and has a
solution (X, Y) = (x, N/p1 p,)(see also [10], Satz 10). On the other
hand, the equation X6 — dYQ — 1 belongs to K and has a solution
(X, Γ) = (α, 6). Suppose if = Q( \/If); then it follows from [10],
Satz 7 that

m = 1 , m' = d , $ — α , Λ7ί>i - pβ = 6 .

Then (NQ/n) + 1 = #6 cannot be square free. If iSP/^ is square free,
n = N5 and i\Γ is square free. Therefore N = p1 p8, i.e., 6 = 1.
When M = Nβ — n, we similarly obtain

m = d , mf — 1 , x — b , jV/px p. = α ,

if ίΓ = Q( ̂ M). If (N6/n) - 1 is square free, then a? = δ = 1. If
N6/n is square free, then n = Nδ = 1, and this is a contradiction.
Thus, we have seen that Theorem 1 is not contained in Satz 22 of
Stender [10] if b > 1.

4. Real Minkowski unit* Let K = Q(θ)(θ = ^5) be a real pure
sextic field, and L = K(ζ) its galois closure, where ζ = exp(2τn/^:T/3).
According to A. Brumer [1], we say a unit f of L is a Minkowski
unit of L if we can take 4 conjugates ξ{1), * ,£ (4) of £ such that
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ζf f(1)> "' '$ f(4) form a set of fundamental units of L. The galois group
of L over Q is generated by the two automorphisms σ and τ which
satisfy

β° = -ζθ , θr = 0; ζσ = ζ, ζτ = ζ - 1 .

The defining relations of σ and τ are σ6 = τ2 = (oτ)2 = 1. We will
give an example of a real Minkowski unit of the non-abelian, galois,
totally imaginary field L. Since if is a maximal real subfield of L,
it suffices to find a unit f of K such that ξ, ξσ, , ζ°A form a set of
fundamental units of L. Now let d, a and if be as in §3. Assume
d > 1 and is square free. Using the same notation as before, we
first study the subfields of L.

PROPOSITION 4. The assumptions being as above, (i) ξ\+a2+σ* is a
fundamental unit of K2(ζ), (ii) ξ[+σd, ξ[1+σZ)σ form a set of fundamental
units of iζ}(ζ), (iii) fί+σ2, ξ?+σδ form a set of fundamental units of
the fixed field F = Q( ^^27d) of σ3τ.

Proof, (i) On acconut of (6), vj2 = l/f^ = α3 + δ3^3 is a funda-
mental unit of iΓ2. Suppose that rj2 is not a fundamental unit of
iΓ2(ζ). Then since d Φ 3, it follows from S.-K. Kuroda [4], Satz 14,
that Zη2 = a2 with an integer a of K2 Since d φ l(mod 4), we have
a = x + yθ3 with rational integers x and y. Therefore

3(α3 + δ3^3) = {x + 7/̂ 3)2 .

Comparing the coefficients and taking the norms of both sides of
this equation, we see

3α3 = x2 + dy2 , 9 = (x2 - dy2)2 .

This leads us to a contradiction after an easy calculation using the
fact that d is square free. Hence η2 = 1/ξ^ = fr(1+σ2+σ4) is a funda-
mental unit of jBΓ2(ζ). (ii) On account of (6), ψ1 = ζxξ2 = α2 - δ2^2 is
a fundamental unit of iΓ3. Suppose that ηϊ1 and ̂ 3~

σ does not form
a set of fundamental units of Kz{ζ). Then we have

( 8 ) βι+τ = Tr£»(l + VB1 + %) - 3(α4 + α2 + 1)

with an integer /3 of Q(ζ) such that (τ//S) + (7//5)r, where 7 = 1 +
^s"1 + V3{1+σ)> is a n integer of if3 (see K. Iimura [3], Theorem 1 and
Proposition). Put β = x + yζ with rational integers x and y; then
we can compute (y/β) + (τ//3)r by (8), and see that the coefficient of
θi is equal to (x + τ/)δ4/3(α4 + a4 + 1). Since d is square free, it follows
that (x + y)b4/(a4 + α2 + 1) is a rational integer. By (2), δ and α4 +
a2 + 1 have no common divisor except 3. Moreover, since (x + y)2 —
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Zxy = 3(α4 + α2 + 1) by (8), x + y and α4 + α2 + 1 have no common
divisor except 3, because α4 + a2 + 1 is square free as a divisor of
d. Therefore α4 + α2 + 1 = 3, i.e., a — 1 follows. This is a contradic-
tion. Hence ηt = ζ,ξ2 == f }+*8 and ̂  = £1+σ3>* form a set of fundamental
units of iJL3(ζ). (iii) Let Hr be the subgroup of the group EF of units
of F given by

Then H' is generated by a unit ε2 and the roots of unity in F (see
[10], §4, II). It is easy to see that £1<*+ 1><1+« > = ξΓ*+* = ηZ9 and
that ξi°+°2nι-o*)(i+r) == l β Therefore ^+^<i-^) = ωe» w j t h a rational
integer n and a root of unity ω. Applying σ + σ2 to both sides, we
Obta in ζ-l+*σ*+2iσ*+o*) = α ) ^+^ s «(α+^) β g i n c e jp i g t h e fiχe(J fiel(J o f Λ f εσ+σ2

is a unit of i£, and hence ωa+°2 also belongs to ϋΓ. Recall that ζίf ζf,
ξl2+σ* form a set of fundamental units of K by Theorem 1. Conse-
quently n = ± 1 , and ^σ+σ2^1-σ3) and the roots of unity of ί 7 generate
JET. As we have seen above, ξ^2^^^ = ^3. According to [10], Satz
24, f ί"+*2><i-"8> and ίίσ+σ2)' form a set of fundamental units of F. This
completes the proof of (iii).

THEOREM 2. Under the same assumptions as in Theorem 1, the
galois closure L = K(ζ) of K has a real Minkowski unit ξ 1 = a — bθ.

Proof. Let E' be the subgroup of the group of units of L which
is generated by all the units of K9 K°2, Kσi and K2(ζ). Then for every
unit ξ of L, ί3 = ζi+*ςi+*2*ξi+°*τξ-r<1+σ2+σi) belongs to E'. On t h e other

hand, by Proposition 4(i) and Theorem 1, JE" is generated by the roots
of unity in L and ξ19 ξ

σ

u , £ί4. Hence

where ω is a root of unity and n0, nlf , n± are rational integers.
By applying 1 + τ, 1 + σ3τ and 1 + σz to both sides, we get

where ω' and ω" are roots of unity. By Theorem 1 and Proposition
4(ii) and (iii), we see that n0 Ξ nx= = n± = 0(mod 3). This implies
that f3 is already a cube in Ef modulo the roots of unity, and hence
ξ belongs to Ef. This shows that E' is the group of all units of L,
and that & is a real Minkowski unit of L.

CONCLUDING REMARK. Stender's method is based on the group
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of relative units of a non-galois number field which has proper
subfields. We can generalize this to a field whose galois closure is
a dihedral extension over Q (see [7]).
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