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A RADON-NIKODYM THEOREM FOR FINITELY
ADDITIVE BOUNDED MEASURES

HUGH B. MAYNARD

An exact Radon-Nikodym theorem is obtained for finitely
additive bounded scalar measures defined on a field, the
additional condition being a local condition on the dominant
average range. The traditional technique of transferring the
problem to the Stone space, which results in approximate
Radon-Nikodym derivatives, is circumvented by isolating an
Exhaustion principal for finitely additive measures which
is then utilized to obtain the necessary decompositions.

Examples are given to illustrate the basic difficulties which arise
in differentiating with respect to signed finitely additive measures
and it is demonstrated that one difficulty arises from a lack of a
suitable Hahn decomposition of the differentiating measures. The
concept of an exhaustive Hahn decomposition is defined for finitely
additive measures and is compared to the related concepts of an
approximate Hahn decomposition as well as the standard Hahn
decomposition. It is shown that μ having an exhaustive Hahn
decomposition is equivalent to | μ | having a Radon-Nikodym derivative
with respect to μ and this result is then applied, in this situation,
to obtain a simplified Radon-Nikodym theorem.

The question of characterizing indefinite integrals of finitely
additive measures has been under consideration for a number of
years. There have been two basic approaches to this problem, both
seemingly arising from a desire to characterize the absolutely con-
tinuous bounded measures. The first was to enlarge the class of
integrable functions to include objects other than point functions
and to then obtain an equivalence between absolute continuity and
integral representation. Rickart [10] obtained such an equivalence
by including the multi-valued contractive set functions, while Tucker
and Wayment [12], in the setting of finitely additive operator-valued
measures, obtained a similar equivalence between an enlarged class
of integrable objects and a generalized definition of absolute con-
tinuity. The second approach is that of the Radon-Nikodym Bochner
theorem [3, p. 315, Theorem 14] which utilized the Stone space to
characterize the absolutely continuous, bounded variation measures
as those which can be approximated arbitrarily close in variation
by integrals of integrable simple functions. There does not seem
to be any characterization of indefinite integrals of point functions
with respect to a finitely additive bounded scalar measure prior to
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this paper.
The method of proof is interesting in that it is shown that if

m is representable as an integral with respect to μ, then there exists
certain "nice" decompositions of X such that both μ and m satisfy
a restricted form of countable additivity with respect to these de-
compositions. This is sufficient to allow arguments similar to those
used in the Bochner integral case [Maynard, 8, Theorem 2.1]. In
fact the lack of various decompositions seems to be the key to the
difficulties which arise in the finitely additive situation.

2 An exhaustion principle* The notation and definitions
employed in this paper will be the same as those of Dunford and
Schwartz [3, Cnapter III] which is an equivalent development, in our
setting, to that of Gould [7]. Let X be a set, Σ a, field of subsets
of X, and μ: Σ —>R a finitely additive bounded measure ( Ξ set function).
As usual \μ\ will denote the total variation of μ and is a positive
finitely additive measure and Σ+ will denote the subset of Σ consisting
of sets with positive μ-variation. In addition we will use the notation
δ(A) to denote the diameter of a set AαR.

DEFINITION 2.1. A set property P is said to be locally exhausting
in (X, Σ, μ) if there exists an α, 0 < a <̂  1, such that for each EeΣ+

there exists FaE,FeΣ+, such that \μ\(F) ^ a\μ\(E) and F has
property P.

DEFINITION 2.2. A countable (possibly finite) disjoint collection
{Xi}ieIdΣ+ is said to be exhausting in X if, given any ε > 0, there
exists N > 0 such that

< < £

LEMMA 2.3 (Exhaustion principle). If P is a locally exhausting
set property in (X, Σ, μ), then there exists a countable (possibly finite)
set of disjoint subsets, {Xi}i6Ic:Σ+, such that each Xi has property
P and {XJίe/ is exhausting in X.

Proof. Since P is locally exhausting, there exists X1 c X, X1 e Σ+,
such that Xx has P and \μ\(X^ ^a\μ\(X). Proceed by induction.
If I μ I (X — U?=i %i) = ° > t l i e n t h L e Process terminates and {Xt}?=1 satisfies
the conclusions of the lemma. If \μ\(X~ U?=i %i) > 0, choose Xn+1 c
X ~ U?=i X<> Xn+ιe Σ+> s u c h t h a t -X»+i has property P and \μ\(Xn+1) ^
a\μ\(X ~ \Ji=1Xt). If the process never terminates we obtain a
disjoint sequence {XJΓ=i c Σ+ such that each Xt has property P.
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If limΛ>oo \μ\(X~ U?=i-3Γ<) ̂  0, then there exists a β > 0 such that
> β, for 1 ^ n < co. Thus

•~ JJ-^i) > α/β > 0

for every n, and since {-3ΓJΓ=i is disjoint, this violates the boundedness
of μ.

DEFINITION 2.4. A set property P is said to be a null difference
property if whenever EeΣ+ has property P and FeΣ+ such that

= 0, then F has property P.

LEMMA 2.5. P is a locally exhausting null difference property
in a complete bounded finitely additive measure space (X, Σ, μ), then
there exists a countable (possibly finite) set of disjoint subsets, {Xτ)ieI(z
Σ+, such that X— \JίeiXi, each Xt has property P, and {XJiei is
exhausting in X.

Proof. By the Exhaustion principle there exists a set {Xt}ieI

satisfying all conclusions except that X need not equal \JieIXi. But
since {XJie7 is exhausting in X we have that X ~ \JieIXi is a μ-null
set and hence is measurable by completeness of (X, Σ, μ). Thus since
P is a null difference property, X— Uie/ ^i may be adjoined to Xι

without altering any of the desired properties.

3. A Radon-Nikodym theorem* The approach to be used in
obtaining a Radon-Nikodym theorem for bounded finitely additive
measure is similar to the locally small average range approach for
the Bochner integral. The major difficulty in this approach lies in a
possible instability of the average range due to locally large values
\μ\(E)l\μ(E)\ of the integrating measure. This is due to the lack
of a Hahn decomposition for bounded finitely additive measures. A
secondary problem is that while a local property will yield a countable
maximal decomposition of the space, the measures need not be coun-
tably additive with respect to this decomposition. It is easy to
construct examples on the field of finite and cofinite subsets of the
integers with locally small average range but without locally
exhausting small average range.

We consider first the various types of average ranges which
are useful in Radon-Nikodym theorems for the Bochner integral,
operator-valued measures, and finitely additive measures. Suppose
m: Σ —> R is another finitely additive measure. The standard average
range which occurs in the Radon-Nikodym theorem for the Bochner
integral [Rieffel [11], Maynard [8]] has the following definition.
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DEFINITION 3.1. For each EeΣ+, the average range of m with
respect to μ over E is: Am(E) = {m(F)/μ(F): FaE, μ(F) Φ 0}.

However without a Hahn decomposition the local structure of
Am{E) may always be poorly behaved when the ratios, \μ\(F)/\μ(F)\,
are large and hence to avoid this problem we consider, with finitely
additive measures, the dominant average range.

DEFINITION 3.2. For each EeΣ+, the dominant average range
of m with respect to μ over E is

A*(E) = \m(F)/μ(F): FczE, Fe Σ+ , and \μ(F)\ > hμ\(F)

The third average range we will consider is the ε-approximate
average range which is useful for operator-valued measures, Maynard
[7], but is primarily used here for convienence and to illustrate the
connections between the various average ranges.

DEFINITION 3.3. For each EeΣ+, the ε-approximate average
range of m with respect to μ over E is

A(E,έ) = {xeR: \m(F) - xμ(F)\ ̂ ε\μ\(F), VF(zE,FeΣ} .

The following two properties are the key properties involved in
the Radon-Nikodym theorem for finitely additive measures.

DEFINITION 3.4. m is said to have locally exhausting small domi-
nant average range iff for each ε > 0 there exists α(ε) > 0 such that
for EeΣ+ there exists F(zE, FeΣ+, with \μ\{F) > a(e)\μ\(E) and
δ(A*(F)) < ε.

DEFINITION 3.5. m is said to have locally exhausting approximate
average range iff for each ε > 0 there exists α(ε) > 0 such that for
EeΣ+ there exists F<zE, Fe Σ+, with \μ\(F) > a{e)\μ\{E) and
A{F, έ)Φ 0 .

DEFINITION 3.6. If m, μ\ Σ —> JB are finitely additive measures,
then m is ^-continuous iff for every ε > 0 there exists 3 > 0 such
that \μ\(E) <d implies that \m\(E) < ε.

It should be emphasized that the definitions of ^-continuity in
[5] and [8], requiring only that |m(JS7)| < ε, are too restrictive as
noted in [4] and should be the above definition.

LEMMA 3.7. Let (X, Σ, μ) be a bounded finitely additive measure
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space and m: Σ —» R be a μ-continuous finitely additive measure.
Then m has locally exhausting small dominant average range iff m
has locally exhausting approximate average range.

Proof. Suppose m has locally exhausting approximate average
range, and let ε > 0 be given and a(ε) the guaranteed constant
corresponding to e/4. Then if EeΣ+, there exists FaE, FeΣ+,
\μ\(F) > a(s)\μ\(E) such that A(F, e/4) Φ 0 .

Choose x 6 A(F, e/4). Then if F1 czF, F1eΣ+

9 such that |μ{Fx) \ >
1/21/ίKFO we have

— x
T

ε
2

Thus δ(A£(F)) < ε and m has locally exhausting small dominant
average range.

Suppose that m has locally exhausting small dominant average
range. Let ε > 0 be given and α(e) the constant corresponding to
ε. Then given E e Σ+, there exists FcE, FeΣ+, such that δ(Aί(F)) <
ε. Choose F1aF such that \μ{F\)\ > 1/21^1(2 )̂. Then it suffices to
show that miF^/μiF^eAiF.ε).

Let CdF,CeΣ+. If \μ\(C) = 0 then by /^-continuity, m(C) = 0
and we have the desired inequality. If \μ\(C) Φto9 then let 3 =
min(u+(C), μ~~{C)) where μ+(C) = suvDclc μ(D) and μ~{C) = —iτdD^ΰμ(D).
If δ = 0 the argument is trivial so suppose δ > 0. Then by Darst
[5] there exist disjoint sets A, B such that C = AU B with property
that μ+(B) < δ/4 < \μ\(B)/4 and μ~(A) < δ/4 < \μ\(A)β. Then

= \μ+(A) - μ~(A)\ >\μ\(A)~ 2μ~(A) >

and similarily \μ(B)\ > \μ\(B)/2. Thus

m(C)- m{AUB)- U B)

m(B) -

m(A) m(j?\)
μ{A)

m(B)
μ(B)

= s\μ\(C).

\μ{A)\

\μ{B)\<e\μ\{A) +

Thus m(F^lμ(Fi) e A(F, ε) Φ 0 and hence m has locally exhausting
approximate average range. As the third example in §4 demonstrates,
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it is not true that either of these two conditions imply that m has
locally exhausting small average range, even if m is an indefinite
integral. We are now prepared to prove our main theorem after
we point out a restricted form of countable additivity which will
enable us to mimic proofs in the countably additive case.

LEMMA 3.8. Let m and μ be two R-valued measures in (X, Σ), Σ
a field, such that m is μ-continuous. Then μ is uniformly countably
additive with respect to a disjoint sequence {Ei}T=ιC:Σ(i.e.,VF eΣ+,
KF) — ΣΠ=i KF Π Et) where convergence is uniform in F) iff {Ei}T=i
is exhausting in X. In addition if {E^i&1 is exhausting in X with
respect to μ, then m is also uniformly countably additive with respect
to

The following bound on the ε-approximate average range can
easily be calculated.

LEMMA 3.9. Let m and μ be two R-valued measures in (X, Σ).
Then for ε > 0, δ(A(E, ε)) ^ 2e, Ee Σ+.

THEOREM 3.10 [Radon-Nikodym theorem]. Let {X, Σ, μ) be a
bounded finitely additive measure space, Σ a field of subsets of X
and μ a signed measure. If m is a finitely additive R-valued
measure, then there exists a μ-integrable function f:X—*R such

that m(E) = \ fdμ, VEeΣ iff

(a) m is bounded, μ-continupus and
(b) for all δ > 0 there exists Fδ c X, Fδ e Σ such that

( i ) μ(X~F9)<δ
(ii) A%(Fδ) is bounded and
(iii) m has locally exhausting small dominated average range

in Fδ.

Proof. We may assume throughout the proof that {X, Σ, μ) is
complete since a function integrable with respect to the completion
is integrable with respect to (X, Σf μ) and has the same integral
values.

(=>) Suppose m(E) = \ fdμ. Then (a) is well known [Dunford
and Schwartz, 3, III 2.18 and 20]. Let δ > 0 be given. Then there
exists a simple function fn such that μ*{x: \f(x) — fn(x)\ > 1} < δ.
Choose AeΣ such that A z> {x: \ f(x) - fn(x) | > 1} and μ(A) < δ and
let Fδ = X~ A. Hence Fδ satisfies (i). Let JV=sup {\fn(x)\: xeFδ} + l.
Thus I f(x)\^Nΐor all xeFδ. Now if EaFδf \μ(E)\> 1/21μ\(E), then

\m(E)\=\ fdμ\^2N\μ\(E)^4N\μ(E)\ and hence A*(Fδ) is bounded.
JE
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Let ε > 0 be given and let α(ε) = min {1/16, ε/8N} and suppose
EeΣ+, Ed Fδ. Since / is totally measurable on Fδ9 there exists a
measurable partition {XJ?=0 of E such that |μ|(X0) < \μ\(E)/A and
δ(f(Xt)) < ε/2, 1 <; i ^ n. Now by Lemma 3.7 it suffices to show the
equivalence with locally exhausting approximate average range.

Claim 1. f{X,) c A(Xif ε/2), 1 ̂  i ^ n.

Proof. Let r e f(Xt) and let i*7 c Xif F e ^+. Then

\m{F) - rμ(F)\ = | j / ~ rdμ\ £ ±

since \f(x) - r\ ^ ε/2 for all α? eX,. Thus /(X,) c A(Xif ε/2).
We now cover the interval [—N,N] with the disjoint intervals

Ek = [-N + Jte/2, -iV + (fc + l)ε/2), 0 ^ A; ̂  [4ΛΓ/εJ = Q where [ ]
is the greatest integer function.

For each k, 0 ^ k <Ξ Q, we define the following set of indices:

Ik = {i: A(Xί9 ε/2) Π Ek Φ 0 } .

Now A(XU ε/2) must intersect at least one Ek since f(Xi) c
[ — iV, iV] and can intersect no more than two since δ(A(Xif ε/2)) <̂  ε.

Claim 2. There exists k ^ 0 such that

Proof. Suppose not. We already know that

\μ\(\jx) ^ \μ\(E) - \μ\(X0) >

but on the other hand

ΰ ^ ) = \μ\(i) I U*«l) ^ Σ li"l( U

<; (Q

Thus there exists Ifc such that |j"|(Uίeifc-X"t) > a(ε)\μ\(E). Let
UielkXi-

Claim 3. A(i^, ε) Φ 0 .



408 HUGH B. MAYNARD

Proof. Let r= —M+((k + l)/2)e and suppose F' c F, Ff e Σ+.
Now for each Xif i e Ik, choose r< e A(X*, e/2) n Eh.
Then I r — r, | ^ e/2 since r, r, e i?fe. Now

m(F') - r M n I 2* Σ I m(Ff Π X,) - r^(F' n X*) I

Thus r 6 A(F, ε) Φ 0.
Hence since \μ\(F) > a(s)\μ\(E) we have finished demonstrating

the necessity of our conditions.

(<=) Suppose m satisfies (a) and (b) and hence has locally ex-
hausting approximate range.

We will use the following notation. If z = (zu , zn) eNn, then
p(z) = (zlf , ^_0, q(z) = zn, and («, i) = (^, •••,«*, i) e^ Λ + 1 , where the
dependence on n is suppressed in an effort for notational simplicity.

Now there exists a disjoint sequence of sets {FN}aΣ+, which of
exhausting in X, guaranteed by conditions (a) and (b). We will
obtain a density for m on each FN and then sum to obtain the entire
density. Fix N.

Now the set property, A(F, 1/2) Φ 0, is a locally exhausting
null difference property in FN and hence there exists a disjoint
countable set {Yϊ}zeAιaΣ+, A1aN, with {Yl} exhausting in X, FN =
U.β^Γ.1, and A(Yi, 1/2) Φ 0 .

Since A{F, 1/22) Φ 0 is a locally exhausting null difference property
in each Yl we may decompose each in an exhausting manner, Y\ —
Ui^JLiu where A{YlΛ), 1/22) Φ 0 .

Let A2 = {z e N2: p(z) e Alf q(z) e A%{z)). Thus FN = \JZ,AJ
2

Z and
this decomposition is exhausting.

In general if {Γβ*}β6^ is exhausting in FNt An c iVw, F^ = \JzeAnYΐ,
we may decompose each Yf in an exhausting manner and obtain the
decomposition {Yΐ+ι}ZeA%+ι where

γ,% - u YUiu A:+I(ZN, A(γrz

+i)f i/2n+i) Φ 0

^ = U Γ, +1, AΛ+1 - {̂  e JV -1: p(«) 6 An, q(z) 6 AJJ}} .
zeAn+1

We now define a sequence of functions, fn: FN -> R, in the fol-
lowing manner. For each w and each zeAn choose x*eA(Y*f 1/2W)
and let fn = Σ . e ^ ^ r -

Claim 1. /» is totally measurable, bounded, and hence integrable
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and \ fndμ = Σ x:μ(Ef)Y?).
JE z£An

Proof. Since {Y?}zeAn is exhausting in FN, the finite sums con-
verge in measure to fn and hence fn is totally measurable. fn is
bounded since the dominated average ranges are bounded and hence
the 1-approximate average ranges are bounded in FN.

Claim 2. {/»(ί)}ϊ=i is uniformly Cauchy for t e FN.

Proof. Let e > 0 be given and choose M such that 1/(2M) < e.

If t e FN, there exists a sequence {zj, 2W e An, such that £ 6 Y£.
Thus if w, m > M with m > n we have that

= ^ 6 A(Γ , l/2 ) c A(Γβ», l/2 ) and

- α;?m e A(YΓm, 1/2W) c i i(Γ , l/2 ) .

But δ(A(YZ, 1I2*))^1I2*-X and hence |/ ί l (ί)-
for any ί 6 FN.

We thus can define gN(t) = limw.„/„(«): ̂  -> Λ.

Claim 3. gf̂  is totally measurable, bounded and hence integrable.

Proof. fn —> gN uniformly and hence in measure which implies
that gN is totally measurable. gN is bounded since the functions {/J
are uniformly bounded.

Claimim 4. 1 gNdμ = lim„_«, \ /ftd/ ,̂ VEeΣ, EaFN.
JE JE

Proof. The functions {/n}ϊU are uniformly bounded and converge
uniformly, and hence in measure, to gN on FN. Thus by the Dominated

Convergence theorem we obtain that gN is integrable and \ gNdμ =

l i ί fndμ,VEeΣ.

Claimim 5. \ gNdμ = m{E), VEeΣ,Ea FN.
JE

Proof. Let e > 0 be given. Then there exists n such that

I ( gNdμ - \ fndμ\ < e/2 and such that l/2% < ε/8\μ\(E). Now choose
I JE JE

K > 0 such that

( i ) \\fndμ-
\ JE z \{K . . . K)

ze Am

<f
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(ii) \m\(E~ U

Then

m(E) -

m

χ:μ(E n YT)

')

(E~ U (EΓίY?))
\ z^(K ... A) /

+ \
K)

\m(EnY,n)-x:μ(EΓlY?)\

^ — + Σ —IJHI ( # Γl I ? ) since ^Γ 6 A( Γ2

W, l/2%)
8 z^(A, . ,AΊ 2n

^ -|- + - ί- | μ I (£7) , since {17} is exhausting ,
σ Δ

Thus

8 8 4

\ sr^d^ - m(E)
JE

IS.
. -\f.dμ

E JE

Ldμ - Σ

Σ x7μ(E Π Y?) - m(E)

Since ε > 0 is arbitrary, I gNdμ =

If we extend each gN to be zero off FN and let hk = Σ Λ = I 0Λ~ and
/ = \ϊm.k^aohh = Σ5?=i^f it suffices [Dunford and Schwartz, III, 3.6]
to show the following three conditions are satisfied.

( i ) hk —> / in measure,
(ii) for each ε > 0 there is a EεeΣ such that

ι\ < ε, k = 1, 2, , and

(iii) lim^K^).^ \ Ihk\d\μ\ = 0, uniformly in fc.

The first two conditions follow easily from the exhaustive nature
of {FN}. If ε > 0 is given, choose δ > 0 such that | μ \{E) < δ implies
\m\(E)<ε.

Then for any k and any Ee Σ, \μ\(E) < δ, we have

\hk\d\μ\ = ^
k Λ
L̂  FN)

< ε .
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Thus for EeΣ,

\ fdμ = Σ ( 9Ndμ = Σ ™>(E Π FN) = m(E)
JE A'=l JE N = l

since {FN} is exhausting in X.

COROLLARY 3.11. Let {X, Σ, μ) be a positive bounded finitely
additive measure space. If m is a finitely additive R-valued
measure, then there exists a μ-integrable function f: X —> R such that

m(E)= \ fdμ, VEeΣ, iff
JE

(a) m is bounded, μ-continuous, and
(b) for all 8 > 0 there exists Fδ c X, Fδ e Σ such that
( i ) μ(X~Fδ)<δ,
(ii) Am(Fδ) is bounded and
(iii) m has locally exhausting small average range in Fδ.

Proof If μ is positive then μ = \μ\ and hence AJJE) = A*(E).

4* Examples* The failure of absolute continuity and boundedness
to imply the existence of a density arises, it appears, from the lack
of appropriate decompositions of the space which are obtainable in
the countably additive case on a σ-algebra.

When the domain is a σ-algebra, it is impossible to suitably
separate the support of countably additive measures and finitely
additive measures which yields the failure. If m is Lebesgue mea-
sures on [0, 1] and Σ the Lebesgue measurable subsets of [0, 1], we
have, for any nonzero μe[L°°(m)]* = ba(Σ, m) such that μ ^ 0 and
μ is purely finitely additive, that m is (m + ^-continuous. However

there exists no density / such that m(E) = I fd(m + μ) = \ fdm +
fdμ since I fdμ must be identically zero, (otherwise it is purely

E J E

finitely additive) and hence / = 1 a.e. Thus JMΞOOΠ Σ which yields
the desired contradiction.

If the doman is a field, not a tf-field, then we can illustrate the
failure utilizing countably additive measures since we do not have
a Hahn decomposition. Let X = [0, 1), Σ the field generated by the
half open intervals, [α, b). Let m represent Lebesgue measure on
[0, 1) and choose a Lebesgue measurable set A c [0, 1) which intersects
every interval in a set with positive Lebesgue measure. Define
m(E) = μ(E f] A) - μ(E Π Ac), E e Σ. Of course A £ Σ. Then m is
^-continuous and m is bounded, in fact \m\ — μ. Now m cannot be
an indefinite integral with respect to \m\ since for EeΣ+, δ(Am(E)) = 2
and hence m does not even have locally small average range.
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A similar example can be used to show that while indefinite
integrals need have locally small dominated average range they need
not have even locally bounded average range. Let X, Σ, A, and m

be as above and v(E) — I xdm.

Then if EeΣ+, there ̂ exists a subset FeΣ+, FaE, such that
m(F) — 0 and yet v(F) Φ 0. Then by m-continuity of v there are
sets, {B}, BczF such that the values {m(B)} are arbitrarily small and
yet Mi?)} are uniformly bounded away from zero and hence the
average range is never bounded.

The above examples depend upon a lack of suitable decompositions
of the underlying space. The effect of appropriate Hahn decomposi-
tions is to eliminate many of the difficulties.

DEFINITION 4.1. Let μ: Σ —>R be a bounded finitely additive
measure. Then μ has a Hahn decomposition iff there exist disjoint
sets A, B 6 Σ, X = A U B, such that μ+(B) = μ~(A) = 0.

μ has an approximate Hahn decomposition iff for each ε > 0
there exists disjoint sets Aε, Bε e Σ, X = Aε U Bε, such that μ+(Bε) < ε
and μ~(Aε) < ε.

μ has an exhaustive Hahn decomposition iff there exist two
increasing sequences {An}, {Bn} c Σ such that μ+(Bn) — μ~(An) = 0 and
| / ί | ( I - ( A . U B . ) ) - * 0 as n-> <«.

An exhaustive Hahn decomposition is equivalent to the countably
additive extension on the Stone space having a Hahn decomposition
where each set is, within a null set, a countable union of images
from Σ+. The second example in this section shows that finitely
additive bounded measures need not have exhaustive Hahn decomposi-
tions. Darst [3, Lemma 2.1] has shown, however, that every finitely
additive measure has an approximate Hahn decomposition and, of
course, every countably additive measure on a α-field has a Hahn
decomposition.

The Radon-Nikodym theorem simplifies when the integrating
measure has an exhausting Hahn decomposition as the following
simple lemmas demonstrate.

LEMMA 4.2. If μ is a bounded finitely additive measure on
(X, Σ)9 Σ a field, then there exists a μ-integrable f such that \μ\(E) —

S fdμ, iff μ has an exhaustive Hahn decomposition. If Σ is a a-
E f

field then \ μ \ (E) = \ fdμ iff μ has a Hahn decomposition.E

LEMMA 4.3. If μ is a bounded finitely additive measure with
an exhaustive Hahn decomposition, then any bounded finitely additive
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measure has locally exhaustive small dominated average range with
respect to μ iff it has locally exhaustive small average range.

These lemmas yield the following theorem.

THEOREM 4.4. Let (X, Σ, μ) be a bounded finitely additive measure
space with an exhaustive Hahn decomposition. If m is a finitely
additive R-valued measure, then there exists a μ-integrable function

f:X->R such that m(E) = \ fdμ, VEeΣ iff

(a) m is bounded, μ-continuous, and
(b) for all δ > 0 there exists Fδ c X, Fδ e Σ, such that

( i ) μ(X~F,)<δ
(ii) Am(Fδ) is bounded and
(iii) m has locally exhausting small average range in Fδ.
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