
PACIFIC JOURNAL OF MATHEMATICS
Vol. 83, No. 2, 1979

LOCALE GEOMETRY

B. J. DAY

We commence with a locale £f (that is, a complete
Heyting algebra) and introduce the notion of an ^-valued
betweenness relation on a set. The concept of an ?-valued
geometry is then formulated and the relevant versions of
the Radon, Helly and Caratheodory theorems are proved.

Introduction* The abstract theory of join systems was develop-
ed by W. Prenowitz [8] and [9] as an aid to studying descriptive
and spherical geometries. This notion of join system has since been
further developed by V. W. Bryant and R. J. Webster [1] to enable
the corresponding axiomatic treatment of such results as the Radon,
Helly and Caratheodory theorems. It is this aspect of the theory
with which the present article is concerned.

We commence this article by extending the notion of a join
system so that it is no longer necessarily two-valued. More precisely,
given a locale lattice £f, we introduce the notion of an &'-valued
betweenness relation (- , - , -) : X x X x X—»=5^ on a set X; if
(x, y:, z) = p e £f we might say that the point z lies on the segment
(%, v) with "probability p". This loose description is related to
theories of multivalued logic which arise in topos theory. Indeed,
one can develop join systems in a reasonably complete topos in terms
of multivalued join systems over the category of sets; see §4. These
notions, in turn, give rise to the forms of the Radon, Helly and
Caratheodory theorems dicussed in §3.

We emphasize here that, in this preliminary article, we do not
deal with multigroups (after W. Prenowitz) nor do we enter into
all aspects of dimension theory (after V. W. Bryant and R. J.
Webster). Also we leave the proof of the more basic elementary
deductions as simple exercises for the reader; these results are used
without reference.

1* j?-forms. Let j ? be a locale and let X be a set. A
symmetric JZf-form on X is a function X(-, -): X x X —» Sf such
that X(x, x) = 1, X(x, y) = X(y, x), supy X(x, y) A X(y, z) = X(x, z).
A functional on X is a set map A: X -> ^f such that A = sup* A(x) A
X(x, -). A singleton, or point is a functional of the form x = X(x, -):
X —> £f. Thus each functional is an "expansion of singletons" or
an "internal colimit of points". For notational convenience we shall
represent x simply by x unless we wish to emphasize the distinction.

The ordered set of functionals on X is denoted Fnl (X, JZf); it
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is a sublocale of JZ?λ\ Note that if A: X —> Sf is any functional
then A ^ x iff A{x) = 1.

A map of .S^-forms /: (X, X(-, -)) -* (X', X'(-, -)) is a set map
/: X --> X' such that X'(/z, /») = X(z, 2/) for all x,yeX.

2* Convexity spaces* An Jϊf-preconvexity space is a set X
equipped with a symmetric ^-form X(-, -): X x X-+ Jϊf and a map
(-,-,-): X x X x X~*£f which is functional in each variable
separately. A map of preconvexity space is a map f:X—>X' of
jS^-forms such that (/a?, /#, /z) = (a?, 7/, z) for all x,y,ze X. The
resultant category is denoted .^pc.

Given X e ^ p c we define the convolutions:

AB(x) = sup A(i/) Λ 5(z) Λ (y, z, x)

A/B(x) = sup il(i/) Λ B(z) A (z, xf y) .

Then xy = (α?, 7/, -) is the join of a? to 1/, while xfy = (1/, -, ίc) is the
extension oί x by y.

An interesting consequence of these definitions is the following
Kan-extension principle: If / and g are polynomials of -^-variables
in the convolution operations AB and A/B, and f(xu , xn) ^
0(3i, •••,&•) for all points α?lf ••-,&* then/(Ax, , AJ ^ ff(Alf , An)
for all functionals Au , An.

An £f-convexity space is an ^^-preconvexity space which satisfies
the following axioms:

Cl. (symmetry) (x, y, z) = (1/, x, z) .

C2. (idempotence) (α, α, a?) = X(α, as) , (α, », α) = X(α, «) .

C3. (associativity) sup (y, v, w) Λ (w, z, x) = sup (v, z, w) A (y, w, x) .
w w

C4. (transposition) sup (z, w, y) A (x, w, v) ^ sup (a?, y, w) A (z, v9 w) .
w w

C5. (cancellation) sup (a?, y, w) A (x9 z, w) = X(y, z) V (x, y, z) V (a?, z, y) .

The full subcategory of £fpc comprising the ^f-convexity spaces
is denoted £fc.

The following propositions are immediate from the axioms.

PROPOSITION, xy/xz = y/z V xy/z V y/xz.

PROPOSITION. AB = BA, (AB)C = A(BC), A^AA and A^AjA,
(A/B)/C - A/BC, A(B/C) ^ AB/C, and A/(B/C) ̂  AC/B.
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PROPOSITION. ( i ) xA/x = A V xA v A/x,

(ii) xA/xB = A/JS V αA/JB V A/a:JB,
(iii) x/xB = #/£.

The following relations are easily deduced by iterated use of
the preceding proposition:

LEMMA 2.1 (Radon).

χo'-'x« = v k 0 x i r , Xi«'" Xί° i0, , % all different] .
»o «• ( ^i s + 1 Xir

 ]

LEMMA 2.2 {Caratheodory). For n^ r

x° ' " g » = V U o •••&,, ^° " ' g ^ i ... i all different and

V — Q ^

For the remainder of this section we shall suppose that X is a
fixed i^-convexity space. A functional A: X —> £έ> is said to be
convex if A A = A; note that singletons are convex (C2). The convex
hull of a functional A is defined to be V*=iAw.

PROPOSITION. ( i ) // Aίf , An are convex then so are A1 An

and AJA2.
(ii) The convex hull of a functional A is the intersection in

Fnl (X, jSf) of all the convex functionals which contain A.

A functional A: X —> £? is said to be linear if it is convex and
A/A = A. The linear hull of a functional A is defined to be
Vϊ. -1 A /it and is denoted by [A].

PROPOSITION. ( i ) The linear hull of a functional A is the
intersection in Fnl (X, J*f) of all the linear functionals which
contain A.

(ii) If A is convex then A/A is linear.
(iii) // A is convex then [A] = A/A.
(iv) [x0 - xn] = α0 a?n/a?0 •••»»•

3* The Radon, Helly and Caratheodory theorems* Henceforth
in this section we suppose that X is a fixed ^-convexity space.
We shall also suppose that whenever we consider a set {x0, •••,»»}
then the x/s are distinct (recall that xt is denoted simply by xt).
The product functional of M = {xu , scj is denoted by ikf* =
α?i xn.
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A set {x0, , xn} of singletons is said to be strongly dependent
if there exists an i(0 <J i <J n) such that [xQ x^Xt+t xn](%i) — l
If every set of n + 2 singletons is strongly dependent then we say
that X has dimension ^ w.

THEOREM 3.1 (Radon). If {x0, , #%+1} is α sβί o/ w + 2 single-
tons in a convexity space of dimension ^ n then there exist disjoint
nonempty subsets M and N of {xQ, , xn+1) such that M* AN*Φθ.

Proof. The n + 2 points lie in a space of dimension ^ w so we
may assume, without loss of generality, that [xt xn+χ](Xo) — 1.
By Lemma 2.1 we have either N*(x0) Φ 0 where JV is a subset of
{xl9 , #%+1} or N*/P*(x0) Φ 0 where iV and P are nonempty disjoint
subsets of {xl9 , ίcΛ+1}. Thus the result follows from taking M — xQ

in the first case and M = {#0, P} in the second case. In the first
case we have N*(x0) Φ 0 implies x0 A iV* Φ 0 since x0 Λ iV* = 0
implies xo(xo) A N*(x0) = 0 implies N*(x0) = 0, and in the second case
we have N*/P*(xQ) Φ 0 implies supu>v iV*(^) Λ P*(v) A (v, x0, u) Φ 0
implies supwiV*(^) Λ #0P*(w) ̂  0 implies there exists a % e l such
that JNPO) Λ x0P*(u) Φ 0.

THEOREM 3.2 (Helly). If A*, '—,An+1 is a family of n + 2
convex functionals on a convexity space of dimension <Ξ n and any
n + 1 of these functionals intersect with certainty then all the
functionals have a nonzero intersection.

Proof. For each ΐ(0 <; i <; n + 1) there exists, by hypothesis, a
singleton a?, such that

XtύΛo A Λ Af_! Λ Ai+1 Λ Λ AΛ+1.

If ίcέ = a?y for some i Φ j then ^ <; Ao Λ Λ An+1 and the result
follows. Otherwise the singletons xt are distinct so that, by Theorem
3.1, there exist nonempty disjoint subsets M and N of {̂ 0, , xn+ι}
such that ΛΓ* Λ N* Φ 0. Because M* A iV* ^ Ao Λ • Λ Λ,+1 the
result follows.

LEMMA 3.3. If x ^ α̂ 0 xn and M*/N*(x) Φ 0 where M and N
are nonempty disjoint subsets of {x0, , xn} then there exists a
proper subset P of {xOf , xn} such that P*(x) Φ 0.

Proof. The proof is by induction on the cardinal of N. Firstly,
if |JV| = 1, assume N — x0 without loss of generality. Let S =
{xu - , xn}. Now x <; xQ xn implies x0 ^ x/S*. Moreover, if
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M*/xo(x) Φ 0 where M is a nonempty subset of S then S*/xo(x) Φ 0.
Thus 0 Φ S*/xQ(x) S S*/(x/S*) ̂  S*/x(x) since S* is convex. But
S*/x(x) Φ 0 implies suptt S*(u) A (x, x, u) Φ 0 implies S*(x) ^ 0 so
xx xn(x) Φ 0. Now suppose \N\ = r + 1 and x <> x0 - - xn and
M*/N*(x) Φ 0. Without loss of generality let N = {x0, , xr}. The
conditions • α <; xQ a?, and M*/x0 xr(x) Φ 0 imply that xx

 m x»
lxx a?r(aj) ^ 0 since as ίg a?0 xM implies xQ S xfai - a?w. Thus 0 ^
M*/x0 ajr(a?) <£ (a?! xn)l(x/Xι a?n)ajx a?r(«) implies #!-••&„
/a?a?! a;r(a0 Φ 0. But ^ xjxxx ccr(α;) = ((a^ xjxx xr)/x)(x)
so ίcx â /a?! a5r(a?) Φ 0. Thus, by Lemma 2.2, either P*(a?) ^ 0
where P is a nonempty subset of {xlf , a?Λ} or Q*/R*(x) Φ 0 where
Q and J? are nonempty disjoint subsets of {â , - -, xn} and \R\ ̂  r.

THEOREM 3.4 {Caratheodory). If x <£ a?0 cc%+1 /or singletons

in a convexity space of dimension <̂  % ίfcew ί/tβre exists a proper
subset P of {x0, , #Λ+1} ŝ cfc that P*(a?) ^ 0.

Proof. Without loss of generality let us assume a?0 ̂  [a?x a?»+J.
Thus, by Lemma 2.2, either Λf*(a?0) Φ 0 where M is a subset of
{xu , xΛ+1} or M*/N*(x0) Φ 0 where ikf and N are nonempty disjoint
subsets of {xl9 , α?w+1}. In the first case ^ xn+1(x) Φ 0 and in
the second ease xx xn+ί/N*(x) Φ 0. In order to establish these
assertions let S = {xlf , a;w+1}. In the first case note that M*(x0) Φ 0
implies S*(x0) Φ 0. But a? ̂  x0S* implies x0 ^ x/S* thus

0 Φ S*(x0) = sup S*(u) A X(xQ9 n) = sup S*(w) Λ a?0(w)
u u

^ sup S*{«) Λ x/S*(u) = sup S*(α) Λ φ) A S*(w) A (w, u, v)
11 U V W

= sup S*(u) A S*(w) A (w, u, x) = S*(x)
It W

since S* is convex. Thus xx a:Λ+1(a;) ^ 0. In the second case we
have to show that supω>ί; S*(u) A N*(v) A (v, x, u) = suptt S*(u) A
xN*(u) Φ 0. But we have

0 Φ sup S*(u) A x0N*(u) £ supS*(^) Λ (x/S*)N*(u)

^ sup S*(u) A xN*/S*(u) = sup S*(u) A xN*(v) A S*(w) A {w, u, v)
U U V W

= sup S*(v) A xN*(v)
V

since S* is convex, as required. Thus either P*(x) Φ 0 where P is
a nonempty subset of {a?!, , xn+1} or M*/N*(x) Φ 0 where M and
N are nonempty disjoint subsets of {xίf ••-, xn+1}. The first case is
as required while in the second case the result follows from Lemma
3.3.
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REMARK. In the case £? = 2 these results reduce to the
generalizations of Radon, Helly and Caratheodory theorems discussed
by Bryant and Webster [1].

4* Examples* Examples of iS^-convexity spaces can be generat-
ed by various different processes. Perhaps the most basic of these
arises from the fact that Sfc is closed under colimits in (jf'pc and
£?c has a generator (namely the one-point space). Thus, by the
special adjoint-functor theorem (Mac Lane [7]), the inclusion t&

?ca£?'pc
has a right adjoint, so every ^-preconvexity space has a canonical
associated convexity space.

If X is an ^-convexity space then Xz is an .S^-convexity space
for all sets Z. Thus it is consistent to define, in a topos £? (see
Johnstone [6]) for which each &(Z, Ω) is complete as a Hey ting
algebra, an i2-convexity space as a map ( - , - , - ) : I x I x I - > i 3 in
g7 such that £?(Z, X) is an i?(Z, i2)-convexity space for all
Ze&.

Another example arises as follows. Call a functional A:X-+Sf
left exact if A(x) A A(y) = supα A(a) A X(a, x) A X(a, y) and
supα A(a) = 1; a left-exact functional is always linear. Given XzSfc
define X to be the set of all left-exact functionals from X to <j?.
On X define X(A, B) = sup* A(x) A B{x) and (A, B, C) = supα,y,z A{x) A
B{y) A C(z) A (x, y, z). Then X is an .S^-convexity space and X^X
is a map of .^-convexity spaces.

Finally, if X x X x X-+ £fu XeA, represents a set of convexity
space structures on a set X, one for each λ e ^ , the induced map
I x I x I - ^ Π i ^ is a convexity-space structure. This fact
allows the construction of £f'-valued convexity spaces from families
of classical convexity spaces on X (see, for example, quasiconvexities
[5]).
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