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NONOPENNESS OF THE SET OF
THOM-BOARDMAN MAPS

LESLIE C. WILSON

1. Introduction. In this paper, we show that the set
of all C°° Thom-Boardman maps from an ^-dimensional
manifold is not open iff corank two singularities occur
generically. The latter is known to occur iff either n rg p
and 2p ^ 3% — 4 or n > p and 2p ^ n + 4. In the course of
the proof, we establish a variation of Mather's Multitrans-
versality Theorem: we show that jets have extensions which
are multitransverse to given submanif olds of the jet bundle
except possibly at the original jet. As an application of
this extension theorem, we show that, in Mather's "nice
range of dimensions," each jet z has a representative
f (z = i*/(^)) such that / is infinitesimally stable on a deleted
neighborhood of %.

First we recall some properties of Thom-Boardman singularities;
for more details, the reader is referred to [1], [11] and [3]. In this
paper N (respectively P) will always be an n (respectively p) dimen-
sional manifold without boundary. There is a finite partition of the
jet bundle Jk(N,P) into embedded submanif olds S1, called Thom-
Boardman Singularities, each / a nonincreasing sequence of nonnega-
tive integers. Consider / in C(N, P), the set of smooth maps from
N to P. Let S\f) denote OVΓ 1 ^, j"f the jet extension of/. Then
FfflίS* implies that S*(f) is the set of points at which dim ker Tf =
i; jkfί\\S^ implies pfftS* and S' '(/) = S'(J | S'(/)), etc. We call /
a Thom-Boardman map if jkf(\\SJ for all J, for all k. By Thorn's
Transversality Theorem, the set of Thom-Boardman maps is residual
(i.e., is a countable intersection of open, dense sets), hence is dense,
in the Whitney C°° topology.

THEOREM 1.1. The Thom-Boardman maps form an open subset
of C(N, P) iff either n SP and 2p > 3n — 4 or n > p and 2p < n + 4.

Let r — max(w — p, 0), let St denote Si+r (jets of corank i), let
Sui denote Si+r>J, etc. The condition on n and p in the theorem is
precisely the condition that the codimension (abbreviated cod) of S2

be greater than n, hence that maps cannot take on S2 singularities
trans ver sally.

If cod S2 is greater than n, then a map is Thom-Boardman iff it
is transverse to all Morin singularities (which are the S1;k, where
1; k means 1, , 1, 0, 1 occurring k times). In this case, a map is
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Thom-Boardman iff its germ at each point is stable. It follows that
the set of Thom-Boardman maps is open in these dimensions. It is
helpful in understanding the proof of our theorem to consider a more
general method for demonstrating the openness of a set of maps
defined by transversality conditions.

A stratification of a closed set X in a manifold M is a locally
finite partition of X into embedded submanifolds, called strata,
satisfying the "condition of the frontier": if S and T are strata and
SnCl(T) Φ 0 (Cl denotes closure), then ScCl(Γ). Whitney's con-
dition A requires that, for xeS and xn e T, if xn converges to x and
2\.Λ(= tangent space to T at xn) converges to some L in the Grassman
bundle, then S , c L .

The following proposition is folklore:

PROPOSITION 1.2. Suppose X is a closed subset of Jk(N, P) and
.9? is a stratification of X satisfying Whitney's condition A. Then
{/: Jkf Φ S for all S e .9*} is open in C(N, P) with the Whitney C~
topology.

Using the method for constructing Whitney stratifications given
in [13] together with the fact that the Morin singularities SVtk are
orbits of a smooth group action on Jk(N, P) (the group being SίΓ\
see [7] and [8]), one can show that there is a stratification of Jk(N, P)
satisfying condition A with the Morin singularities among the strata.
In the case cod S2> n, the Thom-Boardman maps are precisely those
which are transversal to all those strata, hence form an open set by
Proposition 1.2.

However, we will give examples in § 2 showing that S2,0 Π
Cl(S1;t) Φ 0 for all k. Since cod SVtk > cod S2 if k is sufficiently large,
condition A cannot hold between SVtk and S2. (In fact, it is shown
in [5] that condition A already fails between Sltί and SttQ.) Our
examples will also show that the condition of the frontier fails.

Let tSx denote those z in Sz such that, for all / with jkf(x) = z,
jkfί\\Sj at z. These jets are called the transversal elements of S7.
Proposition 2.1 implies that 2̂,0 Π Cl(S1;fc) Φ 0 for all k if codS2 ^ n.
Consider a z in this intersection. By the Transversal Extension
Theorem (3.1) there is a Thom-Boardman map / such that jkf(x) = z
for some x. We pick k large enough that cod SVtk > n. There are
%i £ Slik with Zi converging to z in Jk(N, P). Lemma 3.5 demonstrates
that there are ft e C(N, P) such that jkfi(Xi) = zt and /«—> / in the
Whitney C°° topology; these f can not be Thom-Boardman, hence
Theorem 1.1 will be proven.

2* Contact classes in S2,0* First we describe Mather's algorithm
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for determining in which Sι a jet z lies (see illj). Let An be the
formal power series algebra in n variables over R. Let mn denote
the unique maximal ideal of An (i.e., all formal power series with
zero constant term). If / is a map germ at 0 from Rn to Rp

} let
/(/) denote the ideal in An generated by the Taylor series at 0 of
the component functions of /. The rank of an ideal / is by definition
the dimension of (ml 4- I)/ml as a real vector space, and crk I —
n — rank I. Suppose rank I = r; pick / such that I = !(/) . Let 31
be the ideal generated by / and the r + 1 by r + 1 subdeterminants
of the Jacobian matrix of /; dl depends only on /, not on f. The
Boardman symbol of I, or of / if I = !(/), is ίL, ί2, where iL —
crk I, i2 — crk 81, iz = crk δ(δl), etc. Mather shows that, if z = jkf(x)9

then z is in S!', where / consists of the first ft terms of the Boardman
symbol of any coordinate representation of / near x.

The algebra of a ft-jet z is AJ(I(g) + m%ΛΛ) where g is a coordinate
representation of a map whose k-jet is z; this algebra is only deter-
mined up to algebra isomorphism. If / is a germ at x, let Vk(f)
denote the set of ft-jets whose algebras are isomorphic to that of
jkf(x); V/C(f) is called the contact class of jkf(x), and is the orbit of
the action of the group :yf (see [8]). From the previous paragraph
we see that each Sj is a union of contact classes.

Next we show that fi»2,0 Π Cl(S>1;fc) Φ 0 for all k. First suppose
n <: p. It is easy to show using Mather's algorithm for computing
the Boardman sequence that the Morin singularity Slιk in J\ I > k,
is equal to F^fc+1)(compare w i t h §3 of Chapter VII of [3]). Also
one sees that S2j0 c J1 contains VΊ(xy), I > 1. Let

Fu: R x R x Rn~2 > R x R x R*~n x Rn^

be defined by

Fu(x, y, z) = (xy + uxk+1, uy, 0f z)

jιFu(0) e Vι(xk-H) if u Φ 0 and jιFQ(0) e Vt(xy) for I > k. Thus Vfay) c
Cl(S1;fc) for all ft < I.

Now suppose n > p. Let

F u : R x R x Rn"p x ie2ί-2 > J? x i^ x /^"2

be defined by

Fu(x, y, w, z) = (ίc.v -f uir/c+1 + Σ ^ i , uij, z)

then jιFM e F,(**+1 + Σ S 1 wi) c S l i k if u Φ 0 and

w{) c S2i0 for / > & -
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Thus

vlxy + Σ > | ) c Cl(S1;Jk) for all k < I .

We wish to show that tS2}Of)Cl(Sv,k)^0, for all k9 if
In fact, this follows by applying the next proposition to the contact
class Vι(xy + Σ*=ipwϊ).

PROPOSITION 2.1. Suppose codS2,0 is no greater than n. Then
each contact class in S2y0 c Jι contains an element of tS2}0.

Proof. Suppose jιf(x) — zeS2 = Sr+2. The intrinsic second
derivative of / at x (see §3 and §4 of Chapter VI of [3] and §2 of
[10]) is a bilinear map D2fx:NxxK->C, where K = keτDfx and
G = cok jD/a . Local coordinates can be chosen centered about x and
f(x) so that / has the form f(xu , xn) = (xlf •••,&„ #), where
s = w— r — 2 is the rank of /, and

(2.2) g(xly , a?J = Σ « ϋ ^ i + Σ Σ M ^ i + Σ c^x^

where the coefficients are in C(Rn, Rp~~s). If we evaluate the coef-
ficients at 0, then (2.2) reduces to a vector-valued quadratic form.
Viewed in these coordinates, D2fx is the last two terms of this
quadratic form; d% = D2fx\Kx K is the last term and D2fx\KL x K
is the second term (K1 is the set xs+1 — = xn = 0).

D2/^ can also be viewed as a map from Nx to Hom(i£, C), and
Hom(ϋΓ, C) is canonically isomorphic to the normal space to S2. Thus
z is in tS2 iff D2/*: iV̂  —> Ή.om{K, C) is surjective. Furthermore, z is
in S2,0 iff d

2fx: K-^Έίom(K, C) is injective.
Assume z is in S2)0. Then the image of d2fx:K—>ΐlom(K, C) has

dimension n — s. Since

dimHom(ϋΓ, C) - cod S2 ̂  n, dim(Hom(iΓ, C)/d2fx(K))

is less than or equal to s = dim ifJ. Since we can choose the coef-
ficient functions in the second term of (2.2) arbitrarily without
affecting the ideal, hence the contact class, of /, we can choose an
/ ' contact equivalent to / so that d2fx = d2fx and D2fx \ K

L spans
Kom(K, C) mod d2fXK). Hence D2f'x is surjective; hence jιf(x) is in

While it is not relevant to this paper, we would like to mention
that Mather has proved the following (Theorem 6.1 of [9]): if U is
a C2 submanif old of Jk(N, P) and cod U <; w, then the set of trans-
versal points (i.e., tU) is dense in U.
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3* Transversal extensions of jets. In this section we establish
a, variation of the Multijet Transversality Theorem (due to Mather
[9]; see also [3]) and give some applications. Then we complete the
proof of Theorem 1.1.

Suppose XczN and h:X—>Jk(N,P) is a section. Let A =
{feC(N, P): jkf\X = h}; A is a closed subset of C(N, P) in the C\
hence in the C°°, topology. Furthermore, A is a Baire space (see
Theorem 4.4b of Chapter 2 of [4]), i.e., every residual set ( — countable
intersection of open, dense sets) is dense.

Now suppose X is closed in N. Let π: sJ
/c(iV, P) -> N{s) x Ps

denote the s-f old k-jet bundle and let X{s) be the set of s-tuples with
at least one component in X; X{s) is closed in N{s). Suppose W is an
immersed submanifold of πr\N{8) — X{s)), where πx is the composition
of π with the projection of N{s) x Ps on its first factor. Let At =

PROPOSITION 3.1. (Multijet Transversal Extension Theorem.) A1

is residual in A.

Proof. W can be covered by a countable collection of compact,
codimension 0 submanifolds Mt (with boundary); furthermore, the Mt

may be chosen so that, for each ί, there exist relatively compact,
mutually disjoint coordinate patches Util, •••, Ui)S whose closures are
contained in N — X and Vitl, •••, Vii8 in P such that π(Mi)c:Uitl x
• xUit8xViΛx x F ί ) S .

Let Bt = {fe C(N, P): Jk φ W on ΛfJ and let A, = Bτ n A) A, is
open in A since Bt is open (see II. 4.14 of [3]). Pick any neighbor-
hood U of /. Exactly as in the proof of the Multijet Transversality
Theorem ([9] or [3]), there is a g m Bt Π U which agrees with /
outside UiΛ U U Uif8; thus g is in At Π U. Hence Ai is dense in
A; A1 = Π Ai is residual.

COROLLARY 3.2. // {"PΓJ is a countable collection of immersed
submanifolds of πr\N{8) - Xw), then {/ e A: jkf \ (N{s) - X(s)) φ W, for
all ί) is residual.

In Mather's nice range of dimensions ([9] and [10]), sJ
k(N, P) is

the disjoint union of finitely many contact classes Ct and finitely
many other manifolds Mt of codimension greater than n. Thus, in
these dimensions, a map is multitransverse to all contact classes iff
it is multitransverse to the C/s and ikf/s.

Mather shows in [9] that if / is multitransverse to all contact
classes and if f\C(f) (C(/) is the set of points in N at which the
rank of / is less than p) is proper, then / is infinitesimally stable;
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if in addition / is proper, then / is stable.

COROLLARY 3.3. In the nice range of dimensions, for every k-
jet z there is a map f defined on a neighborhood U of x in N such
that jkf(x) — z and f\{U — {x}) is infinitesimally stable; if n ^ p,
then f\(JJ — {x}) is stable.

Proof First, we can find an / on a U so that jkf(x) = z and
/ is finite (see Example 5.2 of Chapter VIII of [12] and §2 of Chapter
VII of [3]). Since we are in the nice range of dimensions and finite
maps form an open set, we can assume that / is multitransverse to
all contact classes on U — {x}. Since / is finite, shrinking U if
necessary, f\(U — {x}) will be proper on C(f); if n ^ p, f will be
proper on all of U — {x}.

Note that, by Lemma 4.4 of [9] and Theorem 1.13 of [7], if jpf
is transverse to the contact class of jpf(x), then the germ of / at
x is stable.

A germ fx is finitely-determined if, for some I, every germ gx

having the same Z-jet as fx at x can be transformed into fx by local
coordinate changes. If fx is finitely-determined, then for every
representative / of fx there is a neighborhood U of x such that
f\(U — {x}) is multitransverse to all contact classes (see [2]); the
converse is true if / is complex analytic. This suggests the con-
jecture that, in the nice range of dimensions, every jet has a finitely-
determined representative. C. T. C. Wall has recently confirmed that
this is true in a range of dimensions slightly larger than the nice
range.

We return to the proof of Theorem 1.1.

COROLLARY 3.4. If cod S2 ^ n, then for each xeN and allk^l

there is a Thom-Boardman map f such that jk+1f(x)^S2y0ΠCl(S1.k).

Proof. We know that Vk+1(xy + Σ * i p wl) is contained in S2,0 Π
Cl(S1;fe). Choose in this contact class a transversal element z of S2

so that πx(z) = x. Let A = {feC(N, P): jk+1f(x) = z). Applying
Corollary 3.2 to the case s = 1 and {TΓJ the Thom-Boardman singul-
arities, we see that there is an / such that jk+1f(x) = z and away
from x jknf is transverse to all Thom-Boardman singularities. Thus
/ is a Thom-Boardman map.

LEMMA 3.5. Suppose zm —> jkf(x) e Jk(N, P). Then there are maps
fm and points xm such that jkfm(xm) = zm and /m —> / in the Whitney
C°° topology.
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Proof. Necessarily π(zm) — (xm, ym) converges to π(z) = (x, y).
Choose coordinate charts (U, r) about x and (V, I) about y such that
r(U) = Rn, r(x) = 0, r(xm) = um and l(V) = i?p. Choose any maps #w

such that jkgm(xj = zm. Let sC = l^g^r"1 and / ' = lofor"1. Let p w

be a polynomial of degree k expanded about um such that jkpm(um) =
jk(g'm — / ' ) W Since jkpm(um) converges to the zero jet at 0, the
coefficients of the pm's go to 0. For any compact set KaRn, there
is a C such that \u — um|* < C for all ue K, m > 0 and 0 < i <̂  k.
Thus ί>m —> 0 uniformly on iί, as does each of its derivatives. Pick
a e C(Rn, R) such that a = 1 on a neighborhood of 0 and α — 0 off a
compact set. Let fm \ U = Γ^α^,, + />?• and /m | (iV - CΓ) = /. Then
fm > / in the Whitney CΓO topology and jkfm(xm) = zm.

Choose k sufficiently large that cod S1:k > n. Choose / as in
Corollary 3.4. By the preceding lemma, / is the limit of maps fm

having Suk singularities. Necessarily fm is not a Thom-Boardman
map. Thus the proof of Theorem 1.1 is complete.

EXAMPLE 3.6. Let f(x, y, s, t) = (g(x, y) + sx + ty, xy, s, t)9 where
g is in ml; then j2f(0) is in tS2yQ. If we take g(x, y) = x* + yz, then
/ is a Thom-Boardman map and is the limit of maps which, having
S1;5 singularities, are not Thom-Boardman. The computational details
involved in this example are worked out in [6].
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