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ON TrCOMPACTIFICATIONS

S. A. NAIMPALLY AND M. L. TIKOO

In a recent paper [4J, Reed constructed a class of TΊ-
compactifications which generalized the well known corre-
spondence between TVcompactifications, proximity relations
and families of maximal round filters. This class includes
the Wallman compactification and the one point compactifica-
tion of a locally compact Tx-space. In this paper the first
two problems posed by Reed are solved. In particular we
prove that in a nearness space the Reed compactification is
equivalent to a cluster compactification. Use is made of
the duality between filters and grills as developed by Thron
F5].

1, Preliminaries• Here we give briefly some relevant definitions
and known results. For more details see Naimpally and Warrack
13] and Reed [4]. All spaces are ϊ\.

An extension structure Φ on a topological space (X, τ) is a fami-
ly of open filters on X which include all the neighborhood (nbhd)
filters. Φ is said to be T1 iff no filter in Φ contains another filter
in Φ. For each i d , set A~ = {^~ eΦ: A e J^~}. Then the family
{(?": Geτ} is a base for the topology τ" of Φ such that (j, (Φ, O ) is
a principal extension of (X, τ) where j(x) = ,yK, the nbhd filter at
xeX.

An extension structure Φ is totally bounded iff each ultraclosed
filter on X contains a member of Φ. Φ is said to be covered iff each
member of Φ is contained in an ultraclosed filter on X. Further P<Φζ>
iff for each J ^ e Φ if P belongs to some ultraclosed filter Sίf con-
taining ^ then Q e j^7 Denoting by §ίfι the open hull of £ίf, Φ is
regular iff for each ^ e Φ, ^~ — Φ(£ίfι) for each ultraclosed filter
,^"Z),j^7 where Φi^f1) = {AczX: F <Φ A for some F e ^ } . A
compactification structure is an extension structure that is totally
bounded, covered and regular. The principal extension obtained from
a compactification structure on a TΊ-space (X, τ) is a ϊVcompactification
of X, and we call it the Reed Compactification [4].

A stack Sf on a nonempty set X is a nonempty family of
nonempty subsets of X such that if AeSf and AaB, then Be.9*.
A grill gf on X is a stack on X such that (A\jB)eS? iff A e <& or
B e 57. A family of subsets of X is a grill iff it is a union of ultra-
filters (Thron [5]). If .5^ is a stack on X,

- {EaXlEnS Φ 0 for each Se.9"}
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is called the dual of S< ^ is a filter on X iff c(^~) is a grill on
X, and ^ " = c(^~) iff ^ is an ultrafilter (Thron [5]). Note also
that c{c{^)) = jT" and ^~ c c(^~) for each filter j^Γ

If (X, <5) is a LO-proximity space, then a clan σ on X is a grill
such that if A, Beσ, then A$i?. A bunch σ is a clan such that
A 6 σ iff A e σ. A cluster σ on X is a bunch such that if i ί σ ,
then there is a 56(7 such that AdB. Every cluster is a maximal
bunch; the converse holds in an i£F-proximity space (see [1], [3], [5]).
It was shown in [1] that the space of all maximal bunches of a
separated LO-space (X, δ) is a ϊVcompactification, which we call a
maximal bunch compactification.

The proofs of the following results are easy and hence omitted.

LEMMA 1.1. (i) If σ is a bunch in (X, 3), then c{σ) is an open
filter on X.

(ii) // 3$f is an ultraclosed filter on X, then

6(̂ r) = {AaX: i e ^ }

is a bunch containing Sίf. Also Sίf a c(£έf) a b(£ίf) and c(£ίf) is
a clan.

Lemma 1.1, in particular, enables us to give an example of an
open filter which is not contained in any ultraclosed filter.

EXAMPLE 1.2. Consider three distinct sequences {xn}, {yn}, {zn} and
three distinct points α, 6, c. Let {xn} converge to {b, c}, {yn} to {c, a}
and {zn} to {α, 6}. Let X be the union of {a, 6, c] and the ranges of
the three sequences {xn}, {yn}, {zn}. Then X is a Γ^space and has a
compatible LO-proximity δ0 namely,

(1.3) Aδ0B iff Af]B ^ 0 .

Then σ = {AaX: A is infinite}, is a maximal bunch which is not
a cluster. (This was first privately communicated to the first author
by Professor A. J. Ward.) It is easy to see that σ does not contain
any ultraclosed filter §ίf\ for if ^ c α , then the closed set {a, b, c}
would intersect every member of Sίf and hence would be in S$f and
consequently in σ, a contradiction. It follows that c(σ) is an open
filter that is not contained in any ultraclosed filter. This shows that
Φ need not be covered.

2* Equivalence of Reed and maximal bunch compactifica-
tions* In this section we obtain conditions under which the Reed
and maximal bunch compactifications are equivalent.
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We first construct a LO-proximity from an extension structure
(see also Thron [5]).

THEOREM 2.1. Let Φ be an extension structure on a T^space
(X, τ). Then the relation δ = δ(Φ) defined by:

2.2. AδB iff there is an ^ " e Φ such that AfBec(J^) is a
compatible separated LO-proximity on X.

Proof. Since each member j ^ ~ e Φ is open it follows that A e
ciJ^) iff A 6 c(^~), and so AδB iff AδB. The fact that δ is a basic
proximity is easily verified; hence δ is a LO-proximity. For each
nbhd filter ^VX1 c(^fς) = σx the point cluster. Since all the nbhd
filters are included in Φ, δ is compatible with τ.

COROLLARY 2.3. (i) For each J ^ e Φ, c{^) is a bunch in (X, δ).
(ii) If ά^ e Φ and if there is an ultraclosed filter £%f containing

7 then b{^^)ac{J^).
(iii) If Jf 6 Φ and if there is an ultraclosed filter £έf contain-

ing ^ then b(3ϊf) = c(^~) if and only if J^ = ,2T\ Further in
this case c{^) is a cluster.

Proof, (i) Easy.
(ii) If Eeb(£έ?), then Ee£ίf. This shows that X-EiJ^

and so E e c(^~). Hence E e c{^).
(iii) Suppose ^ = ̂ ί ' ί c ,̂ T. By (ii) δ(^T) c c(J^). If 6( JT) Φ

c{^)f then there exists a closed set £/ in c(^~) - 6(^^). Thus
X — Ez^έf1 = ̂ 7 thereby showing that E$c(^)9 a contradiction.

Conversely, suppose h{3if) = c(^"). To show that J ^ = 2Zf\
it suffices to show that Sίf1 c ^ T Let G be an open member of
^f\ If Ggjr; then X - G e c(JH = δ ( ^ ) . Since X ~ G is closed,
X — G e ̂ ^ a contradiction.

Finally we note that if Φ is covered and c{^) — b(£ίf) for each
then the proximity δ{Φ) is δ0 (see (1.3)). Therefore, if i ί

then Άi^f. This implies the existence of an U'e <%f with
AΓ\U = 0 . Hence A$U, thereby showing that c{^) is a cluster.

REMARK 2.4. (i) It is shown in [3] that if J^~ is a maxima]
round filter on an jEF-space (X, δ), then c(^~) is a cluster.

(ii) If Φ is a covered extension structure on (X, τ) and δ — δ(Φ),
then A$B implies A < φ X — B. For, if J^~ e Φ and A e c(^~) then
A(?J5 implies X - B e J^

In what follows c{Φ) denotes the set {cC^Q: ^ eΦ). A space of
bunches on (X, 8) means a subspace of the space of all bunches in
(X, δ) with absorption topology ([1], [3]). A compactification of (X, δ)
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whose members are (not necessarily all) clusters (resp. maximal
bunches) is called a cluster (resp. maximal bunch) compactification
of X. σx = {AaX: xδA}, the point cluster ([l], [3]).

The condition (2.6) given below provides the solution to two of
Reed's problems.

LEMMA 2.5. Let Φ be a compactification structure on (X, τ) such
that o = 8(Φ) satisfies:

(2.6) AΨB iff A<ΦX - B ,

then c(.βr) is a cluster for each S7r 6 Φ.

Proof. Let J^ e Φ and £%f be an ultraclosed filter containing
JΓ. Then j r - Φ{3ifx) c 3Z?* a Sίf c c(JT)m By (2.3) (i), c(JH is a
bunch. If Eic{J^)y then X-EeJ^. Hence there is an Fe£έfH

such that F<ΦX — E. Since f^f1 c Si?, there is a closed set A e Si?
such that i c F . Clearly A < φ X — E and consequently A$E. Thus,

is a cluster.

LEMMA 2.7. // Φ is an extension structure on a topological space
(X, τ), then the principal extension (j, (Φ, τ")) is homeomorphic to a
space of bunches.

Proof. Clearly the map c:Φ —> c(φ) defined by

c(jr) = {EaX\X - E£ ̂ ) for each J ^ e Φ ,

is a bisection. If δ = δ(Φ) then c(Φ) is a family of bunches in the
LO-space {X, δ). We assign the absorption topology on c(Φ) (see [1]).
We now show that c is a homeomorphism. Let / e ί * and j > / c Φ .
J ^ e cl(jy) iff for each open set .P e ̂ 7 i ^ n *$/ Φ <f> iff for each
open set FeJ^, there is a filter ^ 6 J / such that F e g f iff for
each closed set E = X - F^c{^), E£c{&) for some filter
iff for each closed set E absorbing c(j^), Eec(^) iff c(^H e

REMARK 2.8. c(Φ) contains all point clusters and the map ψ: X—>
c(Φ) defined by ψ(x) = σx is a dense embedding of X into c(Φ). The
relation coj = ψ, then shows that the extensions (j, {Φ, τ~)) and
(^, (c(Φ)f a)) where a is the absorption topology, are equivalent.

We now prove one of the main results of our paper.

THEOREM 2.9. Let Φ be the Reed compactification of a T^space
{X, τ) such that δ ~ δ(Φ) satisfies 2.6. Then Φ is equivalent to a
maximal bunch compactification of (X, δ). (This need not consist
of all maximal bunches in (X, δ).)
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Proof. By Lemma 2.5, c{JΓ) is a cluster and hence a maximal
bunch for each ^ e Φ . By Lemma 2.7, Φ is equivalent to c(Φ).

REMARK 2.10. We note that the above theorem includes the
three special cases considered by Reed [4].

( i ) If Φ consists of maximal round filters on an EF-s^ace {X, <5),
then it is well known that A$B iff A<ΦX - B (see [3]).

(ii) In case Φ is the trace system of the Wallman compactifica-
tion, c{J^) = b(£έf) for each ^ ~ e Φ and hence δ(Φ) = δ0. Suppose
A <φ X - B but AδB. Then Af] B Φ 0 thereby showing that A, Be
σx, the point cluster for some x e X. But then X — B & <yKx, a con-
tradiction.

(iii) Next let Φ be the trace system of the one-point compaeti-
fication of a noncompact locally compact 2Vspace (X, τ) and let
A <Φ X - JS. Suppose AδB. As in (ii), A{\BΦ ® will lead to a
contradiction. So the only possibility is that A, Bec{^) where JF*
is the open hull of the intersection of all the nonconvergent ultra-
closed filters. But then X — jBg^7 thereby showing A <fLΦX — B,
contradicting A < φ X — B.

The following theorem gives a characterization of clusters in
(X, δ(Φ)) which are the duals of the members of Φ. We use the
notation r(σ) = { A c I : There is an Feσ such that F$(X - A)}.

THEOREM 2.11. Let Φ be extension structure on a Trspace (X, τ)
and let δ — δ(Φ). Then for each J^eΦ, c{J^) is a cluster in (X, δ)

Proof. Suppose J/ r = r{c{ά/r)). We know that c{j?r) is a bunch.
If A&c(^~)f then J - i e j C Hence there exists a Bec{^r) such
that B$A showing thereby that c(J^") is a cluster.

Conversely, suppose c{^) is a cluster. If i e r ( c ( ^ ) ) , then
B$(X - A) for some Bec(^~). So X — Aίc(^), showing thereby
that A G ^ i.e., r(c(^~)) c ^ 7 On the other hand, if i € ^ then
X — Agci^"). Since c(^~) is a cluster, there is an Fec(^) such
that F$(X - A). Hence A e r(c(J7~)). Thus ^ c r(c(JH) and hence

COROLLARY 2.12. The Reed Compactification Φ is equivalent to
cluster compactification if and only if J^ = r(c(J?~)) for each

We now show that the Reed Compactification is equivalent to a
cluster compactification in nearness spaces. This development was
suggested by the referee to whom the authors are grateful. For
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definition of contigual nearness we refer to [2].

LEMMA 2.13. Let Φ be a Reed Compactification of a T^space X
and vφ the nearness generated by the duals of filters in Φ. Then
vφ is contigual.

Proof. That vb is a nearness on X is easy to prove. To show
that V) is contigual we have to prove that if j y be a family of
subsets of X such that every finite subfamily of Jϊf is in vφ then
J ^ e vφ. Let Sf = {F: F is closed and 3 ^ e Φ and 4 e j / such that
(X - F) <φ (X-A)e J H w e show that Sf has the finite intersection
property. Let Flf F2, , Fn e S^i For each i, choose At e s^ and

such that (X — FtXΦ (X — At) e ̂ . By the assumption of
j, A2, , iiΛ} e vφ and hence there is a filter &" e Φ such that

{Au A2, - ••, 4 J c c ( ^ ) . Since Φ is covered, we can choose an
ultraclosed filter ^f such that ^ ~ c Sίf. Now, for each i, (X - A%) £
^ and hence (X -AJeJΓ Since (X - F%) <φ (X - A,) it follows
that (X - F%) i Sίf. Hence F^^f and so Γϊ7=i Ft Φ 0 . Hence Sf
has the finite intersection property. Let Y* be an ultraclosed filter
containing £A Since Φ is totally bounded, we can choose ^ e Φ such
that g^c 3^ To prove the lemma we show that e i / c c ( ^ ) .

Let i e j / and A g c(gf). Then (X - A) 6 ̂ . Since 5f is open,
(X — A) 6 ̂ . Since Φ is regular, & dΦ( Y*1) so we can choose an
open set Ve Y such that V<Φ (X - A). But, then (X -~V)eS^aY
which is impossible. Hence

LEMMA 2.14. If Φ is a Reed Compactification of X then
for each

Proof. As shown above r{c{^)) c ^ 7 Conversely, let A
Let 3έf be an ultraclosed filter containing ^ 7 We show that
{X-A}£vφ. Let ^ e Φ and suppose , § r ' c c ( ^ ) . Then g '
Now since ^ a£ί? and Φ is regular, we have ^~ aΦ^ϊίf1). Let E7"
be an open set in Jg^ such that U<,ΦA. Then since & <z.3ff we
have A egf. Thus, (X - A) gc(5f) Hence ̂ ^ U (X - A) (£ c(gf) and
thus £%f U (X — A) 0 vφ. Now, since vφ is contigual, there is a set
iΓ in 2ίf such that {X, (X - A)} £ vφ. This says that K$(X - A).
But Kec(J?~) since ^tzStf. Hence i e r ( c ( / ) ) . Therefore,

THEOREM 2.15. T%e i2eeώ Compactification is equivalent to a
cluster compactification of the induced contigual nearness.

Proof. Follows from Lemma 2.14 and Theorem 2.11.
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3* Reed's second problem* In this section we give a solution
to the second problem of Reed [4]. Let (e, (Y, τ')) be a 2\-compac-
tification of (X, τ) with the trace system Φ. Let < be the relation
induced on X by the elementary proximity on Y, viz

A < B iff cl(β(A)) n cl(β(X - J3)) = 0 .

Then as remarked in [3], <* c < Φ . We show that if Φ satisfies (2.6)
then < Φ c <*, and hence the two relations are equal.

We observe that the following yield compatible LO-proximities
on X:

(3.1) Aδ,B iff cl(e(A)) n cl(e(B)) Φ 0

(3.2) Ad2B iff c\(j(A)) n cl(j(B)) Φ 0

(3.3) δ, - δ(Φ) .

It is easy to see that δ2 — δ3 and δ1 ^ δ2.

THEOREM 3.4. // Φ satisfies (2.6) then <Φ = < * .

*Proof. Since it is known that < * c «<#, we need prove «<# c <
Suppose A < φ -B but A <* ΰ . Then there exists a closed set Fa A
such that .P < B. Hence cl(e(F)) n cl(e(X - B)) Φ 0. Since <52 = δ3,
there exists an ^ e Φ such that ί7, (X - B) e c(^"). By (2.6) F < φ J5
which contradicts A < φ B.

Thanks are due to the referee for several valuable suggestions.
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