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2-FACTORIZATION IN FINITE GROUPS

MAKOTO HAYASHI

Let G be a finite group, and S be a nonidentity 2-sub-
group of G. Then, it is naturally conjectured that there
exists a nonidentity Ng(S)-invariant subgroup of S, whose
normalizer contains all the subgroups H of G with the
following properties: (a)S is a Sylow 2-subgroup of H; (B)H
does not involve the symmetric group of degree four; and
(r)Cx(0O(H))=O0.(H). The purpose of this paper is to give a
partial answer to this problem.

1. Introduction. Suppose 7 is a set of primes, and X is a
finite group. Let &7(X:7x) be the family of all groups D that are
involved in X with the following properties; (@)D possesses a normal
simple subgroup E, (3)C,(E) S E (that is, D/C induces outer auto-
morphisms of E), and (v)D/E involves a dihedral group of order
2p for some prime p(=5) in «.

THEOREM. Let @ be a set of primes. Suppose G 13 a finite
group, and S 18 a nonidentity 2-subgroup of G. Assume that for
any nonidentity subgroup T of S which is mormal in NgS),

(1) S is normal in some Sylow 2-subgroup of Ng(T); and

(2) D(N(D)|Go(T): ) = ¢.

Then there exists a nonidentity subgroup W(S) of S which satisfies
the following conditions (a) and (b):

(a) WI(S) is normal in NgS); and

(b) W(S)O(H) is normal in H for any solvable w-subgroup H
of G which satisfies the following conditions (&) and (B):

() S is a Sylow 2-subgroup of H: and

(B) H 1is S*-free, where S* denotes the symmetric group of
degree four.

REMARK 1.1. The condition (1) of the theorem is satisfied,
whenever S is normal in some Sylow 2-subgroup of G.

In general, suppose » is a prime, G is a finite group, and S is
a nonidentity p-subgroup of G. Let Qd(G, S) be the family of all
subgroups H of G that satisfy the following conditions: (@) S is a
Sylow p-subgroup of H; and (B8)H is p-constrained, and p-stable (if
p = 2, S*free). Then, what are the relations among the elements
of Qd(G, S)? Furthermore, what are the relations between G and
the elements of Qd(G, S)? These problems were proposed by G.
Glauberman and J. G. Thompson, and for which amazing progresses
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have been made chiefly by them over the past ten years (c. f. [4],
[5], and [6]). The theorem is for p =2 a weak analogue of the
ZJ-Theorem [3], in which G. Glauberman treated p-groups, namely
he succeeded in the Replacement Theorem for p-groups with class
at most 2, p odd; And he applied it to prove that ZJ(S)<] H for
any element H of Qd(G, S). In contrast with this, since we can
not find a suitable characteristic subgroup of S, we must directly
analyze the relations among the solvable elements of Qd(G, S).

The §§3 and 4 are used for preliminaries. In the §5, we get ex-
pressions among the solvable elements of Qd(G, S) through the inter-
mediary S, and in the §6, we apply them to some groups involved
in G. In his paper [5], G. Glauberman defined a new characteristic
subgroup J(S) for a finite 2-group S which possesses good properties,
in particular, in connection with J,(S) and 2,Z(S). In this paper,
these good properties are exploited which make possible to prove
the existence of W(S) which corresponds to ZJ(S), but unfortu-
nately, which is not in general characteristic in S. We shall treat
nonsolvable subgroups in [9].

2. Notation and definition. All groups considered in this
paper will be finite. For every finite set S, denote the number of
elements of S by |S|. Let T and U be subsets of S. T\U denotes
the set of all elements of T that do not belong to U. Let X be
a finite group, and Y and Z be subsets of X. We write Y <
X(YcX) to indicate that Y is a (proper) subgroup of X. Let
YZ ={yz;ye Y,ze€Z}, and Y?={2"yz;ycY,zeZ}. (-2
denotes the group which is generated by all --- such that .---. Let
[y, z]=y 27 'yz for any pair of elements ¥ and z of X, and [Y, Z]=
Ay, 2;yeY,zeZ). Y<{X if Y is a normal subgroup of X. For
a finite group W, X ~W if X is isomorphic to W. W is involved
in X if X contains subgroups X, and X, such that X, > X, and X,/
X, =~ W; otherwise X is W-free. For a set of primes 7, 7’ denotes
the set of all primes which do not belong to 7. We say that X is
a 7w-group if 7w contains the set of all prime divisors of |X|. X is
w-closed if X possesses a unique maximal z-subgroup. X is a
dihedral group if X is generated by two elements of order 2.

Suppose 7 is a set of primes. Denote by:

Ny(Y) the normalizer of Y in X;

C(Y) the centralizer of Y in X;

Z(X) the center of X;

2.(X) the subgroup of X which is generated by every

element of X that has prime order;

(X) the Frattini subgroup of X, that is, the intersection

of all maximal subgroups of X;
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0.(X)  the maximal normal w-subgroup of X, and let O(X) =
0x(X);
O7(X) the subgroup of X which is generated by all elements
of X whose orders are coprime to any prime in x;
F(X) the fitting subgroup of X, that is, the maximal normal
nilpotent subgroup of X;
F_(X) the maximal normal solvable subgroup of X.
E(X) the subgroup of X which is generated by all quasi-
simple subnormal subgroups of X.
We say that X is quasi-simple if X = [X, X| and X/Z(X) is simple.
In addition to the more standard terminology, for a finite group
X and a subgroup S of X, we say that X is S-irreducible if and
only if X = X, or X,, whenever both X, and X, are subgroups of
X whieh contain S and X = (X, X,).
In this paper, both the Thompson subgroup and the Glauberman
subgroup will play very crucial roles. We define them according to
G. Glauberman [6]. Suppose S is a finite 2-group. Let

d,(S) = max. {{4]; A is an elementary Abelian subgroup of S},

J(S) = (A; A ranges over all elementary Abelian subgroups of
S with 4| =d.(8S)), and 2, ZJ.(S) = 2.(Z(J,(S))).

We say that S* is an E-group, if Z(S*) contains every normal
elementary Abelian subgroup V of S* which has the following
property:

Whenever R is a nonidentity elementary Abelian subgroup of
S*/Cs.(V), then |V/C,(R)| > |R}** and |[V, R]| > |R]|.

DEFINITION. Let S be a finite 2-group. Then
J(S) = {8*; 8* ranges over all E-groups such that J,(S)ZS*ZS)

and

QZJ(S) = Q(ZJ(S)) .
REMARK 1.2. J(S) 2 J.(S) (c.f. [6, Chapter II, Remark 1.1]).

3. Preliminaries and konwn results. In this section, we shall
present lemmas which will be frequently quoted and will be used
to prove Propositions 3.13 and 17.

HyproTHESIS A. Suppose H is a finite solvable group, and S is
a subgroup of H. Assume:

(A.1) S is a Sylow 2-subgroup of H; and

(A.2) H is S*free, where S* denotes the symmetric group of
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degree 4.

THEOREM 3.1. (G. Glauberman) Suppose H is a finite solvable
group, and S is a subgroup of H. Assume the pair (H, S) satisfies
Hypothesis A. Then

(@) H = Cu(Z(S))Nu(J(S)O(H);

(b) H = Cy(:ZJ(S)Nu(J(S)O(H); and

(¢) H = Cy(Z(S))Nu(J(S))O(H).

Proof. See [6, Chapter II., Theorem B].

LemmA 3.2. Suppose S is a finite 2-group. Then
@) JJ(T) = J.(S), whenever J(S)S T < S;

(o) JT) = J(S), whenever J(S) < T< S; and

(©) QZJHT)=2 0.Z2J(S), whenever J,(S)< T < S.

Proof. (a) and (b) follow from [6, Chapter II. Lemma 2.1(b)
and (d)]. If T* is an E-subgroup of T, then T* is an E-subgroup
of S by definition. So, (e¢) follows from (a).

LEMMA 8.3. Suppose X is a finite group, and V is a normal
subgroup of X. Let S be a Sylow p-subgroup of X. Then

@ SNV isa Sylow p-subgroup of V;

(b) SV/V is a Sylow p-subgroup of X/V;

(¢) (Frattini argument) X = VN (SN V); and

(d) X = 07(0*(X))Nx(S).

Proof. (a), (b) and (e¢) follow from [8, Theorem 1.3.7 and 8,
page 12]. (d) is a special case of (c).

LEMMA 3.4. (W. Burnside) Let p be a prime. Suppose P is
a finite p-group, and A 1is a finite group which acts on P. Assume
that A acts trivially on P/@(P). Then, [P, O°(4)] = 1.

Proof. See [8, Theorem 5.1.4, page 174].

LEMMA 3.5. (P. Hall) Suppose » is a prime, and 7 is a set of
primes which contains p. Let X be a finite solvable group, D, and
D, be Hall m-subgroups of X, and S be a Sylow p-subgroup of D,.
Then

(a) D, and D, are conjugate in X; and

(b) if S s also a Sylow p-subgroup of D,, then there exists
an element x of Nx(S) such that D7 = D,.
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Proof. (a) [follows from [8, Theorem 6.4.1 (ii), page 231]. (b)
follows from (a).

LEMMA 3.6. Suppose X is a finite group, and W s a normal
subgroup of X. Then, E(W) is a central product of uniquely
determined quasi-simple groups which are permuted by conjugation
of X.

Proof. See [7, Lemma (2.1)(a), page 73-74].

LEMMA 3.7. Let r be a prime. Suppose V 1is a finite group,
and H is a finite group which acts on V. Assume:

(1) H stabilizes a normal series of V:V 2V, 21; and

(2) V,is an r-group.
Then, [V, O"(H)] = 1.

Proof. Let @ be a Sylow g-subgroup of H, where ¢ is a prime
which is distinet from . By (1), R normalizes some Sylow p-sub-
group of V for any prime divisor » of |V|, and centralizes it by
[8, Theorem 5.3.2, page 178]. Since ¢ is an arbitrary prime with
q # 7, by (2), we get RCC,(V) <] H, which implies this lemma.

We use the following famous result without notice:

LEmMmA 3.8. (W. Burnside) Let X be a finite group. Assume
that the number of prime divisors of |X| is at most 2. Then X
18 solvable.

Proof. See [8, Theorem 4.3.3, page 131].

Lemma 3.9. Suppose H is a finite {2, 3}-group. Then, the
Jollowing (a) and (b) are equivalent:

(@) H = 0;,,(H);

(b) H is S*-free, where S* denotes the symmetric group of
degree four.

Proof. Obviously, (b) follows from (a). Assume (b). Let X
be an involved group in H minimal subject to satisfying H =
O,.:(H). Then, X possesses the following properties: (@) X =
0,:.(X), (8)0,(X) is a nonidentity elementary Abelian group, (v) the
order of a Sylow 3-subgroup @ of X is 3, and (§)C(Q)NO0(X) = 1.
So, N;(Q) is isomorphic to the symmetric group of degree three,
and O,(X) is a four group. This implies that X ~ S* as required.
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Hence, this lemma is proved.
The next lemma immediately follows from the definitions.

LemmA 3.10. Suppose H is a finite group, and S is o Sylow
2-subgroup of H. Then, H possesses S-irreducible subgroups {H;
1 <12t with a Sylow 2-subgroup S such that H={(H;1Zi<t).

LEMMA 3.11. Suppose H is a finite solvable S-irreducible group
with a Sylow 2-subgroup S. Let V be a mnormal subgroup of H.
Then

(a) HJV is SV/V-irreducible;

(b) H is a {2, r}-group for some prime 7r;

() H=0,,.(H).

Let R be a Sylow r-subgroup of H.

(d) SO(R)/O(H)P(R) acts irreducibly on RO,(H)/O,(H)P(R);

() if O(H)EZ V, then SNV <] H.

In the following statements, we assume that H is not 2-closed.

) f SCV, then V = H, that is, H = O*(H);

(g) iof OH)ZL YV, then RNV < OR), and H/V involves a
dihedral group of order 2.

(h) if r = 8, one of the following holds:

(h.1) H s r-closed; R
(h.2) H = Cy(2,Z(S)) = SCx(2,.ZJ(S));
(h.8) H = Nyp(J.(S)) = Nux(J(S));

(h4) H = Ny(J.(S)) = Cu(2,Z(S));

(i) <f »# 3, there exists a (possibly trivial) characteristic
subgroup T of S which is normal in H and H|T is r-closed.

Proof. (a) follows from the definitions.
(b) follows from a theorem of P. Hall [8, Theorem 6.4.1, page
231].

To prove (c), suppose HDO0,,,(H). Let T=8Sn0,,,(H), H =
Ny(T), and H, = 0, (H)S. Then, HDOH,28,1<1=<2, and H =
H.H, by the Frattini argument, which contradicts the fact that H
is S-irreducible.

(d) follows from a theorem of H. Maschke {8, Theorem 8.3.1,
page 66].

(e) By the Frattini argument, H = Nz(SN V)(VS). As O(H)Z&
VS,S< VSc H. Since H is S-irreducible, H= Ny(SN V), as
required.

(f) Suppose O*(H)Z V. By (e), H= Ny(S), which contradicts
the fact that H is not 2-closed. Hence, V2 0*H)S = H, as required.
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(g) By (d), RN VS O(R). To prove the latter part of (g),
we may assume V 2 O,(H). Let H = H/V. Then, a theorem of R.
Baer [8, Theorem 3.8.2. page 105] implies that H possesses involu-
tions ¥ and ¥ such that (%, ) is not a 2-group, which implies (g).

To prove (h), assume H # Q,(H )S; then, by Theorem 3.1, AH =
Cx = (Z(S)Nu(J(S)) = Cu(2,ZJ(S))Nu(J(S)) = Cu(2,Z(S)Nx(J(8S)).
Since H is S-irreducible, we get (h).

(i) Let T be a characteristic subgroup of S maximal subject
to satisfying T <] H. By Theorem 3.1, H=Cz(Z(S))Nz(J,(S))(O(H)S).
Then we conclude H = O(H)S by (a) and the maximality of T.

LemMA 3.12. Let » be a prime with r =5. Suppose D is a
finite group, {D;1 < 1 < n} are normal subgroups of D, S is a 2-
subgroup of D, and H is a {2, r}-subgroup of D with a Sylow 2-
subgroup S. Assume:

(1) S is mormal in some Sylow 2-subgroup of D;

(2) H is an S-irreducible group which is not 2-closed;

(8) OXH) < D\D,---D,;

(4) [D, D;] =1 forall i1 <1+ Jj=<m;

() DN <Dj3lsj#1=mn> is a 2-group for each ;1<
1< n.

Then there exist subgroups {K;1 <1 =n} of D which satisfy the
following conditions:

@) K, is a {2, r}-group with a Sylow 2-subgroup S,1 =1 < n;

(b) O¥K,) < D, for all 1;1 <1 < m;

() (KylZisn) is a {2, r}-group with a Sylow 2-subgroup
S, and HS (K;1 <1 = n);

(d) thhere exists a subgroup T of S which satisfies the follow-
ing conditions:

(d.1) T s normal in {NS), K;1 <1< n); and

(d.2) (K;1=1= n)/T 1s r-closed.

For any subgroup J of S,

(e) if O, (H) 2 J, then OK,) 2 J for all 1;1 <1 < n;

) of O(H) S [0,,(H), J], then OX(K,) < [0,,(K)), J] for all i;
112 m;

(g) if H is r-closed, then (K;1 <1 < n) is r-closed.

Proof. In this proof, for any subgroup X of D, we let

X+ = {w; 22, e XN DD, ---D, and 2,€D,, 1 <1 < n},
1515 n.

Since D, <] D, it is easily verified that for any subgroup X of
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(3.12.1) Np(X#) 2 Ny(X) for all ;1 <i=<m.

For another subgroup Y of D, by (4),

3.12.2) [XN DD, --D,, YN DD, --D,]<|[X* Y*;1<i1<n,
and

(3.12.3) [X*, YN DD, ---D,]=[X* Y*| foral ;1<i<n.

Suppose O H) < D, for some ;1 <% <n. By Lemma 3.11(i), there
exists a subgroup T of S such that 7T is normal in (N,(S), H) and
H|T is r-closed. Hence, setting K, =H and K, =S for other
J;1 =7 +#1<m, we can easily verify that all our assertions hold.
Thus, we may assume that:

(3.12.4) OH)Z D, for all ;1 <i1=<mn.
So, by Lemma 3.11(e),

(3.12.5) SND,<|{Hforall ;1<i<n.
By (3.12.1) and (5),

(8.12.6) O,(H)f is a 2-group which is normalized by H for all
plsi=n.

By (1), there exists a Sylow 2-subgroup U of D in which S is
normal. Since U Z N,(S) C N(S*) and O,(H)f < S, we obtain
that O,(H)* € U for all ¢;1<i=<n. Since SJU, [O(H), S]<
SN D, for all 4;1 <7 <mn. Hence, by (3.12.5) and (3.12.6), S
Cu(O,(H)#/(SN D)) | H for all ;1 <17 < n. So, by (2) and Lemma

3.11(),
(3.12.7)  H = Ch(O,H)#/(SN D)) for all i;1<i<mn.
Let T=(SND;1=<i=<n). By (3.12.5),
(3.12.8) T < (NxS), H) .

Let R be a Sylow r-subgroup of H. Then, by (3.12.2), (3.12.3) and
(8.12.7),

[0,(H), R] = [O,(H), R, R]

c [0(H) N (D,D,- - - D,), E]
< [KO(H)¥;1 <1 < n), R]
ZA/{OH)},R;1 1= m)
SS8ND;l=i=n)

cT.

(3.12.9)
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So, by (2) and Lemma 3.11(c).
(8.12.10) H|T is r-closed.

By (3), (3.12.2), (3.12.3) and (3.12.5),[T, R¥] = [SN D,, R] = [SN
D,RI<SND, < T Hence, Rf normalizes T, so that

(3.12.11) O.(R¥) normalizes T for all ;1 <1< n.
Then, by (3.12.1), (8.12.10) and the Frattini argument,

S S Nu(BT) & Na(R)T S Nu(R¥)T = Nu(OARHT)

3.12.12
( ) forall ;1 <1< n.

It follows that SO,(R}) is a {2, r}-group with a Sylow 2-subgroup
S for all ;1 =i =<n. Let K, =8SO0(R}),1<i<n. Now, we will
check that K;;1 < i < n satisfy all the conclusions of this lemma.

(a) 1is proved in the above argument.

Since O K,) = (O(R})*;xe K) € D,1 <1 <mn, we get (b). By
(4) and (5), R} is r-closed, 1 < ¢ < n, so that H = SR < S {O.(R});
1<i=n) =<K;1=i=mn). Since [0(R}),0.(R¥)]=11=i+#j=
n, it follows that {K;;1 <7 < n} is a {2, r}-group with a Sylow 2-
subgroup S. Thus (c¢) is proved.

By (8.12.8), T'<{ Ny(S). Then, (d, 1) follows from (3.12.11), and
(d.2) follows from (3.12.12). Thus, (d) is proved.

Let J be a subgroup of S. Since J normalizes O H), we get:

(3.12.13) [O(H), J]F =[0(H)f, J] for all ;1 <i=n.

Suppose J & O,(H). Then by (d), [O*(H),J]S T. By (d) and
(8.12.18), [O¥H)}, J] < T#,1 =1 < n. It follows that

[0.RY), JIOARY), I]- - -[0AE3), J]

is a 2-group, which implies (e).

Suppose O*(H) < [0, (H), J]. Since H = O, ,(H), we have that
R C [O(H), J]. Hence, O,(R}) < [0.(R{), J] < [0,,(H), J], L =i < n,
which implies (f).

Finally, suppose H is r-closed. Then, [0*(H), T]=1. By (3.12.2),
[OXK), T]=1,1<¢<n. By (d), it follows that K, is 7-closed for
all ;1 < 1 < n, which proves (g). Hence this lemma is proved.

PROPOSITION 3.13. Let » be a prime with r = 5. Suppose D
a finite group, V is a mormal subgroup of D, {D;1 <1< n} are
normal subgrouns of D all of which contain V, S is a 2-subgroup
of D, and H is a {2, r}-subgroup of D with a Sylow 2-subgroup S.
Assume:
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(1) S is normal in some Sylow 2-subgroup of D;

(2) H is an S-irreducible group which is not 2-closed;

(3) OZ(H);DrDz"'D»;

(4) V is 2-closed with O,(V) =8N V.

Let X = XV|V for any subgroup X of D.

(5) [Dy, D;]=1 for all i,j;1 <1+ 7= m;

(6) D,n (Dj1<j7+#1<n) is a 2-group for each i;1<i<mn.
Then there exist subgroups {L;1 =1 =1t} of D which satisfy the
following conditions:

(@) L; is an S-irreducible {2, r}-group with a Sylow 2-subgroup
S for all ;1 <18,

o) Lyl isty is a {2, r}-group with a Sylow 2-subgroup
S, and HS {L;1 <1 < t);

(¢) there exists a subgroup T of S which s normal in (Ny(S),
L;l<i2t), and (L;;1 £1 Zt)]/T is r-closed.

(d) for each L; 1 <1 <t, O(L;) is contained in some D, 1 <
J=mn;

() if H = Nyz(J,(S)), then L, = N (J(S)) for all ;1 <1< ¢;

(f) if H+# Nxg(J.(S)), then L; # N (J(S)),l1 =1 =t; and

(g) if HV NS is r-closed, then L,/V NS is r-closed, 1 < 1 < ¢.

Proof. In this proof, let X = XV/V for any subgroup X of
D. By Lemma 3.12, there exist subgroups {K;l<i=<mn} of D
which satisfy all the conclusions of Lemma 3.12. Let F, be a Hall
{2, r}-subgroup of the pre-image of {K;;1<i=<mn} in D which
contains H. Then, by (4) and Lemma 3.12(c),
(3.13.1) F, is a {2, r}-group with a Sylow 2-subgroup
SSHC F,and F,=(K;1<i<mn).

By Lemma 3.12(d), there exists a subgroup T of S such that:
(3.13.2) T < {N3S), F> and F,/T is r-closed.

Let T be the intersection of S and the pre-image of T if H is not
r-closed; otherwise, T = SN V. Then, by (2) and Lemma 3.11(e),

(3.13.3) H= N (T).
Let F, = N,(T). Then, by (38.13.3), Lemma 3.12(c) and (g),
(8.13.4) HC F,, T]F, F,/T is r-closed, and F,=(K;;1 <i<n) .

Finally, let F = N,(J.(S)) if H = Ny(J.(S)); otherwise, let F =
[0,,.(FY), J.(S)]S. By (2) and Lemma 3.11(d), if H # Nyz(J.(S)), then
O¥H) < [0,,(H), J(S)]. So, in either case that H = Ny(J,(S)) or
H #* NH(Je(S))r
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(3.13.5) HCF.
By (3.13.4), Lemma 3.12(e) and (f),

(3.13.6) T<F and F/T is r-closed; and
(3.13.7) F=(R;l=i=n).

By Lemma 3.12(g),

(3.13.8) if HV NS is r-closed, then F/V N S is r-closed.
By (3.13.7),

(3.13.9) F={(FND)S;1<i=<m).

Since S is a Sylow 2-subgroup of (F'N D,)S, by Lemma 3.10,

(3.13.10) each (F'N D,)S is generated by S-irreducible
subgroups with a Sylow 2-subgroup S,1<:=<n.

Therefore, there exist subgroups {L,;1 < ¢ <t} of F' which satisfy
the following conditions:

L, is an S-irreducible group with a Sylow 2-subgroup

(3.13.11) Si1<i<t:

(3.18.12) for each L, 1 <1 < t, O(L;) is contained in some
Dylsj=n.

Furthermore, by (3.13.9),

(3.13.13) Ljl=ist)=F.

Then, we may assume that:
(8.13.14) FolL;lsi#j=<t)forany j;1<j=¢.

Now, we check that {L,;1 <1 <t} satisfy all the conclusions of
this lemma. Since F' is a {2, r}-group, (a) follows from (3.13.11),
and (b) follows from (3.13.5) and (3.13.13). Since T <] N,(S), (e)
follows from (3.13.6). (d) follows from (3.13.12). And, (g) follows
from (3.13.8).

To prove (e), suppose H = Ny(J,(S)). Then F = N, (J.(S)), so
that L, = N, (J(S)) for all ¢;1 <7 <¢, which proves (e). Next,
suppose H # N,(J,(S)). Then by definition,

(3.13.15) F = [0,,(F), J.(S)IS .

Let L,# N, (J.(S),1=i=s, and L;= N, J(S),s+1=j=t.
Then, F={N(J.(8)), L;; 1=i<s). By (3.13.15), F'=[0, (F), J(S)]S=
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(L3l<i1<s). So, by (3.13.14),s =t. Thus, we conclude that
L; # N (J.(S)) for all ¢;1 <4<t which proves (f). Hence this
lemma is proved.

HypoTHESIS B.I. Suppose M is a finite group, W is a normal
subgroup of M, and Y is a subgroup of W. Assume:

Bl W=EW)=FE X --- X K, where E, is a non-Abelian
simple group with E, ~ E,1 <k < #; and

(B.2) E, LY forall ;1 <k < 7.
Let 4=1{1,2,---,7r}. We identity E, with the element k¥ of 4,
1<k<<r. Let I' be the following family of subsets of 4:

I ={k, ---,k}; {ky, ---, k,} i1s minimal under inclusion such that
YN (B XX E,)#1}. We say that s is the length of {k,, - --, k,}.
Let 7, be the projection mapping from W to E, 1<k < 7.

PROPOSITION 3.14. Assume Hypothesis B.1. Assume also that:
(B.0) whenever L <k <r, 7 (Y) = E,.
Then
(a) for any distinct elements {ky, ---, k} and {3, ---, 3.} of I,
{kn Tty ks} N {ju tt jt} = ©;
®d) Y| =I|E]|";
¢ |[YP=|W]
(d) if equality holds in (c), then
(d.1) 7 s even;
for suitable renumbering A,
d.2) I'={kk+r/251=k=n7r/2
(d.3) Y =12 (Y N (B X Eipp)y, and Y 0 (B X Eyy,p) = B,
1<k < /2.
(e) conversely, if the lengths of all elements of I' are equal to
2, then equality holds in (c);
(f) W centralizes ([Ni—s Ny(Ep) N Cu(Y).

Proof. Take an arbitrary element {k, ---, k,} of I'. We may
assume that {k, ---, k,} = {1, ---, s}, renumbering if necessary.

Let Y, = YN (Ili-. E,), and let « be the projection mapping
from Y, to KB, 1<k <s.

By minimal nature of {1, ---, s},

(3.14.1) Kery, =1, and Imvr, # 1,1 <k <s.
Since Y, <] Y, by (3.14.1), (B.1) and (B.0),
(3.14.2) Imqy = {(Imy)") = <{Imy)°k) = E, 1 <k <s.
By (8.14.1) and (3.14.2), we conclude that -, is an isomorphism
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for all ;1 <k < s.

Therefore,
(3.14.3) Y, =~ E,.

To prove (a), take distinct elements {k, ---, k,} and {j,, ---, 7.}
of I.

Let ¥, = YN (l:- ), and Y, = Y N (I]i-. E;). By minimality
of {ky, ---, k) and {5, ---, 7}, YINnY,=1. Since Y,<]Y and Y,{Y,

(3.14.4) [Y, Y,]=1.

Suppose that {k, ---, kN {7, -+, 5.} # @, and take h in this
intersection. By (3.14.4) and (B.0), 1 = [¥(Y), ¥.(Y,)] = [E,, E.],
which contradicts (B.1), and (a) is proved. Then (B.0) implies that
A = U7 (disjoint union), where v ranges over all the elements of
I". Then (3.14.8) yields (b), and (¢) follows from (b) and (B.2).

Assume equality holds in (¢). By (e¢), » is even, and we may
assume that I' = {{k, k + r/2}; L < k < r/2}. By (a) and (3.14.3),

72 72
Y = IE (YN (B X Eyyp) = ElEk ’

which proves (d).

(e) follows from (b) and (B.0). Finally, to prove (f), take an
arbitrary subsecript & and an arbitrary element z, of E,. By (B.0),
Y possesses an element y such that y = «,---x;---2,, where z,€ E,,
l=i=7r. Let K= (Ni- Ny(E))NCy(Y). Then 1=[K,y]=I[K,
) K, %) - K, x,], and [K, x,] € E,, 1<i<r. Therefore [K, z,]=
1, which implies (f).

HypoTHESIsS B.II: Assume Hypothesis B.I. Let ¢ be an odd
prime. Suppose N is a subgroup of M which normalizes Y, H is a
subgroup of N, and S is a Sylow 2-subgroup of H. Assume also
that:

(B.3) N = (H, Nx(8);

(B.4) there exists a subgroup 7T of S such that

(B.4.1) T(SNO(N)) =8, and
(B.4.2) [R, T]< Y for any S-invariant g-subgroup R of W;

(B.5) there exists an S-invariant ¢g-subgroup @ of W such that
(T (@);2eN) = W.

Only for convenience to state and prove the following Proposi-
tion 3.15, we need one more hypothesis:

HypoTHESIS B.III: Assume Hypothesis B.II. Assume also that:
(B.0) whenever 1<k <7, n(Y) = E,; and
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(B.6) Y] =|WI.

PROPOSITION 38.15. Assume Hypothesis B.II. Then O*O¥(H))
normalizes each E, 1 <k < r. Moreover, at least one of the follow-
ing (a) or (b) holds:

(@) T mormalizes each K, 1 <k < 7r; or

(b) Hypothesis B.III is satisfied, and T fixes each element of
r.

Proof. The proof is separated into seven steps. In the first
step, we will note down the matters which will be needed for the
development of the proof.

Step 1. (L.a) O,(N)N S <] N;

(1.b) (m(Q)* x e Ny(E)) = E;

(1.¢) N acts transitively on 4;

(1.d) N induces a permutation of I, and if Hypothesis (B.0) is
satisfied, N acts transitively on ['; and

(1.e) if Hypothesis (B.0) is satisfied and the length of some
element of I' is equal to 2, then Hypothesis B.III is satisfied.

Proof of Step 1. Since S is a Sylow 2-subgroup of H, O,(N)N
S <{ H. Since O,(N)N S <] Nxy(S), (B.3) yields (1.a).

By (B.5), E, = E, N<{m(@)"2eN) = {m(Q)"; x € Ny(E,), which
proves (1.b). Again, by (B.5), (1.c) follows from (1.b).

Since N leaves invariant Y, N induces a permutation of I". By
Proposition 3.14(a) and (l.c), I' = {v*;x € N}, which proves (1.d).
Suppose Hypothesis (B.0) is satisfied and the length of some element
of I' is equal to 2. Then by (1.d), the lengths of all elements of
I' are equal to 2. (l.e) follows from (1.d) and Proposition 3.14(e).

Step 2. Fix k=1,2, -.--,r. Let R, be a g-subgroup of E,.
Assume:

(1) Ny(H,) normalizes R,;

(2) (Ri;xze Ny(E)) = E,; and

(3) T does not normalize E,.
Then

(2.a) Hypothesis B.III is satisfied; and

(2.b) whenever xe T and k* = k, {k, k*} lies in I.

Proof of Step 2. Let R=<(R};yeS). By (1), R is an S-invari-
ant g¢-subgroup of W. By (8), there exists an element x of T such
that Ef = E,. By (B.4.2),
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3.15.1) m(Y) 2m(R, T] 2 7[R, «]) = m(Ry) = B, ,
and
(3.15.2) YNEXEY)2YN[R,x]+1.

Since Y is N-invariant, by (2) and (3.15.1), 7(Y)2(RY; y € Ny(E,)) =
E, By (l.c),

(3.15.3) a(Y)=E,1<j=<r.
By (3.15.2),
(3.15.4) {k, &%} lies in I".

Then (2.a2) follows from (3.15.8), (8.15.4) and (l.e). Since x is an
arbitrary element of 7T such that %* = k, (2.b) follows from (3.15.4).
Hence this lemma is proved.

Let {17;2e 8} =1{1, 2, - -+, s}, renumbering if necessary.

Step 8. Assume T does not normalize some E,, 1<k<s. Then
(3.a) Hypothesis B.III is satisfied; and
(8.b) whenever ze T and k® + k, {k, k°} lies in I.

Proof of Step 3. By (B.5) and (1.b), N(E, normalizes 7,(Q)
and {m(Q)*; ¥y € Ny(E,)) = E,. Thus, this step follows from Step 2.
Let (17;2€¢ O,(N)N S} ={L, 2, ---, w}, and

{(1*;2e H} = {1, 2, - - -, h}, renumbering if necessary.

Step 4. Assume w %= s. Then
(4.a) Hypothesis B.III is satisfied;
(4.b) 2w = s;

(4.¢) h/w is even.

Proof of Step 4. Since O(N)N S <] H by (1.a), for any element
z of H,
(3.15.5) {1,2, .-+, w}* is an (0,(N) N S)-orbit; and
(8.15.6) ,2, -+, win{L, 2, ---,wfF=@ or {1,2, ---, w}.

Since w # s, by (B.4.1), there exists an element ¢ of 7 such that
L .-, win{L,2, -, wf=0. Let ¥ =k +w,1 <k =<w. Then
we get (4.a) from (8.a). Then by (3.b),

(3.15.7) {k,k +w} liesin " for all ;; 1<k =w.
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Now, to prove (4.b), by (B.4.1) and (8.15.5), we may only show
that:

(3.15.8) for any element x of T,{1,2, ---, w}* < {1, 2, ---, 2w} .

Assume that {1,2, ---, w}* = {1, 2, ---, w} for some element x of T.
Since ¢ is an arbitrary element of T with {1,2, ---, w}' # {1, 2, ---,
w} in (8.15.7), we obtain that {k, k°} lies in I for all ;1 <k < w.
Then by Proposition 3.14(a), k* =k =k + w for all k;1 <k < w,
which implies (3.15.8). Hence, (4.b) is proved. To prove (4.c), it
is enough to show that:

{1’2: ?zw}m{l’z) ,2w}x__._® or {1y27 "‘,2’“)}

(8.15.9)
for any element x of H.

Assume that for some element x of H, {1, 2, ---, 2w}N{l, 2, -+, 2w}* =+~
@, and take j in this intersection. Then by (3.15.7), {J, 7 + w*}
lies in I', where w* =w if 17w, and w* = —w if w4+ 1=
Jj < 2w. So, by (L.d), {7, (j + w*)*""} lies in I'. Since j** lies in
{1,2, ---, 2w}, by (8.15.7) and Proposition 3.14(a), (j + w*)* " lies in
(1,2, ---, 2w}. It follows that {1,2, ---, w}N{L,2, ---, 2w} # @ and
fw+1Lw+2 ---,20}Nn{1,2 -+, 2w}* %« @. Then, (8.15.9) follows
from (3.15.6). Hence (4.c) is proved.

Step 5. N(E) is a Sylow 2-subgroup of N,(E,).

Proof of Step 5. In this proof, for any natural number =, let
n, be the highest power of 2 which divides n.

Let v = h/w.

By Step 4, we have that either s = w or s = 2w and v is even.
Thus,

(8.15.10) s < wo, .

Since | Ny(E)|, = |H|y/h, = |S|/wv, = | Ns(E))|(s/wv,), (3.15.10) implies
that | Ny(E)|, < | Ny(E))|, which proves this step.

Step 6. Assume T does not normalize some K, 1<k <h.
Then

(6.a) Hypothesis B.III is satisfied;

(6.b) & is even; and

(6.c) for some suitable renumbering, whenever 1<k < /2,
then {k, k + h/2} lies in I', and {k, k + h/2}' = {k, k + h/2} for any
element t of T.
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Proof of Step 6. Let V be a Sylow 2-subgroup of Ny(&,)
which contains Ny(E,). By Step 5, there exists an element z of H
such that NyE)*=V and Ef= E,. Then by (1.b), {(m(Q)%ye
Ny(E,)) = E,. By (B.5), V normalizes 7,(Q)* = 7,(Q"), so that N(&,)
normalizes 7,(Q%). Hence, (3.a) yields (6.a).

Let  be an element of T such that %* = k. By (3.b), {k, k°}
lies in I". By (1.d) and Proposition 3.14(a),

{k, E*}¥ lies in " for any element y of H, and
8.15.11) {1, 2, ---, h} = U {k, k°}* (disjoint union), where

Yy
y ranges over all the elements of H .

This implies (6.b). Moreover, renumbering if necessary, we
may assume: {k, &k + h/2} lies in I, 1 <k < h/2. To prove the final
assertion of this step, take an element ¢ of T and an element
{k,k + h/2} of I'y 1 <k < h/2. Then by the above, k = k* or {k, k%}
lies in I', so that {k, & + h/2}N{k, k + h/2} + @. Then by (3.15.11),
{k, k + h/2} = {k, k + h/2}, as required.

Step 7. O*O*¥(H)) normalizes each E,, 1 <k < h.

Proof of Step 7. First, assume that T normalizes each E;, 1 <
k<h. Let H,= i, Ny(E,). By (B.4.1) and (1.a2), S = (O,(N)N
S)T < (O(N)N S)H, ]| H. Thus, 0%(0*(H)) < H,, as required. So,
we may assume that 7T does not normalize some K, 1=Fk<h.
Then, Step 6 shows that Hypothesis B.III is satisfied, and we may
assume that {k, &k + h/2} lies in I',1 <k < h/2. Let H,={reH;
{k, E + h/2}* = {k, &k + h/2} for all k;1 <k < h/2}. Then by (B.4.1),
(1.a) and (6.c), S = (0,(N) N S)T S (O,(N)N S)H, < H. Thus,

OYO¥(H)) S H, .

Since the lengths of all elements of I" are equal to 2 and O*O*(H))
is generated by elements of odd order, O*O*(H)) must fix each
E,1<k<=<h Hence this step is proved.

Proof of Proposition 3.15. By Lemma 3.3(d),

H = O(O¥(H))Nx(S) .
So, by (B.3),

(3.15.12) N = (0O (H)), Nx(S)) .

Take an element  of Ny(S). Let Q* = (z(Q)**;yeS), k = 1%, and
v be an element of I' which contains k. By (B.5),Q* is an
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S-invariant g-subgroup of W, and by (1.b), (m,(Q*)"; ¥y € Ny(E,))=E,.
Then, replacing E, by E, all the assumptions of Hypothesis B.II
are satisfied. Then Step 7 and (6.c) show that: O*(O*(H)) normalizes
E,; and T fixes k, or Hypothesis B.III is satisfied and T fixes .
Since z is an arbitrary element of N,(S), by (1.c) and (3.15.12),
N,(S) acts transitively on 4. Then, the above argument implies
this lemma.

LEMMA 38.16. Let p be a prime with » = 5. Suppose M is a
Sinite group, W is a normal subgroup of M, and H is a subgroup
of M with a Sylow 2-subgroup S. Assume:

(1) W=EW)=EFE, X E,X --- X H, where E, is non-Abelian
simple, 1 £k < 7

(2) H is an S-irreducible {2, p}-group which is not 2-closed;

(3) H = O,(H)Niz: Nu(Ey); and

(4) 2(WH:p) = 2.

Then

OH) = WCW(W) .

Proof. Let H, = ;-1 Ng(&,).
Then, H, <] H.
By (3),

H,/O,(H,) is isomorphic to a homomorphic image of

16.1
® ) H, and O'(H) < H, .

Suppose O*(H,) & E.C,(H,) for some k;1 <k <. Then by Lemma
3.11(g), H,/(H,N E.C,(E,) involves a dihedral group of order 2p,
which contradicts (4). Hence, O(H)ZO*(H)SNi-1 E.Cy(E,)S WC,(W),
as required.

PROPOSITION 3.17. Let p be a prime with p=5. Assume
Hypothesis B.II. Further assume that:

(1) H is an S-irreducible {2, p}-group which is not 2-closed;

(2) 2(WH:p) = Q.

Then, O H) & WC,(W).

Proof. By (1) and Lemma 3.11(f), H = O*(H). Then by Prop-
osition 8.15 and 3.14(d), O*(H) normalizes each E, 1=k < 7.
Moreover, at least one of the following holds:

(@) T normalizes each E, 1 <k < r; or

(B) for some suitable renumbering of {1, 2, ---, 7}, T normalizes
each Y N (B, X Ev,p), and Y N (B, X Eyy,n)=E, for all k; 1<k<7r/2.
Assume (a) holds. Then by (B.4.1), S = (SN ON)T S O,(H)T =
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O,(H)YNj=. Ny(E)) <|{H. By (1) and Lemma 3.11(f),
O(H) () NulE) = H .

Then by Lemma 3.16, O*(H) £ WC,(W), as required. Next, assume
(B) holds. Then by the same argument as above, we have that
O,(H)YN:i: Ny(Y N (B, X Eitrp) = H. Then by Lemma 3.16 (with
Y in place of W), O(H)ZYC,(Y). Let x be any element of O*H).
Then, we may let x = x,x,, where x,€ Y and 2,¢C,(Y). By Lemma
3.14(f),

7= ar'w e ( (| Nu(Bo) )1 CulY) = Cul( W) .

Since x is an arbitrary element of O*H), we conclude that O H)<S
WC(W). Hence this lemma is proved.

4. Preliminaries in the minimal situation. From now on,
we shall prove the theorem by way of contradiction. Let @ be a
set of primes. Suppose that G is a finite group, and S is a non-
identity 2-subgroup of G. Assume that (z, G, S) satisfies all the
assumptions of the theorem, but violates the conclusions of the
theorem. Take G of minimal order and, subject to this condition,
take S of minimal order.

LEMMA 4.1. Let T and T, be subgroups of S. Assume:

(1) 1cT,=cTcS;

(2) T < Ng(S); and

(3) Ty <] N(T).
Then

(@) T, <] Ng(S).
So by the assumption (1) of the theorem, there exists a Sylow 2-
subgroup U of Ny (T,) in which S is normal. Then,

b)) TU;

©) D (NL(T)[Ce(Ty): ) = O

(d) there exists a wunique nonidentity subgroup W(T) of T
maximal subject to satisfying the following condition:

(d.1) W(T) <] Ng(T); and

(d.2) W(TH)OH) <] H for any w-subgroup H of G such that the
pair (H, T) satisfies Hypothesis A.
Let N = Ng(T). Suppose that S,/T is a nonidentity subgroup of
S|T which is normal in Ny, (S/T). Then,

(e) S/TU/IT;

) D WNy(S/ T)[Cxn(So|T): ) = @3

(g) there exists a unique nonidentity subgroup W(S/T) of S/T



116 MAKOTO HAYASHI

maximal subject to satisfying condition:

(g.1) W(S/T) <] Nyn(S/T);

(g.2) W(S/TYOH|T)<{HIT for any z-subgroup H|T of N|T
such that the pair (H/T, S|T) satisfies Hypothesis A.

Proof. Obvious.

Notation. In the following discussion, without notice, we shall
use the following notation: for any subgroup 7T of S such that
1cTcS and T <] Ng(S), we denote by W(T) (or W(S/T)) the
subject to satisfying the conclusions of (d) (or (g)) of Lemma 4.1.

DEFINITION. Let:

Gy(S) = {H < G; the pair (H, S) satisfies Hypothesis 4},
and

Xe(S) = {H e €(S); H is S-irreducible} .

For a subfamily £ of F«(S), we define O4(R) to be the largest
subgroup of S that satisfies the following conditions (a) and (b):
(@) Os(®) < Nu(S); and
(b) K = N(O«(R))O(K) for any element K of R.
For simplicity, let Oy(K) = Os({K}) for any element K of $u(S).
Whenever 1CO4(R), we define: W(R:0) =1, W(&:1) = O4«(8R), and
let W(:v + 1) be the pre-image of W(S/W(:»)) in S,v=1,2, ---.
Then, we introduce the function f, which is defined on & as
the following: for any element K of R,

fu(K) =max. {v; K> W(&:v), 0=v <},

where o denotes the nonnegative integer such that W(:p) =8
and W(&:p —1)cS.

REMARK 4.1. Whenever W(&:v)cS, W(&:»)C W(&:v + 1),
because W(S/W(8K:v)) = 1.

LEMMA 4.2. Let K be an element of F4(S). Then the following
(a) and (b) are equivalent:

(a) K is 2-closed or 2'-closed;

(b) O4K)=S.

Proof. Assume (a). Then, K = Ng(S)O(K), which shows (b).
Conversely, assume (b). Then, K = Ni(S)O(K) = N(S)(O(K)S).
Since K is S-irreducible, it follows that K = N.(S) or K = O(K)S,
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which proves (a).

LEMMA 4.3. Suppose & is a subfamily of Fe(S), none of whose
elements are 2'-closed. Let K be an element of K. Assume that
1COyR). Let v = fo(K). Then

(a) Os(R) < {Nk(S), He ®), and O4(R) = S N O,((Nu(S), He K);

(b) v=1, and fo(L) =1 for some element L of R;

() K/W(R:v) is 2'-closed;

(d) K/Oy(K) is 2'-closed;

() O4(K)2 V, whenever V < Ng(S) and V S O(K);

) [0*K), O4«(K)] < O4(L), whenever Le&R and f.(L) = v.

Proof. (a) Let H be an arbitrary element of . Since H is
an S-irreducible group which is not 2'-closed,

H = Ny(0s(R)0(H) = Nuz(Os(R)(O(H)S) = Nu(Os(&)) ,

which implies the former part of (a).

Let T=8SnNO0,NgS), He&)). By the former part of (a),
Oy < T. On the other hand, for any element L of & L[> LN
O,((N4(S), He &) = T, which shows T Z O48&). Hence, (a) is
proved.

By (a) and the definition of f,, we obtain that v = 1. Suppose
that f.(L)>1 for any element L of &. Then by definition, W(R: 2)C
W(R: 1), which is a contradiction. Hence (b) is proved. To prove
(¢), we may assume SO W(R:v); otherwise, (¢) is obvious. By (a)
and definition, K[> W(K:v). Let X = XW(R:v)/W(R:v) for any
subgroup X of K. By Lemma 3.11(a), K is S-irreducible. Suppose
K is not 2'-closed. By induction,

K = Nx(W(8))O(K) = Ne(W(S))O(K)S) = Ne(W(S)) .

Hence, K[> W(:v + 1)D W(R:v), which contradicts v = fi(K).
Thus, (¢) is proved.

(d): By (a), K[> OgK). By maximality of O4(XK), O«(K) 2
W(R:v). Then, (c) yields (d).

(e) By (d), [K, VO(K)]< VOs(K). Since VO(K) <|Nu(S),
V Z VOyi(K) € O4(K) by maximality of Oy«K), which proves (e).

(f) Let g = fu(L). By (¢), [O(K), Os(K)] S W(§:») S W(R: 1) =
O4(L), which proves (f), and this lemma.

LEMMA 4.4. Let & be a subfamily of Fe(S). Assume that there
exists a subgroup T of S which satisfies the following conditions:

(1) 1cTcS;

(2) T < Ng(S); and
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(8) [OYK), O(K)I < T for any element K of K.
Then

Os(®)>1.

Proof. Let R ={K;1<1<t},and L, =0(K))T, 1 <1 <t. By
(8) and Lemma 4.3(d), L, is a group with a Sylow 2-subgroup T,
and O(L;,) S O(K,) for all ;1 <7<t By induction, W(T)>D1.
Since L, = N, (W(T))O(L,), K, = N (W(T))O(K,) for all ;1 <i<t.
Therefore, we conclude that 1 < W(T) C O4x(&), as required. Hence
this lemma is proved.

LEMMA 4.5. O4(C4(S)) = 04(Bs(S)) = 1.

Proof. Since (G, S) is a counterexample to the theorem,
Os(@G(S)) =1.

So, we may show only that Og(€x(S)) = Os(F(S)). To prove this
equation, let T = O4F(S)). Obviously, Ox(E(S)) < T. To prove
the opposite inclusion, take an element K of €4(S). By Lemma
310, K=(K;1 <1<ty for some suitable elements {K;;1=<1¢=
t} of Bs(S). Then K; = N (T)O(K,), and O(K;) € O(K) for all 4;
1<t <t Therefore, K= N (T)O(K). Since K is an arbitrary
element of G,(S), it follows that T & Oyx(E4(S)), which proves this
lemma.

5. Properties of elements of & (G).

DEFINITION. Let m be the natural number defined as follows:

O4(®) D1 for any subfamily & of F(S) with |R| < m;
and
O4(®) = 1 for some subfamily & of F(S) with |[& = m .

REMARK 5.1. Such a natural number m exists by Lemma 4.5.

Define the class of subfamilies 2°.<2(G) of F:(S) as follows:
2 (G) = (R S Fe(S); [R] = m and Ox(R) = 1} .
Take an element § of 27.97(G). And let:

Q=H;1=k<m},
and
O ={H;1=<k#+i=m}, 1<i<m.
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In this section, we shall investigate the relations among the
elements of §, and also the relations between the elements of $
and the other elements of .(S).
We shall employ the above notation throughout this paper.

LEMMA 5.1. Let & be a subfamily of $F«(S).

Then
(a) whenever |&| < 2, O4(8) D 1; in particular,
(b) m =3.

Proof. Take a subfamily & of %G(AS) with |®| £2. Then,
Lemma 8.11(h) implies that 2,Z(S), 2,ZJ(S) or J,(S) is contained
in Oyx(&), which proves this lemma.

LEmMA 5.2. Fix k=1,2,---,m. Then

(a) H, is neither 2-closed, nor 2'-closed;

(b) 1cO4(H,)CS;

(e) for some prime v, =5, H, is a {2, p,}-group with a mon-

identity Sylow p,-subgroup.

Proof. Suppose that H, is 2-closed or 2'-closed. Let T'=04(9,).
Since |9.] <m, TD1. Obviously, H,= Ny (T)O(H,) and H;=
Ny, (T)O(H,) for all 4;1<1i#k=<m. Therefore, 1T < O49),
which is a contradiction. Hence, (a) is proved.

By Lemma 5.1, 1 < Oy4(H,), and by (a) and Lemma 4.2, Ox(H,)C
S, which proves (b).

By Lemma 38.11(b), H, is a {2, p,}-group with a nonidentity Sylow
pi-subgroup for some odd prime p,. Then by (a) and Lemma 3.9,
D, # 3, which proves (e).

The next lemma follows from Lemma 5.2(a) and 4.3(b):
LEMMA 5.3. Fix k=12, ---, m. Then

(@) Sfo (H)=1 for all ;1 <1+ k =m; and

(b) fs,(H;) =1 for some j;1 < j#k < m.

Since O4(9) = 1 by definition, the next lemma follows from
Lemma 4.4.

LEMMA 5.4. There does not exist a subgroup T of S with the
following properties:
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(1) 1cTcS;
(2) T < NgS); and
(3) [O(H), OsHH)I S T for all i;1 <1 < m.

LEMMA 5.5. There does not exist H, such that

[O*(H,), Os(HW] < Os(H)) for all i;1 =i =m .

Proof. Suppose that there exists an element H, of  such
that [O*H,), Os(H,)] € Os(H,) for all ;1 <i<m. Let H; be an
element of §, such that f; (H;) = max. {f;,(H);1 <1 #k < m}. Let
T = O4(H;). By Lemma 5.2(b),

(56.5.1) 1cTcS, and T <] N(S) .

By Lemma 4.3(f),

(6.5.2) [0((H),Os(H)]S T forall ;1=i#k=m.
On the other hand, by the assumption,

(5.5.3) [O*(H)), Os(H)] S T .
By (5.5.2) and (5.5.3),
(5.5.4) [O*(H,), Os(H)] S T for all ;1 <1< m.

Then, (5.5.1) and (5.5.4) contradict the preceding lemma. Hence
this lemma is proved.

DEFINITION. Define the mapping ¢ from $ to the family of all
subsets of © as follows: for any element H, of 9,

o(H,) = {H; e @k;fﬁk(Ht) =1}.
We call 6 the eigen -mapping of .

LEMMA 5.6. (a) o(H;) = @ for any element H; of 9;

(b) o(H) No(H,) = @ for any distinct elements H; and H, of
9; and

(e) o induces a permutation of 9.

Proof. Since 9.+ @ by Lemma 5.1, 1<k =<m, (a) follows
from Lemma 5.3(b). To prove (b), we assume that o(H;)No(H,)#* D
for some distinct elements H; and E, of . Take H, in o(H;)No(H,).

As H,c0(H;), by Lemma 5.2(a) and Lemma 4.3(f),

(5.6.1)  [O%(Hw), Os(H)] < Os(H,) for all ;1 <i=-j=m.
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Similarly, as H,co(H,),

(5.6.2)  [O*Hy), Ox(H)| < Oy(H,) for all ;1 <i=h<m.
By (5.6.1) and (5.6.2),
[O*(H,), Os(HY] < Os(H,) for all ;1 <1< m,

which contradicts the preceding lemma. Hence (b) is proved.

Since |9| is finite, (¢) follows from (a) and (b). Thus, this
lemma is proved.

According to the preceding lemma, we may consider ¢ as an
element of a permutation group on 9.

LEMMA 5.7. (o) acts transitively on 9.

Proof. Suppose that (o) acts intransitively on . Let & be a
{o)-orbit of . Then K 9. So, O4(®) D1. Let H, be an element
of & such that f,(H,) = min. {f,(H); He &}. By Lemma 4.3(f),

(56.7.1) [0 H,), Os(H,)] < Os(H,) for any element H; of & .

Let H; be an element of § such that o(H;) = H,. Then

(5.7.2) H; lies in & .

As f5,(H,) = 1, Lemma 4.3(f) shows that

(5.7.3) [O*(Hy), Oy(Hp)] < Oy(H,) for all i;1 <i#j5=m.

By (5.7.1), (5.7.2) and (5.7.3), [0*(H,), Os(H})] < Os(H,) for all 4;1 <
1 < m, which contradicts Lemma 5.5. Hence this lemma is proved.

By the preceding lemma, we may assume:

<-H1 H2 Hs' ° 'Hm—1 Hm
H, H, H,---H, H,

) , renumbering if necessary .

REMARK 5.2. In the following, without notice, all the suffixes
of elements of § will be used modulo m, if necessary. For instance,
H,.,=H, H = H,, and so on.

LemmA 5.8. Fix k=1,2,---,m. Then
() [O(H.), Os(Ho)] S Os(H,), if i # k — 1 (modulo m);
(b) [O*(H)), Os(H,)) ZO(H), if i=k—1 (modulo m).

Proof. By definition, f; ,(H,) =1. So, by Lemma 5.3(a),
Soo(H) = min. {f;, (H));1<i+#k —1=m}. Then (a) follows from
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Lemma 4.3(f).

Suppose [0*(H,), Os(H,)]=Os(H,_,). Then by (a), [0*(H,), Os(H,)]<=
Og(H,) for all 72;1 <1 < m, which contradicts Lemma 5.5. Hence
(b) holds. This lemma is proved.

LEMMA 5.9. Fix k=1,2,---, m. Then
1:f®k(Hk+1) <fbk(Hk+2)< e <fbk(Hm) <fbk(H1)< e <fbk(Hk-1) .

Proof. By the definition of o, f;,(H,+) = 1. Suppose f; (H,) =
fo (H) = f5,(Hiy) for some ¢ 1=<t#k—1k=<m. By Lemma
4.3(f), [OX(H,.,), Os(H;,)] < Os(H,;), which contradicts Lemma 5.8(b).
So, f5,(H) < fy,(Hiy) for all 7;1 <14 +# %k <m, which implies this
lemma.

LemmA 5.10. Fix k=1,2,---, m. Let {H, H;y, ---, H,,,} be
a subset of ©. Let & be a subfamily of $q(S) which contains
{H;, Hy1\, --+, H...}. Assume Oi(®) D1. Then

(@) SfulH) < fo(Hiy) < -+ < fo(Hir); and

(b) +f & ={H, H;.,, -+, Hi1,}, then f(H;) = 1.

Proof. Suppose fo(H;i,) = fo(H;4u+) for some u;0 <u <s — 1.
Then by Lemma 4.3(f), [O*(H;su+1), Os(Hi+u1)] & Os(H;+,), which
contradicts Lemma 5.8(b). So, fi(H;:.) < fa(H;iyr) for all u;0 <
% <8 — 1, which implies (a).

(b) follows from Lemma 5.2(a) and Lemma 4.3(b).

LEMMA 5.11. Fix k=1,2, ---, m. Suppose M is a subgroup
of G which contains NgS), H, and H,.,. Let V be a mormal sub-
group of M. Then

(@) Wf OH)ZEV, then SN V| H, and SNV E Oi(H,);

(b) if O(Hy) £V, then SNV <{ Hpy and SNV S Og(Hyry);

(¢) if O H,+) SV, then O*(H,) S V;

(d) of M =<(NgS), H,, Hiv,) and OH,) Z V, then SNV
Os({Hy, H,.}) and SNV M.

Proof. (a) Since OH,) £ V, by Lemma 5.2(a) and 3.11(e),
SN V< H,. Since SN V<] NLS), by Lemma 4.3(), SNV
O4(H,), which proves (a). Similarly, we obtain (b).

Suppose OH,.,) < V and O*(H,) £ V. Then by (a), [O*(H,:.),
O«(H)] € VNS & O5(H,), which contradicts Lemma 5.8(b). Hence
(e) is proved. (d) follows from (a), (b) and (¢). Thus, this lemma
is proved.
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REMARK 5.3. We note that all the statements from Lemma 5.1
to 5.11 are valid for any element of &<°(G). So, we can define
the eigen-mapping for any element of & .<2(G).

LEMMA 5.12. Fix k=1,2, .-+, m. Let K be an element of Fs(S),
and let & = 9, U{K}. Assume that & lies in & (G). Let T be
the eigem-mapping of &. Then

(@) ©(H)) = Hyyif v#k — 1, k;

(b) 7(K) = Hyyy; and

() 7=(H,.,) = K.

Proof. Lemma 5.8 implies that the following (), (8) and (v)
are equivalent: for any element L and M of &,

(@) ©(L) = M;

(B) [0%(M), Os(M)] & Os(L); and

() [OXM), Os(M)] < O4(N) for any element N of & with N=L.
Therefore, (a) follows from the equivalence (a) to (8). (b) follows
from the equivalence (a) to (v). Then (c) follows from (a) and (b).
By the preceding lemma and Lemma 5.8, we obtain:

LemMA 5.13. Fix k=1,2, ---, m. Let K be an element of
FT(S). Assume that O, U{K} lies in .2(G). Then

(@) [0*(H,+)), Os(Hyir)] & Os(K);

(b) [O%H,), Os(H)] < Os(K) for all ;1 <1+ k, k+ 1= m;

(e) [0XK), Os(K)] & Os(H,_,); and

(d) [O%K), O(K)]| S Os(H;) for all ;1 <i#k —1, k< m.

LemMA 5.14. Fix k=1,2,---, m. Suppose {K;;1 <1 =1t} s
a subfamily of F,(S). Let T be a subgroup of S. Assume:

(1) T <] Ng(8S);

(2) TK,; and K,/T is 2'-closed; and

(8) £.U{K})} lies in . 2(@Q) for all ;1 <7 < t.
Then

S = Os(Hy)(() O4K)) ) -
Proof. Let V=[N, 04K;). By (1), (2) and Lemma 4.3(e),
T< V. By (),
(6.14.1) [O%(K,), O«(K)1 S TS V< VOy(Hys,) for all ¢; 11t .

By (3) and Lemma 5.13(b), [O*(H,), Os(H,)] < O4«(K;) for all 4, j;1 <
j#k—1L,kE<mand 1 <1<t Therefore,

(5.14.2) [O%H)), Os(H)= V= VOy(H,y,) for all 7; 1<j#k—1, k<m.
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on the other hand, obviously,
(5.14.3) [O*(Hy+y), Os(Hiv1)] S Os(Hyry) & VOs(Hp+y)

Suppose VO4(H,;,) S. Then by (5.14.1), (5.14.2), (5.14.8) and
Lemma 4.4, 049, U{K;})D1 for all 7;1 <1 <t, which contradicts
(3). Hence S = VOg(H,+,), as required.

Next, we shall prove the dual statement of the preceding lemma
in some sense.

LemmA 5.15. Fix k=1,2, ---, m. Suppose R ={K;1 <1<t}
15 a subfamily of Fe(S). Let T be a subgroup of S. Assume:

(1) T < Ne(S);

(2) K,D T, and KT s 2'-closed; and

(8) 049« UKD for all ;1 <1 < ¢
Then

Os($ UR)D1.
Proof. We shall use induction on ¢.
By (1), (2) and Lemma 4.3(e),
(5.15.1) T O4K,) for all 1;1 <3¢

Let & =9, U{K}, 1<i=<t. Assume that OyK;) =S for some
317 =<t. Let V=04U,cixj=: &). By induction and definition,

(5.15.2) Voland L =N (V)OL) for all Le U $,.

1=iF#j=t

On the other hand, by Lemma 4.2,
(5.15.3) K; = Ni (V)O(K;) .

By (5.15.2) and (5.15.3), 1C V Z O4«(9. U R), as required. Hence, we
may assume that:

(5.15.4) 1cOyK)cS forall 51505t

Next, assume that: for some j; 1< j < ¢, fo,(K;) = max. {fo,(L); Le
&;}. Then by Lemma 4.3(f),

(5.15.5)  [O*H,), Os(H)] S Os(K,) for all i;1 < i+ k<m .
By (2) and (5.15.1),
(5.15.6)  [0%K), O«(K)] S T < Oy(K;) for all ;1 <i<t.

By (5.15.4), (5.15.5), (5.15.6) and Lemma 4.4, O«(H,UR)D1, as
required. Thus we may assume that:
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fo(K;) <max. {fo,(L); Le&} for all ;1 <i=<¢.
By Lemma 5.10(a),
Sfo,(Hiy) = max. {fy (L); Le&} for all ;1 <7<t .
By Lemma 4.3(f),
(6.15.7) [O*H;), Os(H))] S Os(H,_,) for all j;1<j#k<m,
and
(5.15.8) [O(K,), Os(K,)] S Oy(H,,,) for all i;1 <7 <¢t.

Thus, by (5.15.7) and (5.15.8), Lemmas 4.4 and 5.2(b), Os(H.URK) D1,
which proves this lemma.

DEFINITION. Let & = {K;;1 <1 < m} be an element of 2¥(G),
and 7 be the eigen-mapping of &.

Then we may assume that: z(K,)=K,,, for all ;1 <7< m—1,
and 7(K,) = K,, renumbering if necessary.

Let 27(R) = {(Ke&; K #= Ni(J,(S))}. Then 2/(8) # ©; otherwise
1cJ(S) C O4R), a contradiction to the fact that & lies in £ (G).

So, we may assume that K, lies in 2/(®), by (cyclically) renum-
bering, if necessary.

Let z7(®) = (K, = K, , K;,, - -+, K;}}, where 1 =14, <17, < --- <1,
For each element K, of 2/(R),1 <y <\, we define:

if |27 ®)] 22 a@®K,) = {K;i, St <iw)l=v=n;
and
if 7(® ={K},a®:K,)={K;1=t=m—1}.

Define B(R: K, ) ={Kea(R: L, ); [O(K), 2.ZJ0s(a(®: K, )J.(S)H]=1}.
Finally, we define () = 22, |B(&: K,,)|.

REMARK 5.4 (i). We can easily verify that for any element &
of < (G) and any element K of 2/ (&), a(®: K), B(R: K) and /(&)
are defined independently of numbering of the elements of f.

(ii) By definition, if |2/(8)| = 2, then & = UL, a(8: K,,) (dis-
joint union).

LemMMA 5.16. Suppose H; is an element of 7z/(9). Let & =
a(@: H)), T = 0y(®)J.(S), and A = (Ni(S), He®). Then

(@) [R.Z(8), O(Hy] = [2.ZJ(T), O(H))] = 1;

(b) L.ZJ(T)<]A; and

() [2.4(S), H;..|=1.



126 MAKOTO HAYASHI

Proof. By Lemma 3.2,
(5.16.1) 2,Z(S) < 2,.ZJ(S) < 2,ZJ(T), and J(T) = J(S) .

Since & € §;_;, by Lemma 5.10(b), fo(H;) = 1. By Lemma 4.3(c),
T is a Sylow 2-subgroup oonz(Hj) T. Let L = O*(H;)T. By Theorem
3.1(b), L = N (J(T)C,(2,ZJ(T))O(L). So, by (5.16.1),

H; = Ny (J(S)(Cy (2,ZI(T)S)NOL)S) .
Since H; # Ny «J.(S)) and H; # O(HjS,
(5.16.2) H; = CH].(.QIZJA(T))S .

(a) follows from (5.16.1) and (5.16.2).
To prove (b), take any element H, of & with H,= H;, if possible.
Since H, = Ny, (J.(S)), H, = Ny (T). So,

(5.16.3) T H, .

Therefore, (b) follows from (a). To prove (c), by Lemma 8.11(h),
we may assume that:

(5.16.4) H; = Ny, (J(3)).

Let B=(Ny4(S), H;_,, H,>, and B,=Cx(2,ZJ(S)). By (a) and (5.16.4),
O*H;) < B,<|B. Then by Lemma 5.11(c), OH,_,) < B,, so that
[2.Z(S), O*(H;_)] = [2,ZJ(8S), O*H;_,)] =1, which proves (¢), and
this lemma.

LEMMA 5.17. Let H; be an element of /(D). Assume:
(1) H,€eB(9: Hy); and
(2) Hoeal$: H),

then

H.ep(9: H)) .

Proof. Let T = Oya(9: H))J.(S), B= (N«S), H,, H,,», and
B, = Cx(Q,ZJ(T)). By Lemma 5.16(b), B,<] B. By (1), OH,.,)<B,.
Then by Lemma 5.11(c), O*(H,) < B,, which shows that H, € 8($: H)),
as required. Hence this lemma is proved.

LEMMA 5.18. There exists a trio of elements H;, H, and H,.,
of © which satisfies the following conditions:

(a) H;ez/(9);

(b) H,epB(©: Hy; and

(¢) Hiwea(9: H)\B(D: Hy).

(Here, it 1s admissible also that H; = H,.)
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Proof. Suppose that for any element H; of 2/(9), B(9: H;) =
a($: H;). Assume |27(9)| = 2. Then, from the definitions, we have
that @ = Ux,; 8(9: H;) (disjoint union), where H; ranges over all
the elements of 2/(9). Hence by definition, H; = Cy,(2.Z(S)) for
all ;1 <1 < m, so that 1< 2,Z(S) S 04(9), a contradiction. Next,
assume |27(9)| =1. Let Zz(9) ={H;}. By definition and the as-
sumption, 9 = a(9: H;) U {H;_,} = B($: H;) U{H;_;}. By Lemma
5.16(c) and definition, 1 € 2,Z(S) < O4(9), a contradiction. Therefore,
there exists an element H; of 2/(9) such that B(9: H;) C a(9: H;).
Let a($: H;) = {H;, H;4,, -+, H;4,}. By Lemma 5.17, we may assume
that B(9: H;) = {H;H;+,, -+, Hjs+}, Where s <t. Setting H, = H;,,,
we have this lemma.

LEMMA 5.19. Suppose that H; H,, and H,., are elements of
9, and L is an element of Fe(S). Let & = §, U {L}. Assume:
(1) H;ez/(9);
(2) H,ep(®: Hy;
(3) Hpncal9: H)\B(9: Hy);
(4) & lies in 2(G);
(5) (NS), L, Hyip S {N(S), Hy, Hyyy); and
(6) L = N (J.(S)) if and only if H, = N, (J.(S)).
Then
(a) Assume L # N, (J,(S)).
Then
(a.1) H,.,caf: L)
(@.2) 6(R) = 4(9); and
(@.3) if Hi € B(R: L), 6(R) > 6(9).
(b) Assume L=N,(J,(S)) and [0(L), 2,ZJ(0s(a(D: H;))J,(S)]=1.
Then
(b.1) H;e z(®) and H,, € a(fR: H));
(b.2) 6(R) = o(9); and
(b.3) if Hpi € B(R: Hy), 6(R) > 6(9).

Proof. In this proof, we shall quote the results of Lemma
5.12 without notice.

Let 2/(9) = {H; = Hiu Hiw Tt -Hi,:}-

To prove (a), assume L == N, (J,(S)). By (1), (2) and (6), H; =
H,. So, by (3) and Lemma 5.17,

(5.19.1) B(9: Hy) = {H,} .
Then it is easily verified that

:7/(‘@) = {L’ H:;z) H:iy ttty -Hjt}’ a(@: L) = {L} U a(‘@: HJ)\{HJ})

5.19.2
( ) and whenever 2 < i < ¢, B(R: H;,) = B8(9: H;) .
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Then (a.l) follows from this fact.
By (5.19.1) and (5.19.2),

A = 31188 H;)| + 16(%: L]

Mn.

|8(8: H;,)| + 1

|

>
T3

o~

1 18(8: )| + | 8(9: H))|
= 3(9)

which proves (a.2). Then we observe that equality holds in the
above if and only if G(&: L) = {L}, which proves (a.3).

Next, assume L = N, (J,(S)). By (1), (2), and (6), H, + H,.
Then, it is easily verified that:

[

Z(®) = 27(9), and whenever 2 < 1 < t, (& H;)
= B(9: H;,); moreover,

(5.19.4) a(8: H;) = {L} U a(D: H)\{H,} .

Then, (b.1) follows from (5.19.3) and (5.19.4). By (5) and (5.19.4),
(NgS), Ke a(f: H;)) S {NgS), Kea($: H))). By Lemma 4.3(a),
Os(a(R: Hy)J.(S) 2 Os(a($: H))J(S). Thus, by Lemma 3.2(c),

(5.19.5)  QZJOs($: HY)I(S)) € ZJ(@(®: H))I.(S)) -
By (5.19.4) and (5.19.5),

(5.19.3)

(5.19.6) B(9: H)\{H} < B(S: Hj) .
Since L€ B(R: H;) by the assumption of (b) and (5.19.5),
(5.19.7) |88 H))| 2 | 8(©: H)| -

By (5.19.3) and (5.19.7),
8©) = 35 18@: Hy)| + 185 H))|

< 2118%: H;)| + |6 H))|
A ,

which proves (b.2).

By (5.19.6), equality holds in the above if and only if B(8: H;)=
{L} U B(9: H)\{H,}. Then (3) yields (b.3). Hence this lemma is
proved.

LEMMA 5.20. Suppose that H;, H, and H,., are elements of 9,
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and L is an element of [:(S). Let & = 9., U{L}. Assume:
(1) H;ez(9);
(2) H,ep(9: Hy;
(8) Hyea(®: H)\B(O: Hy);
(4) 8 lies in X (Q);
(5) {Ng(S), Hy,, L) < {Nu(S), Hy, Hy..); and
(6) [O(L), 2,ZJ(04(c(9: H)J.(S)] = 1.
Then

(&) > a(9) .

Proof.  Let :(9) ={H; = H;, H, ---, H;}.
It is easily verified that

(5.20.1) whenever 2 <1 < t, B(®: H;,) = 8(9: H;) .
First, assume L = N,(J.(S)). Then

(5202) %(R> = {L’ H:ip Higr ) HJ} .
By (2), (3) and Lemma 5.17,
(5.20.3) B(&: H;) = B(O: H)) .

By (5.20.1), (5.20.2) and (5.20.3),
M) = 3188 H,)| + |8 H| + |88 L)

> S8 Hy)l + 189 Hy)!

=0(9) .
Next, assume L = N,(J,(S)). Then it is easily verified that
(5.20.4) 7 (8) = 27(9); and
(5.20.5) a(ft: H;) = a(D: Hy) U{LN\{H, o) -

By (5) and (5.20.5),
{N(S), Kea(®: H;)) < (Nu«(S), Ke a(9: H;)) .
Then by Lemma 4.3(a) and 3.2(c),
(5.20.6)  2,ZJ(O4a(R: H))J.(S)) S QZJ(Osa(D: H))(S)) .
By (8), (6) and (5.20.6), L € B(&: H;) and B(&: H;) D B(D: H;), so,
(5.20.7) |B(R: Hy)! > |8(9: Hy! .
By (5.20.1) and (5.20.7), o(&) > 6(9), which completes the proof of
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this lemma.
6. On some groups involved in the minimal situation.

NoTATION. Fix a trio of elements H;, H, and H,., of § which
satisfies the conclusions (a), (b) and (¢) of Lemma 5.18.
Let

M = {NgS), H, Hp+,) ;
N = <Ng(s), Hk+1> H
W = CO*(HY") ;

and
So = Wwn Os({Hk, -Hk+1}) .

By Lemma 5.2(c), we recall that for some odd prime ¢ = 5, H, is a
{2, g}-group with a nonidentity Sylow g¢-subgroup. From now on,
q denotes the prime such that H, is a {2, ¢}-group.

LEmMA 6.1. (a) W = KO(H)") ] M;
() [W, 2.Z2J(0s(a(9: H)J(S))] = 1;
(e) [O(Hysp), 2,ZJ(0s(a(D: Hy)J(S)] # 1, in particular

O'(Hir) & W .

Proof. W = {O*H,)") <]<{0*H,), N> =M, which proves (a).
(b) follows from (a) and Lemma 5.16(a).

Since the trio of elements H;, H, and H,,, satisfies the con-
clusions of Lemma 5.18, the former part of (¢) follows from Lemma
5.18(¢). Then the latter part of (¢) follows from (D).

LemMMA 6.2. (a) H,/S, is g-closed;

) 1S, <M, in particular S, <] N«(S);

(€) 1cOs(Hir) = SN O(N) <] N;

(d) for any S-tnvariant subnormal subgroup V of M,
S is normal in some Sylow 2-subgroup of VS.

Proof. Let & = {H,, H,,,}. By Lemma 5.1(a), 1 Ox&). Then
by Lemma 5.10(b), fo(H,) = 1. Hy Lemma 4.3(c),
(6.2.1) H,/W(&R:1) is g-closed.
Since O*(H;) & W and W(R: 1) = OxR),
(6.2.2) [O*(H,), Os(R)] S WNOR) =8, .
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Then, (a) follows from (6.2.1) and (6.2.2).
Suppose S, = 1. Then by (a), H, is g-closed, which contradicts
Lemma 5.2(a). Hence, we obtain that 1< S,. Since O4(8&) { M, by

Lemma 6.1(a),
(6.2.3) S;=WnNoy(® I M,

which proves the former part of (b).

Since Ng(S) & M, the latter part of (b) follows from (6.2.3),
By Lemma 5.2(b), 1 C Os(H,,). Since N = (N(S), H..,», by Lemma
4.3(a), N[> Og(Hp+) = SN Oy(N), which shows (¢). Since 1c S,
N(S) by (b), the assumption (1) of the theorem implies that S is
normal in some Sylow 2-subgroup U of Ng(S,). Since U & Ng(S)S
M S N4(S,), U is a Sylow 2-subgroup of M. Since V is subnormal
in M, by Lemma 3.3(a), VN U is a Sylow 2-subgroup of V. So,
S(VNnU) is a Sylow 2-subgroup of VS. Since S(VNU)< U, (d)
is proved.

NOTATION. Let K be the pre-image of O(W/S,) in W. And
by Lemma 6.2(d), let U be a Sylow 2-subgroup of M in which S is

normal.

LEMMA 6.3. Let X = XK/K for any subgroup X of M. Then
(a) 02(}3{,‘) = Q(ﬁk) = Oq(ﬁk);

() O(W)NS=1;

(©) O(W)=Z(W)=F.(W)< Z(WH,.,).

Proof. (a) follows from Lemma 6.2(a). To prove (b) and (c),
we may assume that W == 1, so that

(6.3.1) O(H,) L O(W) .

Let S, be the intersection of S and the pre-image of O,(W) in M.
Then by (6.3.1) and Lemma 5.11(d), S, < O;({H,, H,+.}) N W=8,. So,
0,W)nS =8, 8, =1, which proves (b).

Since O,(W) <] U and S < U, by (b), [0(W),S] < O,(W)n S=1.
Thus, S Z Cz(0,(W)) <] M. Then by Lemma 3.11(f),

(6.3.2) I:_[ky I—Ikﬂ c CTI(Oz( W)) .
Since O(W) = 1, by (6.3.2),
(6.3.3) F (W) < O(W) < Z(WH,,,) .

On the other hand, generally,
(6.8.4) Z(W)Z O(W)Z F.(W), and Wn Z(WH,.,) S Z(W) .
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Then, {(c) follows from (6.3.8) and (6.3.4). Hence, this lemma is
proved.

DEFINITION. Let € be the family of all the subgroups L of M
that satisfy the following conditions:

() LeFe(S);

(B) L is a {2, g}-group;

(v) O*L)E W; and

0) LJS, is g-closed.

Let

8 ={Le& 00, U{L) D1}
and

¥ ={Le¥ 0D U{L}) =1} .
And let

Y = Nu(0s(9: U £)O(W) .

LEMMA 6.4. (a) H, lies in L
(b) for any element L of &, 9, U {L} lies in &L (G);
() Os($:UR)D1L

Proof. Obviously, H, is a {2, ¢}-group which lies in F.(S). By
definition, O*(H,) € W. By Lemma 6.2(a), H,/S, is g-closed. Hence,
H, lies in 8. Suppose H, lies in €. Then by definition, 1CO4x(D,U
{H,)) = 04(9), which is a contradiction. Hence, (a) is proved.

(b) follows from the definitions.

(¢) follows from Lemma 5.15.

LEMMA 6.5. Suppose D is a normal subgroup of M. Assume:
(1) K&ED<Z W; and
(2) S,cDnS8.

Then

D=W.
Proof. Suppose D W. Since D <] M, it must be that O*(H,)&

D. Then by Lemma 5.11(d), DN S < Os({H;, Hiil}) N W = S,, which
contradicts (2). Hence, this lemma is proved.

ASSUMPTION (A). In the following discussion, without loss of
generality, we may assume that:

(A.1) 0(9) = max. {6(R); Re (@)} ;
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and
(A.2) for any element L of 2,,

(O L)*; 2 € {NS), Hyr,y>=W, if L satisfies the following conditions:
(@) 0(9: U{L}) = 6(9); and

(B) the trio of elements H;, L and H,., satisfies the conclusions
(a), (b), and (c) of Lemma 5.18 with H, replaced by L.

LEMMA 6.6. Let V be a normal subgroup of M such that S, =
VZ K, and let D, D, ---, D, be S-invariant normal subgroups of
W all of which contain V. Assume:

(1) OH,) < D.D,---D,.

Let X = XV/]V for any subgroup X of M.

(2) D,N<Djz1<j+#i=<n) is a 2-group for all i;1 < i = n;

(3) [D,D;]=1forall i,5:1<i+#7<n.

Then there exists an element L of L, which satisfies the following
conditions:

(@) for some 1;1 <1< n, OL) < D;;

(b) O*L)xeN)=W;

(€) 9, U{L} lies in &L (G);

(d) 0(9x U{L}) = a(9); and

(e) replacing H, by L and © by $,U{L}, the conclusions of
Lemma 5.18(a), (b) and (c) are satisfied.

Proof. By Lemma 6.2(d), S is normal in some Sylow 2-subgroup
of (D.D,---D,)S. Since S, = VZ K, V is 2-closed, and O,(V)=S8,=
SN V. Hence, all the assumptions of Proposition 3.13 are satisfied,
for ¢ = », (D.D,---D,)S = D, H, = H, and the other notation as is.

So, there exist S-irreducible subgroups {L;1=<17 =<t} of
(D,D,---D,)S which satisfy all the conclusions of Proposition 3.13.

Let F=(L;1<i¢=<t). By Lemma 3.13(a) and (b),

(6.6.1) F is a solvable {2, q}-group with a Sylow 2-subgroup
e S, and H,C F.

Since [O(H}), O(F)] = 1 = [O(L;), O(F)], (6.6.1) implies that:

(6.6.2) O(H,) < OF) and O(L,) S O(F') for all ;1 <1t

Since H,/S, is ¢g-closed by Lemma 6.2(a), by Proposition 3.13(d) and
(g), FV|/V is gq-closed, so that F/S, is q-closed. And O¥F) <

D.D,---D, < W. Hence, L, lies in & for all 4;1 <¢ < ¢.
Suppose L, lies in & for all ;1 <+ <t. Then by (6.6.2) and
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Lemma 6.4(c), F = N,(04(9,U&)) and Ox«($H,U¥)D1L. Since H, <
F by (6.6.1), H, = N, (0s(9:U 2))O(H,), which shows that 1c
O5(H, U8) C 049). This is a contradiction. Hence, we may assume

that L, lies in &,.
Let L =L, and & = 9, U {L}. By Lemma 6.4(b),

(6.6.3) & lies in £ (G) ,

which proves (e).
By Proposition 3.13(d),

(6.6.4) L lies in D, for some ;1 <1< mn,
which proves (a). By (6.6.3) and Assumption (A.1),
(6.6.5) () =) .

On the other hand, by Proposition 3.13(e) and (f),
(6.6.6)  H, = Ny, (J.(S)) if and only if L = N,(J.(S)) .

Then all the assumptions of Lemma 5.19 are satisfied. Assume
H, # Ny,(J(S)). Then by (6.6.6), L = N,(J.(S)). By (6.6.5) and
Lemma 5.19(a),

(6.6.7) 0(9) =), Le z7(®) and Hy,ca(R: L)\B(K: L) .

Next, assume H, = Ny, (J.(S)). Then by (6;6.6), L = N,(J.(S)).
Since O¥L) £ W, by Lemma 6.1(b), [O*(L), 2,ZJ(0s(a(D: H;))J,(S))]=
1. Then by (6.6.5) and Lemma 5.19(b),

(6.6.8) o) = 0(9), Hie z(R) and H,., € a(8: H;)\B(R: H;) .

Hence, we obtain (d) and (e) by (6.6.7) and (6.6.8). Then, (b)
follows from Assumption (A.2). Hence this lemma is proved.

LEMMA 6.7. Suppose D, is a normal subgroup of M such that
KT D, S W. Then

DJK < Z(W/K) or D, = W .

Proof. Let D,=Cy(D/K)N W. Then, K< D,<]| M. Suppose
OH,) < D.D,. Then, D,D,= W. In this proof, let X = XK/K for
any subgroup X of M. By Lemma 6.3(c), D,N D, S Z(W) = O(W),
and [D, D,] =1. Then by Lemma 6.6(a) and (b), for some 4;1 <
1 <2 D, =(D5xc My = W, which implies that D, = W or D, =
Z(W), as required. Hence, we may assume that OH,) & D.D..
Since O*H,) < W, O*(H,) & D.Cy(D,/K).

Then by Lemma 5.11(a),



2-FACTORIZATION IN FINITE GROUPS 135

(6.7.1) SN DCy(D,/K) & Os(H,) .

On the other hand, by Lemma 6.5, we may assume that

(6.7.2) D,nScS,=1.

By Lemma 3.3(a),

(6.7.3) Un D, is a Sylow 2-subgroup of D, .

By (6.7.2),

(6.7.4) [UnD,S]lcD.nS=1.

Let F = D,H,,, and C = (S*;2e N5(Un D,)). Then, by (6.7.4),
(6.7.5) [OnD,Cl=1.

Since O(D,) £ O(W) =1 by Lemma 6.3(c), (6.7.5) and a theorem of
G. Glauberman [2] imply that

(6.7.6) C/C5(D,) has a normal 2-complement.

On the other hand, since O*(H,) = H, by Lemma 5.2(a) and 3.11(f),
the Frattini argument and the isomorphism theorem imply that:

(6-7-7) é’/(C—' N chF(Dl)) = F/Dch(Dl) = Ek+1/(gk+1 N chF(Dl)) .

By (6.7.6) and (6.7.7), H,./(H.:, N D,C5(D,)) has a normal 2-comple-
ment. So, H.,/(H., N D,Cy(D,/K)) has a normal 2-complement. It
follows that

(6.7.8) [0*(Hi1r), Os(Hes)]1 < S N DiCu(Dy/K).

By (6.7.1) and (6.7.8), [O*(H}+y), Os(Hi+y)] S Os(H,), which contradicts
Lemma 5.8(b). Hence this lemma is proved.

LEmMMA 6.8. O%C,(Sy) = O(W).

Proof. Obviously, O(S,) =2 O(W). To prove the opposite
inclusion, first, we assume that S,C,(S,) € F..(W). Then by Lemma
6.3(c), S,Cw(Sy)/S, is 2'-closed. It follows that S,C(S,) has a normal
2-complement. Since S,C,(S,) <] W, O0*Cy(S,) < O(W), as required.
Hence, we may assume that

(6.8.1) SiCw(S0) & Fo(W) .

By Lemma 6.3(c) and the preceding lemma, we have that KC,(S,) =
W. For D, = Cy(S))S,, D. = K and V = D, N D,, all the assumptions
of Lemma 6.6 are satisfied. By Lemma 6.6(a) and (b), for some
131<1=52, D, =(Df;xe N) = W, that is, K = W or S,Cy(S,) = W.
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Suppose K = W. Then, S,Cy(S,) € K< F (W), which contradicts
(6.8.1). Thus, we have that S,C,(S,) = W. It follows that [0*(H,),
SJ S [0A(W), S;] =1. Then by Lemma 6.2(a), H, is 2'-closed, which
contradicts Lemma 5.2(a). Hence this lemma is proved.

LEMMA 6.9. For any element L of 2, L lies in &, if and only
of LY, in particular H L Y.

Proof. Suppose L lies in &,. Then, L = N, (Os(9, U ))OL).
Since O(L) < 0*(Cy(S,)), by Lemma 6.8, O(L) £ O(W). Hence, L &
N, (Os(H: UL)O(W) = Y, as required.

Conversely, suppose L < Y. Then, L = N, (O, U 2))OL).
Hence by Lemma 6.4(c), 1 COs(9:US8) S Os(9, U {L}), which shows
that L lies in ,. Since H, lies in ¥, by Lemma 6.4(a), we have
the latter part of this lemma. Henee this lemma is proved.

LEMMA 6.10. Suppose V is a normal subgroup of M such that
S, VS F(W). Let X =XV/|V for any subgroup X of M, and
T = Nies, C5(0,L)). Then

(a) S :_Os(Hkﬂ)_T;

(b) OXL) = O,L) for any element L of L.

For any S-invariant g-subgroup R of W,

(c) there exist elements {L;1 <1<t} of & such that R =

O L); L0 <t); and

d [R, TICY.
Proof. For any element L of 8, L/S, is g-closed by definition,
so that
(6.10.1) L]V is g-closed, that is, O(L) = O,(L),

which proves (b).
Let Ty = Nies, Os(L). Then by Lemma 5.14 and 6.4(b),

(6.10.2) S = Os(Hyi) T, .

By (6.10.1), if Le&, [0,(L), T,) < O(L)N T, =1, which shows that
T,Z T. Then, (a) follows from (6.10.2).

Let D* be a Hall {2, ¢}-subgroup of the pre-image of SR in M
which contains S. Then,

(6.10.3) 0(D*)=R.
By Lemma 6.3(c),
(6.10.4) D*/S, is g-closed.



2-FACTORIZATION IN FINITE GROUPS 137

Let D be the pre-image of O,(D*/S,)(S/S,) in M. By (6.10.3) and
(6.10.4),

(6.10.5) 0,D)=R.

Since S is a Sylow 2-subgroup of D, by Lemma 8.10, there exist
S-irreducible subgroups {L;;1 <7 <t} of D with a Sylow 2-sub-
group S, and D= {L;1 <1 <t). Then, it is easily verified that
L, lies in & for all ;1 <¢<t. Hence, (¢) is proved. To prove
(d), we may assume that R = [R, T]. Then, by (a), O,(L,) = ®(R)
for all L,e8, By the preceding lemma, R={0/L,), ®(R); L,c¥)>=
(RN Y, PR)y = RNY, which proves (d).

LEMMA 6.11. (a) Ni(S) S NCZ Y;
(b) Y contains a Hall {2, q}-subgroup of KS which contains S.

Proof. Since 049, U L) <{{NS), His1) = N,
(6.11.1) S S Ni(S)ZE NZ Ny(Os(H, UR))O(W) =Y,

which proves (a).

Since S is a Sylow 2-subgroup of KS, by (a), we need only
show that Y contains a Sylow g¢-subgroup of K. Suppose that K
does not contain any Sylow g-subgroup of K. By the main theorem
of W. Feit and J. G. Thompson [1], K possesses a chief factor V/
V, which satisfies the following conditions:

() both V, and V, are normal subgroups of M which contains
Si;

(B) V./V, is a nonidentity elementary Abelian g-group; and

(v) Y contains a Sylow g-subgroup of V,, but does not contain
any Sylow g¢-subgroup of V..

Let X = XV,/V, for any subgroup X of M. By (B),

(6.11.2) V.nYcV,.
By Lemmas 6.10(b), (c) and 6.9,

there exist elements {L,;1 <7 <t} of & such that
(6.11.3) Vi=(V,n 1 OL);1 =i =ty and
O(LYZ V,NY forall ;1 <i<t.

By Lemmas 3.11(g), 3.4, and 4.3(e),

(6.11.4) Cs(Vi/ViNY)Z OyLy) for all ;1 <1<t
Since 9, U {L;} lies in 2 (G), 1 £ ¢ <t, by Lemma 5.13(a),
(6.11.5) [O(Hi1y), Os(Hyi)] £ Og(Ly) for all i;1 <<t
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On the other hand, by Lemma 6.10(a),

(6.11.6) S = Os(H: )C(V/V.N YY) .
Since H,., S Y by (a), H,., leaves invariant V, and V;N Y. So,
(6.11.7) Ca (VI ViN Y) < Hy, -

By (6.11.6) and (6.11.7), S S Os(H+)Cr, (V/V.NY) <] Hiy. By
(6.11.7) and Lemma 3.11(f),

(6.11.8) O(Hy,) S Cp,,  ,(V/VNY) .

By (6.11.4) and (6.11.8), [O*(Hi+y), Os(He+)] S Cs(V/ VN Y) S Os(Ly)
for all 7;1 < ¢ < t, which contradicts (6.11.5). Hence this lemma is
proved.

LEMMA 6.12. Let X = XK/K for any subgroup X of M. Then
@ ZW)c¥y;

(b) O(HNZ TN Wc W=EW); and

€ Z(WHu:7n) = Q.

Proof. By Lemmas 6.3(c) and 6.11(a), Z(W)=0,(W)< USN,(S)<
N < 7, which proves (a).

Suppose O,(H,) < Y. Since SC Y by Lemma 6.11(a), H, < 7.
Let V be the pre-image of H, in M, and let D, be a Hall {2, g}-
subgroup of V which contains H,. By Lemma 6.11(b), YNV
contains a Hall {2, ¢}-subgroup D, of V which contains S. Since S
is a Sylow 2-subgroup of V, S is a Sylow 2-subgroup of D, and D,.

By Lemma 38.5(b), N,(S) possesses an element z such that Df=
D,. Since zeN,(S)S Y by Lemma 6.11(a), H. & D,=D;C Y,
which contradicts Lemma 6.9. Hence, we obtain that O, (H,) & Y.
Since O,(H,) < W, it follows that

(6.12.1) OHB)Z YN WcCW.

Hence, by (a), (6.12.1) and Lemma 6.3(c), Z(W) = F.(W)cC W. So,
E(W) # 1. Since E(W) <Z Z(W), by Lemma 6.7,

(6.12.2) EW)=W.

Then, (b) follows from (6.12.1) and (6.12.2). Since H,., is solvable,
by Lemma 6.8,

(6.12.3) Cyx,,,(Sy) is solvable.
By (6.12.3) and the assumption (2) of the theorem,
( WH,..: ) = 2( WHk+1/CWH,,+1(So): ) & D (Ng(Sy)/Ce(So): ) = @,
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which proves (c¢). Hence this lemma is proved.

LEMMA 6.13. Let K* be the pre-image of Z(W/K) in W, and
X = XK*/K* for any subgroup X of M. Then
(@) for some natural number r,

W=EW)=E,x E,x-- X E,, where E, is a non-Abelian
simple group with E, =~ E, for all k;1 <k <7

by E,.ZYNW forall l;1 <k <
© N=(Huy NS
(d) there exists a subgroup T of S such that
d.1) S=@nONNT, and
d.2) [R,TISYn me any S-invariant q-subgroup R of W;
(e) renumbering of {1,2,---, 7}, ©f necessary, there exists an
S-tnvariant g-subgroup Q of W such that {7, (Q)*; x € N>=W, where
7, denotes the projection mapping from W to K.

Proof. By Lemma 6.12(b), for some natural number 7,
(6.13.1) W=EW)=E, xE,x---xE, where E, is a
non-Abelian simple group, 1<k < 7.

Let W, = (E;xeN). Since M= (W, Ny, W, | M. Since W,<&
Z(W), by Lemma 6.7, W, = W, so that

(6.13.2) N acts transitively on {EF,;1 <k < 7}.
Hence,
(6.13.3) E.~FE forall k;1 k<.

Thus, (a) follows from (6.13.1) and (6.13.3).

Suppose E, & Y for some k;1 <k < ». Since Y is N-invariant
by Lemma 6.11(a), (6.13.2) shows that W = (Ef; e N) C Y, which
contradicts Lemma 6.12(a) and (b). Hence, E, Z Y for all k;1 <
k < r, which proves (b).

Since N = (H,.,, Na(S)), N = (H,.,, N3(S)), which proves (c).

By Lemma 6.2(c),

(6.13.4) Os(Hi) =SNO,N)S SN Oy(N) .

Let T = Nree, C5(0y(L)). Then by Lemma 6.10 and (6.13.4), S =
Os(Hy )T S (SN O(N))T, and [R, T]< Y for any S-invariant g¢-
subgroup R of W, which proves (d).

By Lemma 3.6, S induces a permutation of 4 ={1,2, ---, 7}
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where we identity & with E,1<k<r. Let A, 4, ---, 4, be the
set of all S-orbits of 4, D, = (Ej;ne ), and let D, be the pre-
image of D, in M, 1<i{<mn. Then, for V=K and D= WS, all
the assumptions of Lemma 6.6 are satisfied. By Lemma 6.6(a), (b)
and Lemma 6.10(b), there exists an element L of &, such that

(6.18.5) (OLL)*;xe N) = W and O/L) < D, for some ;1 <14 < n.

Renumbering 4, if necessary, we may assume that D, = (E?xeS).
Since L is S-irreducible by Lemma 38.11(a),

O/L) S {x(0,(L))*; 2 €S), where w, denotes the projection

(6.13.6) . _ _
mapping from W to E..

By (6.138.5) and (6.13.6), (7,(O,(L))*;x€ Ny = W, which proves (e).
Hence this lemma is proved.

LEMMA 6.14. O%H,.,) & WC(W/K).

Proof. Let K* be the pre-image of Z(W/K) in W. Then by
Lemma 6.12(c), 2(WH,.,/K*: 7)) 2(WH,.,/K:7) = @. So, by
Lemma 6.13 and Proposition 3.17, we obtain that O*(H.:,) =
WC,(W/K*). Hence, it is enough to show that C,(W/K)2C,(W/K*).
Let X =XK/K for any subgroup X of M. Then, W stabilizes a normal
series: Cy(W/K*) = Ci(W/Z(W)) 2 Z(W)21l. By Lemma 6.12(b),
O (W)=W =, so that by Lemma 3.7 [W, Cy(W/K*)] = 1. Therefore,
C(W/K*) < Cy,(W/K), as required. Hence this lemma is proved.

NOTATION. By Lemma 5.2(c), H:, is a {2, p}-group with a non-
identity Sylow p-subgroup. From now, p denotes the prime such
that H,., is a {2, p}-group.

LeMMA 6.15. All the assumptions of Proposition 3.13 are
satisfied, for r=p, D=M, V=K, D, = W, D,=Cy(W/K), and
H = Hk+1-

Proof. (1) follows from Lemma 6.1(e). (2) follows from Lemma
5.2(a). (3) follows from the preceding lemma. (4) and (5) follow
from the definitions. (6) follows from Lemma 6.3(c). Hence this
lemma is proved.

LEMMA 6.16. A contradiclion.

Proof. By Lemma 6.15, and Proposition 3.13(a), (b), (¢) and (d),
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there exists a subfamily & = {L;;1 < 7 =<t} of F(S) which satisfies
the following (6.16.1), (6.16.2) and (6.16.3):

(L e®) is a solvable {2, p}-group with a Sylow

(6.16.1) . .
2-subgroup S which contains H,.;

there exists a subgroup T of S which is normal in
(6.16.2) (Ny(S), Le &), and H,,,/T is p-closed, and L/T is
p-closed for all Le&;

(6.16.3) for each Le&, O(L) Z W or OXL) < C,(W/K) .
First, we shall show that:
(6.16.4) Os(91:, ULLD) D1 for all LeS.

Suppose that Ox(D., U{L}) =1 (namely, O+, U{L} lies in &< (G))
for some Le&f. If O(L)SC(W/K), then [O(L), Os(I)]SCy(W/K)=
O4(H,), which contradicts Lemma 5.13(c). So, we get O*(L) & W by
(6.16.3). Then by Lemma 6.1(b), [OXL), 2.ZJ(Ox(a(9: H,))J.(S)]=1.
Then by Lemma 5.20, §(9,:, U {L}) > 6(9), which contradicts Assump-
tion (A.1l). Hence, we obtain (6.16.4). Since N,(S) = N(S), by
(6.16.4), (6.16.2) and Lemma 5.15,

(6.16.5) Os(Dr: UKD .

Let FF=<Le&). Then by (6.16.1), O(L) S O(F) for all Le&.
Therefore, F' = N, (Oy(D.., U ))OF'). Since H,., C F by (6.16.1), it
follows that

(6.16.6) H = Ny, ,(Os(Hy1 U K))O(Hps) -

By (6.16.5) and (6.16.6), 1C Ox(Di1 U&R) S 04(9), which is a final
contradiction. This completes the proof of the theorem.

Added in proof. The author would like to give thanks to
Professor George Glauberman who pointed out some errors in this
paper, and to the Journal for fixing up the manuseript.
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