GENERALIZATION OF A THEOREM OF LANDAU

Miriam Hausman

A well known theorem of Landau asserts that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\phi(n) \log \log n}{n}=e^{-r} \tag{1.1}
\end{equation*}
$$

where $\gamma=$ Euler's constant. In this paper a generalization is obtained by focusing on
(1.2) $\quad G(k)=\lim _{n \rightarrow \infty}(\log \log n)^{1 / k} \max \left(\frac{\phi(n+1)}{n+1}, \cdots, \frac{\phi(n+k)}{n+1}\right)$.

Clearly, the assertion $G(1)=e^{-\tau}$ is precisely Landau's theorem. It is proved that

$$
\begin{equation*}
G(k)=e^{-\gamma / k} \prod_{p<k}\left(1-\frac{1}{p}\right)^{-1 / k} \psi(k) \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi(k)=\prod_{\substack{p \backslash k \\ p<k}}\left(1-\frac{1}{p}\right)^{1 / p} \prod_{\substack{p \not p k k \\ p<k}}\left(1-\frac{1}{p}\right)^{(1 / k)[k / p]+1 / k} . \tag{1.4}
\end{equation*}
$$

The function $\psi(k)$ satisfies $0<\psi(k) \leqq 1$ and it is easily seen from (1.4) that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \psi(k)=\prod_{p}\left(1-\frac{1}{p}\right)^{1 / p} . \tag{1.5}
\end{equation*}
$$

2. Preliminary lemmas. The results obtained in this paper depend on the following well known theorems [1], [2], and [3].

$$
\begin{equation*}
\frac{\lim }{n \rightarrow \infty} \frac{\phi(n) \log \log n}{n}=e^{-r} \quad \text { (Landau's theorem) } \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{p \leqq x} \frac{1}{p}=\log \log x+c+O\left(\frac{1}{\log x}\right) \quad \text { (Mertens') } \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
\prod_{p 刃 x}\left(1-\frac{1}{p}\right)=\frac{e^{-r}}{\log x}+O\left(\frac{1}{\log ^{2} x}\right) \quad \text { (Mertens') } \tag{2.3}
\end{equation*}
$$

3. Proof of (1.3). We introduce

$$
\begin{equation*}
\left(\frac{\dot{\phi}(n)}{n}\right)_{k}=\prod_{\substack{p \nmid n \\ p \geqq b}}\left(1-\frac{1}{p}\right) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{k}(n)=\prod_{\substack{p \nmid n \\ p<k}}\left(1-\frac{1}{p}\right) \tag{3.2}
\end{equation*}
$$

and note that $f_{k}(n)$ is periodic with period $\Delta_{k}=\Pi_{p<k} p$.
We also observe that (1.2) is clearly equivalent to
(3.3) $G(k)=\min _{1 \leqq J \leqq \Lambda_{k}} \lim _{\substack{n \rightarrow \infty \\ n \equiv J\left(\bmod { }^{\prime}{ }_{k}\right)}}(\log \log n)^{1 / k} \max \left(\frac{\phi(n+1)}{n+1}, \cdots, \frac{\phi(n+k)}{n+k}\right)$.

On the sequence $n \equiv J\left(\bmod \Delta_{k}\right)$
(3.4) $\quad(\log \log n) \prod_{i=1}^{k} \frac{\dot{\phi}(n+i)}{n+i}=(\log \log n) \prod_{i=1}^{k}\left(\frac{\phi(n+i)}{n+i}\right)_{k} f_{k}(J+i)$.

Since a prime p divides $n+i$ and $n+j$ only if p divides $i-j$, $1 \leqq j<i \leqq k$; and the primes involved in $(\phi(n) / n)_{k}$ are $p \geqq k$, we have

$$
\prod_{i=1}^{k}\left(\frac{\phi(n+i)}{n+i}\right)_{k}=\left(\frac{\phi\left[\prod_{i=1}^{k}(n+i)\right]}{\prod_{i=1}^{k}(n+i)}\right)_{k}
$$

This together with the result

$$
\varliminf_{n \rightarrow \infty}(\log \log n)\left(\frac{\phi(n)}{n}\right)_{k}=e^{-r} \prod_{p<k}\left(1-\frac{1}{p}\right)^{-1}
$$

(which follows from Landau's theorem) yields

$$
(\log \log n) \prod_{i=1}^{k}\left[\frac{\phi(n+i)}{n+i}\right] \geqq(1+o(1)) e^{-r} \prod_{p<k}\left(1-\frac{1}{p}\right)^{-1} \prod_{i=1}^{k} f_{k}(J+i)
$$

which implies

$$
\begin{align*}
& \lim _{\substack{n \rightarrow \infty \\
n \equiv J(\bmod \\
}}(\log \log n)^{1 / k} \max _{i=1, \cdots, k}\left(\frac{\phi(n+i)}{n+i}\right) \tag{3.5}\\
& \quad \geqq e^{-\gamma / k} \prod_{p<k}\left(1-\frac{1}{p}\right)^{-1 / k}\left[\prod_{i=1}^{k} f_{k}(J+i)\right]^{1 / k} .
\end{align*}
$$

In (3.5), taking the minimum over $J, 1 \leqq J \leqq \Delta_{k}$, and using (3.3) yields

$$
\begin{equation*}
G(k) \geqq e^{-\gamma / k} \prod_{p<k}\left(1-\frac{1}{p}\right)^{-1 / k}\left[\min _{1 \leqq J \leqq} \prod_{k=1}^{k} f_{k}(J+i)\right]^{1 / k} . \tag{3.6}
\end{equation*}
$$

Choose J^{*} such that

$$
\left[\min _{1 \leqq J \leqq \Lambda_{k}} \prod_{i=1}^{k} f_{k}(J+i)\right]^{1 / k}=\left[\prod_{i=1}^{k} f_{k}\left(J^{*}+i\right)\right]^{1 / k} .
$$

We next observe that for the $\psi(k)$ given in (1.4) we have

$$
\begin{equation*}
\left[\prod_{i=1}^{k} f_{k}\left(J^{*}+i\right)\right]^{1 / k}=\psi(k) \tag{3.7}
\end{equation*}
$$

To see this note first that the left side of (3.7) equals

$$
\begin{equation*}
\min _{1 \leqq J \leqq \Delta_{k}}\left[\prod_{\substack{p \mid, f+1 \\ p<k}}\left(1-\frac{1}{p}\right) \prod_{\substack{p \mid J+2 \\ p<k}}\left(1-\frac{1}{p}\right) \cdots \prod_{\substack{p \mid J+k \\ p<k}}\left(1-\frac{1}{p}\right)\right]^{1 / k} \tag{3.8}
\end{equation*}
$$

Since each of the factors $(1-1 / p)<1$, the minimum of the product in (3.8) is achieved for that value of J for which each prime $p<k$ divides as many of the k integers $J+1, \cdots, J+k$ as possible. Since $p<k, k=p t+r, t=[k / p], 0 \leqq r<p$. If $r=0$, i.e., $p \mid k$, then the k integers $J+1, \cdots, J+k$ can be broken up into exactly t complete residue systems modulo p and in each system we have one integer \equiv $0(\bmod p)$; this situation is independent of the choice of J. If $r>0$ then the k integers $J+1, \cdots, J+k$ form t complete residue classes modulo p together with $r<p$ remaining integers. In each of the complete residue classes there is one integer $\equiv 0(\bmod p)$. We would like to show that it can be arranged that for each $p<k, p \nmid k$, one of the r remaining integers is $\equiv 0(\bmod p)$, and thus we have $[k / p]+1$ integers divisible by p. Since $1 \leqq J \leqq \Delta_{k}$ where $\Delta_{k}=\Pi_{p<k} p$, we can choose $J=\Delta_{k}-1$; then every $p<k$ divides $J+1$. Hence for $p \nmid k$, the $[k / p]+1$ integers $J+1+\tau p, 0 \leqq \tau \leqq t$ are divisible by p as desired, and (3.7) follows.

From (3.6) and (3.7) we see that

$$
\begin{equation*}
G(k) \geqq e^{-\gamma / k} \prod_{p<k}\left(1-\frac{1}{p}\right)^{-1 / k} \psi(k) ; \tag{3.9}
\end{equation*}
$$

and it remains to prove the reverse inequality. This is achieved by showing that there exists an infinite sequence $n \equiv J^{*}\left(\bmod \Delta_{k}\right)$ on which

$$
\begin{gather*}
\lim _{\substack{n \rightarrow \infty \\
n \equiv J+\left(\bmod _{b}\right)}}(\log \log n)^{1 / k} \max _{i=1, \cdots, k}\left(\frac{\phi(n+i)}{n+i}\right) \tag{3.10}\\
\leqq e^{-\gamma / k} \prod_{p<k}\left(1-\frac{1}{p}\right)^{-1 / k} \psi(k) .
\end{gather*}
$$

This is done by producing a sequence $n \equiv J^{*}\left(\bmod \Delta_{k}\right)$ for which

$$
\begin{equation*}
(\log \log n)^{1 / k} \max _{i=1, \cdots, k}\left(\frac{\phi(n+i)}{n+i}\right)_{k} \sim e^{-\gamma / k} \prod_{p<k}\left(1-\frac{1}{p}\right)^{-1 / k} \lambda_{i} \tag{3.11}
\end{equation*}
$$

where for all $i=1, \cdots, k$,

$$
\lambda_{i}=\frac{\psi(k)}{f_{k}\left(J^{*}+i\right)} .
$$

On this sequence
$(\log \log n)^{1 / k} \max _{i=1, \cdots, k}\left(\frac{\dot{\varphi}(n+i)}{n+i}\right) \sim e^{-\gamma / k} \prod_{p<k}\left(1-\frac{1}{p}\right)^{-1 / k} \max _{i=1, \cdots, k}\left(\lambda_{i} f_{k}\left(J^{*}+i\right)\right)$

$$
\sim e^{-\delta / k} \prod_{p<k}\left(1-\frac{1}{p}\right)^{-1 / k} \dot{\psi}(k)
$$

which gives the reverse inequality to (3.9) and establishes (1.3).
To construct the sequence $n \equiv J^{*}\left(\bmod \Delta_{k}\right)$ which satisfies (3.8) let

$$
\begin{aligned}
& B_{1}=\prod_{k \leq p<\exp \left(c_{1} 1^{\log x)}\right.} p, \\
& B_{i}=\prod_{\left.\exp \left(\left(c_{i-1}\right)\right)(\log x)^{i-1}\right) \leq p<\operatorname{cxp}\left(c_{i}(\log x)^{i}\right)} p, \quad i=2, \cdots, k ;
\end{aligned}
$$

where $c_{k}=1$, and for $i=0, \cdots, k-1, c_{i}$ is determined by

$$
\frac{c_{i-1}}{c_{i}}=e^{-\gamma / k} \prod_{p<k}\left(1-\frac{1}{p}\right)^{-1 / k} \lambda_{i}
$$

Since $\Pi_{i=1}^{k} \lambda_{i}=1$ it follows that $c_{0}=e^{-\gamma} \Pi_{p<k}(1-1 / p)$. As the B_{i}, $i=1, \cdots, k$ are k integers made up of primes $p \geqq k$ and are relatively prime in pairs, as well as each relatively prime to Δ_{k}, by the Chinese Remainder Theorem the system

$$
\begin{gather*}
y+1 \equiv O\left(\bmod B_{1}\right) \\
y+2 \equiv O\left(\bmod B_{2}\right) \\
\vdots \tag{3.13}\\
y+k \equiv O\left(\bmod B_{k}\right) \\
y \equiv J^{*}\left(\bmod \Delta_{k}\right)
\end{gather*}
$$

has a solution $y=n^{*}, 0<n^{*}<\Delta_{k} \prod_{i=1}^{k} B_{i}$ which is unique modulo $\Delta_{k} \prod_{i=1}^{b} B_{i}$.

For this integer $n^{*} \equiv J^{*}\left(\bmod \Delta_{k}\right)$ we have for $i=1, \cdots, k$

$$
\begin{aligned}
& \left(\frac{\dot{\phi}\left(n^{*}+i\right)}{n^{*}+i}\right)_{k}=\prod_{\substack{p, n *+i \\
p \geqq k i}}\left(1-\frac{1}{p}\right) \leqq \prod_{p: k_{i}}\left(1-\frac{1}{p}\right) \\
& \quad \leqq \frac{c_{i-1}}{c_{i}}\left(\frac{1}{\log x}\right)+O\left(\frac{1}{\log ^{2} x}\right)
\end{aligned}
$$

(note that the value obtained for c_{0} validates this for $i=1$). Then

$$
\begin{align*}
& \left(\frac{\phi\left(n^{*}+i\right)}{n^{*}+i}\right)_{k} f_{k}\left(J^{*}+i\right) \\
& \quad \leqq \frac{\lambda_{i} e^{-\gamma / k} \prod_{p<l k}\left(1-\frac{1}{p}\right)^{-1 / k}}{\log x} f_{k}\left(J^{*}+i\right)(1+o(1)) . \tag{3.14}
\end{align*}
$$

But from the Prime Number Theorem since

$$
n^{*}<\Delta_{k} \prod_{i=1}^{k} B_{i}=\prod_{p\left\langle\exp (\log x)^{k}\right.} p, \quad\left(c_{k}=1\right)
$$

it follows that

$$
\log n^{*} \leqq \sum_{p<a x p\{\log x)^{k}} \log p=O\left(e^{(\log x)^{k}}\right)
$$

so that

$$
\begin{equation*}
\log \log n^{*} \leqq(\log x)^{k}+O(1) \tag{3.15}
\end{equation*}
$$

Since (3.14) holds for all $i=1, \cdots, k$, it certainly holds for the maximum of these functions. Thus inserting (3.15) in (3.14) yields

$$
\begin{gather*}
\left(\log \log n^{*}\right)^{1 / k} \max _{i=1, \cdots, k}\left(\frac{\phi\left(n^{*}+i\right)}{n^{*}+i}\right)_{k} f_{k}\left(J^{*}+i\right) \tag{3.16}\\
\leqq(1+o(1)) e^{-\gamma / k} \prod_{p<k}\left(1-\frac{1}{p}\right)^{1 / k} \psi(k) .
\end{gather*}
$$

Clearly as x tends to infinity the n^{*} (which depends on x) also tends to infinity, so that (3.16) yields

$$
\begin{equation*}
G(k) \leqq e^{-r / k} \prod_{p \backslash k}\left(1-\frac{1}{p}\right)^{-1 / k} \psi(k) \tag{3.17}
\end{equation*}
$$

which completes the proof of (1.3).

References

1. G. H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, (1968), 349-354.
2. E. Landau, Über den Verlauf der zahlentheoretischen Funktion $\phi(x)$, Archiv der Mathematik und Physik, (3) 5 (1903), 86-91.
3. F. Mertens, Ein Beitrag zur analytischen Zahlentheorie, Journal für die reine und angewandte Mathematik, Bd. 78 (1874), 46-62.

Received January 27, 1977 and in revised form March 8, 1979.
Baruch College
CUNY
New York, NY 10010

