A DUAL RELATIONSHIP BETWEEN GENERALIZED ABEL-GONČAROV BASES AND CERTAIN PINCHERLE BASES

F. Haslinger

Recent results on Abel-Gončarov polynomial expansions are applied to study the representability of holomorphic functions as infinite series in a given Pincherle sequence. As a generalization of the ordinary derivative we consider the so-called Gel'fond-Leont'ev derivative \mathscr{D}. We take the exponential function with respect to the derivative \mathscr{D} and use a duality principle in order to investigate the completeness of the system $E_{n}(z)=z^{n} E\left(\lambda_{n} z\right)$ in the space \mathscr{F}_{r} of functions holomorphic on the interior of the disc of radius $r \leqq \infty$. Finally we study the uniqueness of the representability of holomorphic functions as infinite series in the system E_{n}.

1. Basic facts and definitions. Let $0<r \leqq \infty$. We shall be interested in the nuclear Fréchet space \mathscr{F}_{r} consisting of all functions holomorphic on the open disk of radius r, equipped with the topology of uniform convergence on compact sets (see [15]). For the topology in the space \mathscr{F}_{r}, we can take the norms $\|\cdot\|_{r^{\prime}}, 0<r^{\prime}<r$ given by $\|f\|_{r^{\prime}}=\max \left\{|f(z)|:|z|=r^{\prime}\right\}, \quad f \in \mathscr{F}_{r}$. It is easily seen that by Cauchy's estimates that system of norms $\left\{\|\cdot\|_{r^{\prime}}, 0<r^{\prime}<r\right\}$ is equivalent to the system of norms $\left\{|||\cdot|||_{r^{\prime}}, 0<r^{\prime}<r\right\}$, where

$$
\left\|\|f\|_{r^{\prime}}=\sup _{0 \leqq k<\infty}\left|\alpha_{k}\right| r^{\prime k}\right.
$$

for $f \in \mathscr{F}_{r}$ with Taylor series expansion

$$
f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}
$$

We recall that two systems of seminorms $\left\{\|\cdot\|_{p}, p \in P\right\}$ and $\left\{\|\cdot \cdot\|_{p}\right.$, $p \in P\}$ are equivalent, if for each $p \in P$ there exists a constant K_{p} depending on p and $q \in P$ such that $\|\cdot\|_{p} \leqq K_{p}\|\cdot\| \|_{q}$, and if for each $p^{\prime} \in P$ there exists a constant $K_{p^{\prime}}$ depending on p^{\prime} and $q^{\prime} \in P$ such that $\left||\cdot|\left\|_{p^{\prime}} \leqq K_{p^{\prime}}\right\| \cdot \|_{q^{\prime}}\right.$.

A sequence $\left(f_{n}\right)_{n=0}^{\infty}$ in \mathscr{F}_{r} is complete if the set of all finite linear combinations of the functions f_{n} is dense in \mathscr{F}_{r}. And $\left(f_{n}\right)_{n=0}^{\infty}$ is a basis in \mathscr{F}_{r} if each $f \in \mathscr{F}_{r}$ has a representation

$$
f=\sum_{n=0}^{\infty} c_{n} f_{n}
$$

where $\left(c_{n}\right)_{n=0}^{\infty}$ is a sequence of scalars uniquely determined by f and
the infinite series converges in the topology of \mathscr{F}_{r}. Two bases $\left(f_{n}\right)_{n=0}^{\infty}$ and $\left(g_{n}\right)_{n=0}^{\infty}$ are equivalent if $\sum_{n=0}^{\infty} c_{n} f_{n}$ converges in \mathscr{F}_{r} if and only if $\sum_{n=0}^{\infty} c_{n} g_{n}$ converges in \mathscr{F}_{r}. As is well known, the sequence of the functions $\left(z^{n}\right)_{n=0}^{\infty}$ constitutes a basis for any space $\mathscr{F}_{r}(0<$ $r \leqq \infty$). A basis $\left(f_{n}\right)_{n=0}^{\infty}$ is called proper if it is equivalent to $\left(z^{n}\right)_{n=0}^{\infty}$ (see [1], [4]).
M. Arsove [1], in a series of papers, has considered Pincherle sequences $\left(f_{n}\right)_{n=0}^{\infty}$ in which f_{n} has the form

$$
f_{n}(z)=z^{n} \psi_{n}(z), \quad n=0,1,2, \cdots
$$

where each function $\psi_{n} \in \mathscr{F}_{r}$ and $\psi_{n}(0)=1$. Recently, in [1] Arsove and in [4] Dubinsky studied linear Pincherle sequences (see also [9])

$$
f_{n}(z)=z^{n}\left(1-\frac{z}{z_{n}}\right), \quad n=0,1,2, \cdots
$$

In this paper we investigate the problem of determining when a system

$$
E_{n}(z)=z^{n} E\left(\lambda_{n} z\right), \quad n=0,1,2, \cdots
$$

is complete in \mathscr{F}_{r}, when it is not complete and when it is a basis, even a proper basis in \mathscr{F}_{r}. Here $\left(\lambda_{n}\right)_{n=0}^{\infty}$ is a sequence of scalars and E is a generalized exponential function corresponding to a so-called Gel'fond-Leont'ev derivative \mathscr{D} (see [8]).

Let $\left(d_{k}\right)_{k=1}^{\infty}$ denote a nondecreasing sequence of positive numbers. The Gel'fond-Leont'ev derivative \mathscr{O} is defined by

$$
\mathscr{O} f(z)=\sum_{k=1}^{\infty} d_{k} a_{k} z^{k-1}
$$

where

$$
f(z)=\sum_{k=0}^{\infty} a_{k} z^{k} .
$$

As in [2] or [7] we suppose that the sequence $\left(d_{k}\right)_{k=1}^{\infty}$ satisfies the following condition

$$
\begin{equation*}
\left(d_{k+1} / d_{k}\right)_{k=1}^{\infty} \text { is nonincreasing and has limit } 1 . \tag{1.1}
\end{equation*}
$$

Then it follows

$$
\lim _{k \rightarrow \infty} d_{k}^{1 / k}=1
$$

Thus if f has radius of convergence $c(f)$ then

$$
\mathscr{O} f(z)=\sum_{k=1}^{\infty} d_{k} a_{k} z^{k-1}
$$

has also radius of convergence $c(f)$.
The operator \mathscr{D} corresponds to the ordinary derivative when $d_{k}=k(k=1,2, \cdots)$ and to the shift operator \mathscr{S} when $d_{k}=1$ $(k=1,2,, \cdots) . \quad \mathscr{S}$ is defined by

$$
\mathscr{P} f(z)=\sum_{k=1}^{\infty} a_{k} z^{k-1}
$$

The operators $\mathscr{D}^{n}(n=1,2, \cdots)$ are the successive iterates of \mathscr{D} and we have

$$
\mathscr{D}^{n} f(z)=\sum_{k=n}^{\infty} \frac{e_{k-n}}{e_{k}} a_{k} z^{k-n},
$$

where $e_{0}=d_{0}=1$ and $e_{n}=\left(d_{1} d_{2} \cdots d_{n}\right)^{-1}$ for $n \geqq 1$.
We write

$$
E(z)=\sum_{k=0}^{\infty} e_{k} z^{k}
$$

and note that this function bears the same relationship to the operator \mathscr{D} that the exponential function bears to the ordinary differentiation. This means

$$
E(0)=1 \quad \text { and } \quad \mathscr{O} E(z)=E(z)
$$

Let $R=c(E)$, then, by the monotonicity of the sequence $\left(d_{k}\right)_{k=1}^{\infty}$ we have (see [2])

$$
R=\lim _{k \rightarrow \infty} d_{k}=\sup _{1 \leqq k<\infty} d_{k}
$$

The E-type of a function $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ is the number

$$
\tau_{E}(f)=\limsup _{k \rightarrow \infty}\left|a_{k} / e_{k}\right|^{1 / k}
$$

If $R<\infty$ then

$$
\begin{equation*}
\left.\tau_{E}(f)=\frac{R}{c(f)}, \quad \quad \text { (see }[2],[7]\right) \tag{1.2}
\end{equation*}
$$

Now we define for a sequence $\left(\lambda_{k}\right)_{k=0}^{\infty}$ of scalars the polynomials $Q_{n}\left(z ; \lambda_{0}, \cdots, \lambda_{n-1}\right)$ by $Q_{0}(z) \equiv 1$ and

$$
Q_{n}\left(z ; \lambda_{0}, \cdots, \lambda_{n-1}\right)=e_{n} z^{n}-\sum_{k=0}^{n-1} e_{n-k} \lambda_{k}^{n-k} Q_{k}\left(z ; \lambda_{0}, \cdots, \lambda_{k-1}\right)
$$

It is easily seen that

$$
\begin{equation*}
e_{n} z^{n}=\sum_{k=0}^{n} e_{n-k} \lambda_{k}^{n-k} Q_{k}\left(z ; \lambda_{0}, \cdots, \lambda_{k-1}\right) \tag{1.3}
\end{equation*}
$$

The polynomials $Q_{n}\left(z ; \lambda_{0}, \cdots, \lambda_{n-1}\right)$ are called the Gončarov polynomials belonging to the operator \mathscr{D} (see [2]). They reduce to the ordinary Gončarov polynomials if $d_{k}=k(k=1,2, \cdots)$ and the remainder polynomials if $d_{k}=1(k=1,2, \cdots)$.

One verifies easily that

$$
\begin{equation*}
\left.\mathscr{O}^{k} Q_{n}\left(\lambda_{k} ; \lambda_{0}, \cdots, \lambda_{n-1}\right)=\delta_{n k} \quad \text { (see }[2]\right) \tag{1.4}
\end{equation*}
$$

Therefore the polynomials $Q_{n}\left(z ; \lambda_{0}, \cdots, \lambda_{n-1}\right)$ are biorthogonal to the linear functionals

$$
\mathscr{L}_{n}(f)=\mathscr{D}^{n} f\left(\lambda_{n}\right)
$$

Now we consider the problem under which conditions the polynomials $Q_{n}\left(z ; \lambda_{0}, \cdots, \lambda_{n-1}\right)$ constitute a basis in \mathscr{F}_{r}, i.e.,

$$
f(z)=\sum_{n=0}^{\infty} \mathscr{D}^{n} f\left(\lambda_{n}\right) Q_{n}\left(z ; \lambda_{0}, \cdots, \lambda_{n-1}\right)
$$

for each $f \in \mathscr{F}_{r}$ and the infinite series converges in the topology of \mathscr{F}_{r}.

In this connection the Whittaker constant $W(\mathscr{D})$ belonging to the operator \mathscr{D} plays an important role. We can introduce the Whittaker constant $W(\mathscr{D})$ by

$$
W(\mathscr{O})=\left(\sup _{1 \leqq n<\infty} H_{n}^{1 / n}\right)^{-1}
$$

where

$$
H_{n}=\max \left|Q_{n}\left(0 ; \lambda_{0}, \cdots, \lambda_{n-1}\right)\right| \quad(n=1,2, \cdots)
$$

and the maximum is taken over all sequences $\left(\lambda_{k}\right)_{k=0}^{n-1}$ whose terms lie on the unit circle (see Buckholtz and Frank [2]).

The Whittaker constant satisfies the inequality (see [2])

$$
\begin{equation*}
0<\frac{d_{1}}{2} \leqq W(\mathscr{D})<d_{1} \tag{1.5}
\end{equation*}
$$

In [7], Frank and Shaw investigated the above problem and the following theorem is an easy consequence of their Theorem A in [7]:

ThEOREM A. Let $\left(\lambda_{n}\right)_{n=0}^{\infty}$ be a sequence of complex numbers such that

$$
\left|\lambda_{n}\right| \leqq \frac{e_{n+1}}{e_{n}} s, \quad n=0,1,2, \cdots
$$

for a real number $s>0$. Then the Gončarov polynomials constitute a basis in any space \mathscr{F}_{r} for

$$
r>\frac{s}{W(\mathscr{D})}
$$

The following theorem, which is again an easy consequence of a theorem due to Buckholtz and Frank [3], shows that Theorem A is sharp in a certain sense:

Theorem B. Let r and s be positive numbers such that

$$
\frac{s}{W(\mathscr{D})}>r
$$

Then there exists a holomorphic function F of radius of convergence r such that $\mathscr{D}^{n} F$ has a zero in $|\boldsymbol{z}| \leqq\left(e_{n+1} / e_{n}\right)$ s for all but finitely many n.

In the following we will use Theorem A and Theorem B and two duality principles for \mathscr{F}_{r} in order to investigate the behavior of the Pincherle sequences

$$
E_{n}(z)=z^{n} E\left(\lambda_{n} z\right) \quad n=0,1,2, \cdots,
$$

where E is the exponential function belonging to the operator \mathscr{D} and $\left(\lambda_{n}\right)_{n=0}^{\infty}$ is a given sequence of scalars.
2. Completeness of the system $\left\{z^{n} E\left(\lambda_{n} z\right)\right\}$. Let $E \in \mathscr{F}_{R}$ $(0,<R<\infty)$ with the power series expansion

$$
E(z)=\sum_{k=0}^{\infty} e_{k} z^{k} \quad \text { and } \quad \limsup _{k \rightarrow \infty}\left|e_{k}\right|^{1 / k}=\frac{1}{R} .
$$

We suppose that $e_{0}=1$ and $e_{k}>0$ for $k=1,2, \cdots$.
In the sequel, we will always require that the sequence $\left(e_{k}\right)_{k=0}^{\infty}$ satisfies the following conditions:
(2.1a) $\left(e_{k-1} / e_{k}\right)_{k=1}^{\infty}$ is nondecreasing;
(2.1b) $\left(e_{k}^{2} / e_{k-1} e_{k+1}\right)_{k=1}^{\infty}$ is nonincreasing and has limit 1 (compare (1.1)).

From condition (2.1a) we have

$$
\lim _{k \rightarrow \infty}\left(e_{k} / e_{k-1}\right)=\frac{1}{R}
$$

since $E \in \mathscr{F}_{R}$.

THEOREM 1. Let $\left(\lambda_{n}\right)_{n=0}^{\infty}$ be a sequence of complex numbers such that

$$
\left|\lambda_{n}\right| \leqq \frac{e_{n+1}}{e_{n}} s \quad n=0,1,2, \cdots
$$

for a real number $s>0$. Then the system $\left\{z^{n} E\left(\lambda_{n} z\right)\right\}_{n=0}^{\infty}$ is complete in any space \mathscr{F}_{r} for $R / r \geqq s / W(\mathscr{D})$.

Proof. Here we use the following well known form of the Hahn-Banach theorem: A subset $G \subseteq \mathscr{F}_{r}^{r}$ is dense in \mathscr{F}_{r} if and only if for each continuous linear functional L on \mathscr{F}_{r} such that $L(g)=0$ for each $g \in G$ it follows that $L=0$.

Let $\left\{\left(e_{k}\right)_{k=0}^{\infty}, r\right\}$ denote the space of all holomorphic functions $h(z)=\sum_{k=0}^{\infty} h_{k} z^{k}$ with the property

$$
\left.\limsup _{k \rightarrow \infty}\left|h_{k}\right| e_{k}\right|^{1 / k}<r
$$

This means that the functions $h \in\left\{\left(e_{k}\right)_{k=0}^{\infty}, r\right\}$ are holomorphic on the disk $|z| \leqq R / r$, since

$$
\left.\limsup _{k \rightarrow \infty}\left|h_{k}\right| e_{k}\right|^{\mid 1 / k}=R \limsup _{k-\infty}\left|h_{k}\right|^{1 / k}<r,
$$

and on the other hand that the function

$$
h_{E}(z)=\sum_{k=0}^{\infty} \frac{h_{k}}{e_{k}} z^{-k-1}
$$

is holomorphic for $|z| \geqq r$.
A duality between \mathscr{F}_{r} and $\left\{\left(e_{k}\right)_{k=0}^{\infty}, r\right\}$ is defined by the bilinear forms

$$
\begin{equation*}
\langle g, h\rangle=\frac{1}{2 \pi i} \int_{\gamma} g(z) h_{E}(z) d z \tag{2.2}
\end{equation*}
$$

where $g \in \mathscr{F}_{r}, h \in\left\{\left(e_{k}\right)_{k=0}^{\infty}, r\right\}$ and γ is a circle contained in the intersection of the domain of holomorphy of g with the domain of holomorphy of h_{E}.

Formula (2.2) gives the general form of the continuous linear functionals on \mathscr{F}_{r} (see [6] or [12]).

Now let $L \in \mathscr{F}_{r}^{\prime}$ such that $L\left(E_{n}\right)=0$ for $n=0,1,2, \cdots$, where $E_{n}(z)=z^{n} E\left(\lambda_{n} z\right)$. Then there exists a function $h \in\left\{\left(e_{k}\right)_{k=0}^{\infty}, r\right\}$ such that

$$
\begin{aligned}
L\left(E_{n}\right) & =\frac{1}{2 \pi i} \int_{r} z^{n} E\left(\lambda_{n} z\right) h_{E}(z) d z=\frac{1}{2 \pi i} \int_{r}\left(\sum_{k=0}^{\infty} e_{k} \lambda_{n}^{k} z^{k+n}\right)\left(\sum_{k=0}^{\infty} \frac{h_{k}}{e_{k}} z^{-k-1}\right) d z \\
& =\sum_{k=n}^{\infty} \frac{e_{k-n}}{e_{k}} \lambda_{n}^{k-n} h_{k}=\mathscr{D}^{n} h\left(\lambda_{n}\right)
\end{aligned}
$$

By condition (2.1a) and inequality (1.5) we have

$$
\left|\lambda_{n}\right| \leqq \frac{e_{n+1}}{e_{n}} s \leqq e_{1} s<\frac{s}{W(\mathscr{D})} \leqq \frac{R}{r},
$$

which implies that $E_{n} \in \mathscr{F}_{r}$ for $n=0,1,2, \cdots$.
Since

$$
H=\left(\lim _{k \rightarrow \infty} \sup \left|h_{k}\right|^{[1 / k}\right)^{-1}>\frac{R}{r}
$$

the assumption $R / r \geqq s / W(\mathscr{D})$ implies that the corresponding Gončarov-polynomials constitute a basis in $\mathscr{F}_{I I}$ (see Theorem A). By the uniqueness-property of a basis we have $h \equiv 0$ if $\mathscr{O}^{n} h\left(\lambda_{n}\right)=0$ for $n=0,1,2, \cdots$. Now it follows $L=0$, which completes our proof.

In the next theorem we show that Theorem 1 is sharp in a certain sense:

Theorem 2. Let r and s be positive numbers such that $s e_{1}<$ $R / r<s / W(\mathscr{D})$. Then there exists a sequence of complex numbers $\left(\lambda_{n}\right)_{n=0}^{\infty}$ with the property

$$
\left|\lambda_{n}\right| \leqq \frac{e_{n+1}}{e_{n}} s
$$

such that the functions $E_{n}(z)=z^{n} E\left(\lambda_{n} z\right)$ are in \mathscr{F}_{r} but are not complete in \mathscr{F}_{r}.

Proof. We have to show that there exists a continuous linear functional $L_{0} \neq 0$ on \mathscr{F}_{r} such that $L_{0}\left(E_{n}\right)=0$ for $n=0,1,2, \cdots$, where

$$
E_{n}(z)=z^{n} E\left(\lambda_{n} z\right) \quad \text { for } \quad n=0,1,2, \cdots
$$

and $\left(\lambda_{n}\right)_{n=0}^{\infty}$ is a suitable sequence of complex numbers. In view of the proof of Theorem 1 it suffices to show that there exists a function

$$
h_{0} \in\left\{\left(e_{k}\right)_{k=0}^{\infty}, r\right\}
$$

such that $\mathscr{J}^{n} h_{0}\left(\lambda_{n}\right)=0$ for $n=0,1,2, \cdots$ and $h_{0} \neq 0$.
In order to find such a function h_{0} we apply Theorem B: by our assumption

$$
\frac{R}{r}<\frac{s}{W(\mathscr{D})}
$$

we can find a number H_{0} such that

$$
\frac{R}{r}<H_{0}<\frac{s}{W(\mathscr{D})}
$$

and by Theorem B there exists a function \tilde{h}_{0} with $c\left(\widetilde{h}_{0}\right)=H_{0}$ such that $\mathscr{D}^{n} \widetilde{h}_{0}$. has a zero in

$$
|z| \leqq \frac{e_{n+1}}{e_{n}} s
$$

for all but finitely many n.
This implies that we can find a sequence $\left(\lambda_{n}\right)_{n=0}^{\infty}$ of complex numbers with

$$
\left|\lambda_{n}\right| \leqq \frac{e_{n+1}}{e_{n}} s
$$

for $n=0,1,2, \cdots$ such that $\left|\mathscr{D}^{n} \widetilde{h}_{0}\left(\lambda_{n}\right)\right|<\infty$ for $0 \leqq n \leqq N$ (take for instance $\lambda_{n}=0$ for $0 \leqq n \leqq N$) and $\mathscr{D}^{n} \widetilde{h}_{0}\left(\lambda_{n}\right)=0$ for $n>N$, where N is a suitable natural number. Since $e_{1} s<R / r$, we have $\left|\lambda_{n}\right| \leqq\left(e_{n+1} / e_{n}\right) s \leqq e_{1} s<R / r$, which implies that $E_{n} \in \mathscr{F}_{r}$ for $n=$ $0,1,2, \cdots$.

Now define a polynomial p_{0} by

$$
p_{0}(z)=\sum_{n=0}^{N} \mathscr{O}^{n} \widetilde{h}_{0}\left(\lambda_{n}\right) Q_{n}\left(z ; \lambda_{0}, \cdots, \lambda_{n-1}\right)
$$

Then p_{0} is a polynomial of degree not greater than N and has the property

$$
\mathscr{D}^{n} p_{0}\left(\lambda_{n}\right)=\mathscr{D}^{n} \widetilde{h}_{0}\left(\lambda_{n}\right) \quad \text { for } \quad 0 \leqq n \leqq N
$$

and $\mathscr{D}^{n} p_{0}\left(\lambda_{n}\right)=0$ for $n>N$ (see part 1).
We set now

$$
h_{0}=\widetilde{h}_{0}-p_{0},
$$

then

$$
\mathscr{D}^{n} h_{0}\left(\lambda_{n}\right)=0 \quad \text { for } \quad n=0,1,2, \cdots
$$

and $c\left(h_{0}\right)=H_{0}$.
If we write

$$
h_{0}(z)=\sum_{k=0}^{\infty} h_{0, k} z^{k},
$$

then

$$
\left.\underset{k \rightarrow \infty}{\lim \sup }\left|h_{0, k}\right| e_{k}\right|^{1 / k}<r,
$$

since $H_{0}>R / r$. This means $h_{0} \in\left\{\left(e_{k}\right)_{k=0}^{\infty}, r\right\}$. So if we set

$$
L_{0}(g)=\left\langle g, h_{0}\right\rangle=\frac{1}{2 \pi i} \int_{r} g(z)\left(h_{0}\right)_{E}(z) d z
$$

then $L_{0}\left(E_{n}\right)=0$ for $n=0,1,2, \cdots$ and $L_{0} \neq 0$.
The desired conclusion now follows again from the Hahn-Banach theorem.
3. Uniqueness of the representation by the system $\left\{z^{n} E\left(\lambda_{n} z\right)\right\}$. The purpose of this part is to derive conditions under which the system $\left\{z^{n} E\left(\lambda_{n} z\right)\right\}$ constitutes a basis in its closed linear hull in a certain space \mathscr{F}_{r}. In order to do this we use a dual relationship between basis theory and interpolation theory developed by M. M. Dragilev, V. P. Zaharjuta and Ju. F. Korobeinik in 1974 (see [4]):

Let X be a nuclear Fréchet space with a topology given by a family of seminorms $\left\{\|\cdot\|_{p}, p \in P\right\}$; let X^{\prime} be the strong dual space. We consider two sequence spaces generated by a sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ of nonzero elements of X :

$$
\mathscr{E}=\left\{c=\left(c_{n}\right)_{n=0}^{\infty}:|c|_{p}:=\sum_{n=0}^{\infty}\left|c_{n}\right|\left\|x_{n}\right\|_{p}<\infty, \text { for each } p \in P\right\}
$$

with the topology determined by the family of seminorms $\left\{|c|_{p}, p \in P\right\}$, and

$$
\mathscr{E}^{\prime}=\left\{c^{\prime}=\left(c_{n}^{\prime}\right)_{n=0}^{\infty}: \text { there exists a } p \in P \text { with }\left|c^{\prime}\right|_{p}^{\prime}:=\sup _{n} \frac{\left|c_{n}^{\prime}\right|}{\left\|x_{n}\right\|_{p}}<\infty\right\}
$$

with the topology of the strong dual with respect to duality, given by the formula

$$
\left\langle c, c^{\prime}\right\rangle=\sum_{n=0}^{\infty} c_{n} c_{n}^{\prime}
$$

Theorem C. (See [4], [12].) Let X be a nuclear Fréchet space. A sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ constitutes a basis in its closed linear hull in X if and only if for each sequence $\left(t_{n}\right)_{n=0}^{\infty} \in \mathscr{E}^{\prime}$ there exists $x^{\prime} \in X^{\prime}$ such that

$$
x^{\prime}\left(x_{n}\right)=t_{n} \quad \text { for } \quad n=0,1,2, \cdots
$$

(In this case one says that the interpolation problem $\left(X^{\prime},\left\{x_{n}\right\}_{n=0}^{\infty}\right)$ is solvable).

In the sequel we use Theorem C for the system $E_{n}(z)=z^{n} E\left(\lambda_{n} z\right)$ considered in part 2.

THEOREM 3. Let $\left(\lambda_{n}\right)_{n=0}^{\infty}$ be a sequence of complex numbers such that

$$
\left|\lambda_{n}\right| \leqq \frac{e_{n+1}}{e_{n}} s \quad n=0,1,2, \cdots
$$

for a real number $s>0$. Then the system $\left\{z^{n} E\left(\lambda_{n} z\right)\right\}_{n=0}^{\infty}$ constitutes a basis in \mathscr{F}_{r} for any $r>0$ with the property $R / r \geqq s / W(\mathscr{D})$.

Proof. In order to apply the above principle we remark that Theorem C says that $\left\{E_{n}\right\}_{n=0}^{\infty}$ constitutes a basis in its closed linear hull if and only if for each sequence $\left(t_{n}\right)_{n=0}^{\infty}$ with the property

$$
\begin{equation*}
\left|t_{n}\right| \leqq K\left\|E_{n}\right\|_{r^{\prime}} \quad n=0,1,2, \cdots \tag{3.1}
\end{equation*}
$$

where $r^{\prime}<r$ and K is a constant only depending on r^{\prime}, there exists a continuous linear functional $L \in \mathscr{F}_{r}^{\prime}$ represented by a function $h \in\left\{\left(e_{k}\right)_{k=0}^{\infty}, r\right\}$ such that

$$
L\left(E_{n}\right)=\left\langle E_{n}, h\right\rangle=\mathscr{D}^{n} h\left(\lambda_{n}\right)=t_{n},
$$

for $n=0,1,2, \cdots$.
We take a sequence $\left(t_{n}\right)_{n=0}^{\infty}$ such that inequality (3.1) holds. Since the systems of norms $\left(\|\cdot\|_{r^{\prime}}, r^{\prime}<r\right)$ and $\left(\|\|\cdot\|\|_{r^{\prime}}, r^{\prime}<r\right)$ are equivalent in \mathscr{F}_{r}, inequality (3.1) can be replaced by

$$
\begin{equation*}
\left|t_{n}\right| \leqq K r^{\prime n} \sup _{k}\left(e_{k}\left|\lambda_{n}\right|^{k} r^{\prime k}\right) \quad n=0,1,2, \cdots \tag{3.2}
\end{equation*}
$$

This follows from the fact that

$$
E_{n}(z)=z^{n} \sum_{k=0}^{\infty} e_{k} \lambda_{n}^{k} z^{k}
$$

and by the definition of the norms $\|\|\cdot\|\|_{r^{\prime}}\left(r^{\prime}<r\right)$. Now we obtain

$$
\limsup _{n \rightarrow \infty}\left|t_{n}\right|^{1 / n} \leqq r^{\prime} \limsup _{n \rightarrow \infty}\left[\sup _{k}\left(e_{k}\left|\lambda_{n}\right|^{\mid k} r^{\prime k}\right)\right]^{1 / n}
$$

By inequality (1.5) and the assumption $R / r \geqq s / W(\mathscr{D})$ we have $\left|\lambda_{n}\right|<R / r$ for $n=0,1,2, \cdots$. This means $E_{n} \in \mathscr{F}_{r}$ for $n=0,1,2, \cdots$, and

$$
\sup _{k}\left(e_{k}\left|\lambda_{n}\right|^{k} r^{\prime k}\right) \leqq \sup _{k}\left(e_{k}\left(\frac{R}{r}\right)^{k} r^{\prime k}\right)
$$

Since $(R / r) r^{\prime}<R$, we have

$$
\sup _{k}\left(e_{k}\left(\frac{R}{r}\right)^{k} r^{\prime k}\right)<K_{E}
$$

where K_{E} is a constant depending on E.
This implies

$$
\limsup _{n \rightarrow \infty}\left|t_{n}\right|^{1 / n} \leqq r^{\prime}
$$

Now we obtain

$$
\limsup _{n \rightarrow \infty}\left|e_{n} t_{n}\right|^{1 / n} \leqq\left(\limsup _{n \rightarrow \infty} e_{n}^{1 / n}\right)\left(\lim _{n \rightarrow \infty} \sup \left|t_{n}\right|^{1 / n}\right) \leqq \frac{r^{\prime}}{R}
$$

By Theorem A the Gončarov-polynomials $Q_{n}\left(z ; \lambda_{0}, \cdots, \lambda_{n-1}\right)$ constitute a basis in $\mathscr{F}_{R / r^{\prime}}$, since

$$
\frac{R}{r^{\prime}}>\frac{R}{r} \geqq \frac{s}{W(\mathscr{D})}
$$

Consider the polynomials

$$
e_{n}^{-1} Q_{n}\left(z ; \lambda_{0}, \cdots, \lambda_{n-1}\right) ;
$$

since

$$
e_{n}^{-1} Q_{n}\left(z ; \lambda_{0}, \cdots, \lambda_{n-1}\right)=z^{n}-\sum_{k=0}^{n-1} \frac{e_{n-k}}{e_{n}} \lambda_{k}^{n-k} Q_{k}\left(z ; \lambda_{0}, \cdots, \lambda_{k-1}\right),
$$

(see 1.3) it follows that the bases $\left\{e_{n}^{-1} Q_{n}\left(z ; \lambda_{0}, \cdots, \lambda_{n-1}\right\}_{n=0}^{\infty}\right.$ and $\left\{z^{n}\right\}_{n=0}^{\infty}$ are equivalent in $\mathscr{F}_{R / r^{\prime}}$, i.e.,

$$
\sum_{n=0}^{\infty} c_{n} e_{n}^{-1} Q_{n}\left(z ; \lambda_{0}, \cdots, \lambda_{n-1}\right)
$$

converges in $\mathscr{F}_{R / r^{\prime}}$ if and only if $\sum_{n=0}^{\infty} c_{n} z^{n}$ converges in $\mathscr{F}_{R / r^{\prime}}$ (see [14], pg. 188).

Now since $\lim \sup _{n \rightarrow \infty}\left|e_{n} t_{n}\right|^{1 / n} \leqq r^{\prime} \mid R$, we have $\sum_{n=0}^{\infty} e_{n} t_{n} z^{n}$ converges in $\mathscr{F}_{R / r^{\prime}}$, and therefore $\sum_{n=0}^{\infty} t_{n} Q_{n}\left(z ; \lambda_{0}, \cdots, \lambda_{n-1}\right)$ converges in $\mathscr{F}_{R / r^{\prime}}$; in other words: there exists a function $h \in \mathscr{F}_{R / r^{\prime}}$ such that

$$
\mathscr{D}^{n} h\left(\lambda_{n}\right)=t_{n}
$$

$$
n=0,1,2, \cdots
$$

The fact that $h \in \mathscr{F}_{R / r^{\prime}}$ implies that for

$$
h(z)=\sum_{k=0}^{\infty} h_{k} z^{k}
$$

we have

$$
\limsup _{k \rightarrow \infty}\left|h_{k}\right|^{\mid / k} \leqq \frac{r^{\prime}}{R}<\frac{r}{R}
$$

and hence

$$
\limsup _{k \rightarrow \infty}\left|\frac{h_{k}}{e_{k}}\right|^{1 / k}<r .
$$

This means $h \in\left\{\left(e_{k}\right)_{k=0}^{\infty}, r\right\}$; now by the representation of the continuous linear functionals on \mathscr{F}_{r} we see that there exists a continuous linear functional $L \in \mathscr{F}_{r}^{\prime}$ such that

$$
L\left(E_{n}\right)=\left\langle E_{n}, h\right\rangle=\mathscr{D}^{n} h\left(\lambda_{n}\right)=t_{n} \quad n=0,1,2, \cdots
$$

Theorem C implies that the system $\left\{E_{n}\right\}_{n=0}^{\infty}$ constitutes a basis in its closed linear hull in \mathscr{F}_{r}, by Theorem 1 the system $\left\{E_{n}\right\}_{n=0}^{\infty}$ is complete in \mathscr{F}_{r}, so $\left\{E_{n}\right\}_{n=0}^{\infty}$ constitutes a basis in \mathscr{F}_{r} and the proof of Theorem 3 is finished.

By [14] it follows that the system $\left\{z^{n} E\left(\lambda_{n} z\right)\right\}_{n=0}^{\infty}$ constitutes a basis in \mathscr{F}_{r} which is equivalent to the canonical basis $\left\{z^{n}\right\}_{n=0}^{\infty}$. We remark that under the assumptions of Theorem 2 the system $\left\{z^{n} E\left(\lambda_{n} z\right)\right\}_{n=0}^{\infty}$ does not constitute a basis for \mathscr{F}_{r}, because the system $\left\{z^{n} E\left(\lambda_{n} z\right)\right\}_{n=0}^{\infty}$ is even not complete in \mathscr{F}_{r}.

Some other results of this kind can be found in [11], [12] or [13] (see also the references in [11]). But these are all sufficient conditions for a system $\left\{z^{n} f\left(\lambda_{n} z\right)\right\}_{n=0}^{\infty}$ to be a basis in \mathscr{F}_{r} and there is no similar result to Theorem 2.

References

1. M. G. Arsove, On the behavior of Pincherle basis functions, Pacific J. Math., 44 (1973), 13-31.
2. J. D. Buckholtz and J. L. Frank, Whittaker constants, Proc. London Math. Soc., 23 (1971), 348-370.
3. Whittaker constants, II, J. Approximation Theory, 10 (1974), 112-122.
4. M. M. Dragilev, V. P. Zaharjuta and Ju. F. Korobeinnik, A dual relationship between some questions of basis theory and interpolation theory, Soviet Math. Dokl., 15, 2 (1974), 533-537.
5. Ed Dubinsky, Linear Pincherle sequences, Pacific J. Math., 55 (1974), 361-369.
6. M. A. Evgrafov, The interpolation problem of Abel-Gončarov, GITTL, Moscow, 1954.
7. J. L. Frank and J. K. Shaw, Abel-Gončarov polynomial expansions, J. Approximation Theory, 10 (1974), 6-22.
8. A. O. Gel'fond and A.F. Leont'ev, On a generalization of Fourier series, Mat. Sbornik N. S., 29 (71) (1951), 477-500.
9. F. Haslinger, Basen in Räumen von holomorphen Funktionen, Anz. Österr. Akad. Wiss., Math.-naturw. Kl., 12 (1977), 212-216.
10. Generalized Abel-Gončarov bases in spaces of holomorphic functions, (submitted).
11. I.I. Ibragimov and N.I. Nagnibida, The matrix method and quasi-power bases in the space of analytic functions in a disk, Russian Math. Surveys, 30 (1975), 107-154.
12. Ju. F. Korobeĭnik, On a duality problem, I, Mat. Sbornik N. S., 97 (139) (1975), 191-229.
13. M. A. Kraplin, Two examples of matrix methods in the study of quasi-power bases, Sbornik Nauchno-Techn. Raboti Azovo-Chernomorsk. Inst. Mech., 10 (1957), 313-322.
14. Nguyen Thanh Van, Bases de Schauder dans certains espaces de fonctions holomorphes, Ann. Inst. Fourier, 22 (1972), 169-253.
15. A. Pietsch, Nukleare lokalkonvexe Räume, Berlin, 1965.

Received July 7, 1978.
University of Vienna
AUSTRIA

