A DUAL RELATIONSHIP BETWEEN GENERALIZED ABEL-GONČAROV BASES AND CERTAIN PINCHERLE BASES

F. HASLINGER

Recent results on Abel-Gončarov polynomial expansions are applied to study the representability of holomorphic functions as infinite series in a given Pincherle sequence. As a generalization of the ordinary derivative we consider the so-called Gel'fond-Leont'ev derivative \mathscr{D} . We take the exponential function with respect to the derivative \mathscr{D} and use a duality principle in order to investigate the completeness of the system $E_n(z) = z^n E(\lambda_n z)$ in the space \mathscr{F}_τ of functions holomorphic on the interior of the disc of radius $r \leq \infty$. Finally we study the uniqueness of the representability of holomorphic functions as infinite series in the system E_n .

1. Basic facts and definitions. Let $0 < r \le \infty$. We shall be interested in the nuclear Fréchet space \mathscr{F}_r consisting of all functions holomorphic on the open disk of radius r, equipped with the topology of uniform convergence on compact sets (see [15]). For the topology in the space \mathscr{F}_r , we can take the norms $||\cdot||_{r'}$, 0 < r' < r given by $||f||_{r'} = \max{\{|f(z)|: |z| = r'\}}$, $f \in \mathscr{F}_r$. It is easily seen that by Cauchy's estimates that system of norms $\{||\cdot||_{r'}, 0 < r' < r\}$ is equivalent to the system of norms $\{||\cdot||_{r'}, 0 < r' < r\}$, where

$$|||f|||_{r'} = \sup_{0 \le k < \infty} |a_k| r'^k$$
,

for $f \in \mathcal{F}_r$ with Taylor series expansion

$$f(z) = \sum_{k=0}^{\infty} a_k z^k.$$

We recall that two systems of seminorms $\{||\cdot||_p, p \in P\}$ and $\{||\cdot|||_p, p \in P\}$ are equivalent, if for each $p \in P$ there exists a constant K_p depending on p and $q \in P$ such that $||\cdot||_p \leq K_p |||\cdot||_q$, and if for each $p' \in P$ there exists a constant $K_{p'}$ depending on p' and $q' \in P$ such that $||\cdot||_{p'} \leq K_{p'} ||\cdot||_{q'}$.

A sequence $(f_n)_{n=0}^{\infty}$ in \mathscr{F}_r is complete if the set of all finite linear combinations of the functions f_n is dense in \mathscr{F}_r . And $(f_n)_{n=0}^{\infty}$ is a basis in \mathscr{F}_r if each $f \in \mathscr{F}_r$ has a representation

$$f = \sum_{n=0}^{\infty} c_n f_n$$
 ,

where $(c_n)_{n=0}^{\infty}$ is a sequence of scalars uniquely determined by f and

the infinite series converges in the topology of \mathscr{F}_r . Two bases $(f_n)_{n=0}^{\infty}$ and $(g_n)_{n=0}^{\infty}$ are equivalent if $\sum_{n=0}^{\infty} c_n f_n$ converges in \mathscr{F}_r if and only if $\sum_{n=0}^{\infty} c_n g_n$ converges in \mathscr{F}_r . As is well known, the sequence of the functions $(z^n)_{n=0}^{\infty}$ constitutes a basis for any space $\mathscr{F}_r(0 < r \le \infty)$. A basis $(f_n)_{n=0}^{\infty}$ is called proper if it is equivalent to $(z^n)_{n=0}^{\infty}$ (see [1], [4]).

M. Arsove [1], in a series of papers, has considered Pincherle sequences $(f_n)_{n=0}^{\infty}$ in which f_n has the form

$$f_n(z) = z^n \psi_n(z)$$
, $n = 0, 1, 2, \cdots$

where each function $\psi_n \in \mathcal{F}_r$ and $\psi_n(0) = 1$. Recently, in [1] Arsove and in [4] Dubinsky studied linear Pincherle sequences (see also [9])

$$f_n(z) = z^n \left(1 - \frac{z}{z_n}\right), \qquad n = 0, 1, 2, \cdots.$$

In this paper we investigate the problem of determining when a system

$$E_n(z) = z^n E(\lambda_n z) , \qquad n = 0, 1, 2, \cdots$$

is complete in \mathscr{F}_r , when it is not complete and when it is a basis, even a proper basis in \mathscr{F}_r . Here $(\lambda_n)_{n=0}^{\infty}$ is a sequence of scalars and E is a generalized exponential function corresponding to a so-called Gel'fond-Leont'ev derivative \mathscr{D} (see [8]).

Let $(d_k)_{k=1}^{\infty}$ denote a nondecreasing sequence of positive numbers. The Gel'fond-Leont'ev derivative \mathscr{D} is defined by

$$\mathscr{D}f(z)=\sum_{k=1}^{\infty}d_ka_kz^{k-1}$$
 ,

where

$$f(z) = \sum_{k=0}^{\infty} a_k z^k$$
.

As in [2] or [7] we suppose that the sequence $(d_k)_{k=1}^{\infty}$ satisfies the following condition

(1.1) $(d_{k+1}/d_k)_{k=1}^{\infty}$ is nonincreasing and has limit 1.

Then it follows

$$\lim_{k\to\infty} d_k^{\scriptscriptstyle 1/k} = 1$$
 .

Thus if f has radius of convergence c(f) then

$$\mathscr{D}f(z) = \sum_{k=1}^{\infty} d_k a_k z^{k-1}$$

has also radius of convergence c(f).

The operator \mathscr{D} corresponds to the ordinary derivative when $d_k = k$ $(k = 1, 2, \cdots)$ and to the shift operator \mathscr{S} when $d_k = 1$ $(k = 1, 2, , \cdots)$. \mathscr{S} is defined by

$$\mathscr{S}f(z) = \sum_{k=1}^{\infty} \alpha_k z^{k-1}$$
.

The operators \mathscr{D}^* $(n = 1, 2, \cdots)$ are the successive iterates of \mathscr{D} and we have

$$\mathscr{D}^n f(z) = \sum_{k=n}^{\infty} \frac{e_{k-n}}{e_k} a_k z^{k-n}$$

where $e_0=d_0=1$ and $e_n=(d_1d_2\cdots d_n)^{-1}$ for $n\geq 1$. We write

$$E(z) = \sum_{k=0}^{\infty} e_k z^k$$

and note that this function bears the same relationship to the operator \mathscr{D} that the exponential function bears to the ordinary differentiation. This means

$$E(0) = 1$$
 and $\mathscr{D}E(z) = E(z)$.

Let R = c(E), then, by the monotonicity of the sequence $(d_k)_{k=1}^{\infty}$ we have (see [2])

$$R=\lim_{_{k o\infty}}d_{_{k}}=\sup_{_{1 less{}_{k} less{}_{\infty}}}d_{_{k}}$$
 .

The *E*-type of a function $f(z) = \sum_{k=0}^{\infty} a_k z^k$ is the number

$$\tau_{\scriptscriptstyle E}(f) = \limsup_{k \to \infty} |a_k/e_k|^{1/k} .$$

If $R < \infty$ then

(1.2)
$$\tau_{E}(f) = \frac{R}{c(f)}, \quad \text{(see [2], [7])}.$$

Now we define for a sequence $(\lambda_k)_{k=0}^{\infty}$ of scalars the polynomials $Q_n(z; \lambda_0, \dots, \lambda_{n-1})$ by $Q_0(z) \equiv 1$ and

$$Q_n(z;\lambda_0,\cdots,\lambda_{n-1})=e_nz^n-\sum_{k=0}^{n-1}e_{n-k}\lambda_k^{n-k}Q_k(z;\lambda_0,\cdots,\lambda_{k-1}).$$

It is easily seen that

(1.3)
$$e_n z^n = \sum_{k=0}^n e_{n-k} \lambda_k^{n-k} Q_k(z; \lambda_0, \dots, \lambda_{k-1}).$$

The polynomials $Q_n(z; \lambda_0, \dots, \lambda_{n-1})$ are called the Gončarov polynomials belonging to the operator \mathscr{D} (see [2]). They reduce to the ordinary Gončarov polynomials if $d_k = k$ $(k = 1, 2, \dots)$ and the remainder polynomials if $d_k = 1$ $(k = 1, 2, \dots)$.

One verifies easily that

$$\mathscr{D}^{k}Q_{n}(\lambda_{k};\lambda_{0},\cdots,\lambda_{n-1})=\delta_{nk} \qquad (\text{see } [2]).$$

Therefore the polynomials $Q_n(z; \lambda_0, \dots, \lambda_{n-1})$ are biorthogonal to the linear functionals

$$\mathscr{L}_n(f) = \mathscr{D}^n f(\lambda_n) .$$

Now we consider the problem under which conditions the polynomials $Q_n(z; \lambda_0, \dots, \lambda_{n-1})$ constitute a basis in \mathscr{F}_r , i.e.,

$$f(z) = \sum_{n=0}^{\infty} \mathscr{D}^n f(\lambda_n) Q_n(z; \lambda_0, \dots, \lambda_{n-1})$$

for each $f \in \mathcal{F}_r$ and the infinite series converges in the topology of \mathcal{F}_r .

In this connection the Whittaker constant $W(\mathcal{D})$ belonging to the operator \mathcal{D} plays an important role. We can introduce the Whittaker constant $W(\mathcal{D})$ by

$$W(\mathscr{D}) = \left(\sup_{1 \leq n < \infty} H_n^{1/n}\right)^{-1},$$

where

$$H_n = \max |Q_n(0; \lambda_0, \dots, \lambda_{n-1})| \qquad (n = 1, 2, \dots)$$

and the maximum is taken over all sequences $(\lambda_k)_{k=0}^{n-1}$ whose terms lie on the unit circle (see Buckholtz and Frank [2]).

The Whittaker constant satisfies the inequality (see [2])

$$(1.5) 0 < \frac{d_1}{2} \le W(\mathscr{D}) < d_1.$$

In [7], Frank and Shaw investigated the above problem and the following theorem is an easy consequence of their Theorem A in [7]:

THEOREM A. Let $(\lambda_n)_{n=0}^{\infty}$ be a sequence of complex numbers such that

$$|\lambda_n| \leq rac{e_{n+1}}{e_n} s$$
 , $n=0,\,1,\,2,\,\cdots$

for a real number s > 0. Then the Gončarov polynomials constitute a basis in any space \mathcal{F}_r for

$$r>rac{s}{W(\mathscr{D})}$$
 .

The following theorem, which is again an easy consequence of a theorem due to Buckholtz and Frank [3], shows that Theorem A is sharp in a certain sense:

Theorem B. Let r and s be positive numbers such that

$$rac{s}{W(\mathscr{D})} > r$$
 .

Then there exists a holomorphic function F of radius of convergence r such that $\mathcal{D}^n F$ has a zero in $|z| \leq (e_{n+1}/e_n)$ s for all but finitely many n.

In the following we will use Theorem A and Theorem B and two duality principles for \mathscr{F}_r in order to investigate the behavior of the Pincherle sequences

$$E_n(z) = z^n E(\lambda_n z) \qquad n = 0, 1, 2, \cdots,$$

where E is the exponential function belonging to the operator \mathscr{D} and $(\lambda_n)_{n=0}^{\infty}$ is a given sequence of scalars.

2. Completeness of the system $\{z^n E(\lambda_n z)\}$. Let $E \in \mathscr{F}_R$ $(0 < R < \infty)$ with the power series expansion

$$E(z) = \sum\limits_{k=0}^{\infty} e_k z^k \quad ext{and} \quad \limsup_{k o\infty} \, |\, e_k |^{{\scriptscriptstyle 1/k}} = rac{1}{R} \; .$$

We suppose that $e_0 = 1$ and $e_k > 0$ for $k = 1, 2, \cdots$.

In the sequel, we will always require that the sequence $(e_k)_{k=0}^{\infty}$ satisfies the following conditions:

- (2.1a) $(e_{k-1}/e_k)_{k=1}^{\infty}$ is nondecreasing;
- (2.1b) $(e_k^2/e_{k-1}e_{k+1})_{k=1}^{\infty}$ is nonincreasing and has limit 1 (compare (1.1)).

From condition (2.1a) we have

$$\lim_{k\to\infty} (e_{k}/e_{k-1}) = \frac{1}{R}$$

since $E \in \mathcal{F}_{R}$.

Theorem 1. Let $(\lambda_n)_{n=0}^\infty$ be a sequence of complex numbers such that

$$|\lambda_n| \leq rac{e_{n+1}}{e_n} s$$
 $n = 0, 1, 2, \cdots$

for a real number s > 0. Then the system $\{z^n E(\lambda_n z)\}_{n=0}^{\infty}$ is complete in any space \mathscr{F}_r for $R/r \geq s/W(\mathscr{D})$.

Proof. Here we use the following well known form of the Hahn-Banach theorem: A subset $G \subseteq \mathscr{F}_r$ is dense in \mathscr{F}_r if and only if for each continuous linear functional L on \mathscr{F}_r such that L(g) = 0 for each $g \in G$ it follows that L = 0.

Let $\{(e_k)_{k=0}^\infty, r\}$ denote the space of all holomorphic functions $h(z)=\sum_{k=0}^\infty h_k z^k$ with the property

$$\limsup_{k o \infty} \, |\, h_k \! / e_k \,|^{{\scriptscriptstyle 1/k}} < r \; .$$

This means that the functions $h \in \{(e_k)_{k=0}^{\infty}, r\}$ are holomorphic on the disk $|z| \leq R/r$, since

$$\limsup_{k o \infty} |h_{k}/e_{k}|^{\scriptscriptstyle 1/k} = R \limsup_{k o \infty} |h_{k}|^{\scriptscriptstyle 1/k} < r$$
 ,

and on the other hand that the function

$$h_{E}(z) = \sum_{k=0}^{\infty} \frac{h_{k}}{e_{k}} z^{-k-1}$$

is holomorphic for $|z| \ge r$.

A duality between \mathscr{F}_r and $\{(e_k)_{k=0}^\infty,\ r\}$ is defined by the bilinear forms

$$\langle g,\,h
angle = rac{1}{2\pi i}\int_{\mathbb{T}}g(z)h_{\scriptscriptstyle E}(z)dz\;,$$

where $g \in \mathscr{F}_r$, $h \in \{(e_k)_{k=0}^{\infty}, r\}$ and γ is a circle contained in the intersection of the domain of holomorphy of g with the domain of holomorphy of h_E .

Formula (2.2) gives the general form of the continuous linear functionals on \mathcal{F}_r (see [6] or [12]).

Now let $L\in \mathscr{F}'_r$ such that $L(E_n)=0$ for $n=0,1,2,\cdots$, where $E_n(z)=z^nE(\lambda_nz)$. Then there exists a function $h\in\{(e_k)_{k=0}^\infty,r\}$ such that

$$egin{aligned} L(E_n) &= rac{1}{2\pi i} \int_{\mathbb{T}} z^n E(\lambda_n z) h_E(z) dz = rac{1}{2\pi i} \int_{\mathbb{T}} \Big(\sum_{k=0}^\infty e_k \lambda_n^k z^{k+n}\Big) \Big(\sum_{k=0}^\infty rac{h_k}{e_k} z^{-k-1}\Big) dz \ &= \sum_{k=n}^\infty rac{e_{k-n}}{e_k} \lambda_n^{k-n} h_k = \mathscr{D}^n h(\lambda_n) \;. \end{aligned}$$

By condition (2.1a) and inequality (1.5) we have

$$|\lambda_n| \leq rac{e_{n+1}}{e_n} s \leq e_1 s < rac{s}{W(\mathscr{D})} \leq rac{R}{r}$$
 ,

which implies that $E_n \in \mathscr{F}_r$ for $n = 0, 1, 2, \cdots$. Since

$$H = \left(\lim_{_{k o\infty}}\sup|h_k|^{_{1/k}}
ight)^{^{-1}}>rac{R}{r}$$

the assumption $R/r \geq s/W(\mathcal{D})$ implies that the corresponding Gončarov-polynomials constitute a basis in \mathcal{F}_{II} (see Theorem A). By the uniqueness-property of a basis we have $h \equiv 0$ if $\mathcal{D}^n h(\lambda_n) = 0$ for $n = 0, 1, 2, \cdots$. Now it follows L = 0, which completes our proof.

In the next theorem we show that Theorem 1 is sharp in a certain sense:

THEOREM 2. Let r and s be positive numbers such that $se_1 < R/r < s/W(\mathscr{D})$. Then there exists a sequence of complex numbers $(\lambda_n)_{n=0}^{\infty}$ with the property

$$|\lambda_n| \le \frac{e_{n+1}}{e_n} s$$

such that the functions $E_n(z) = z^n E(\lambda_n z)$ are in \mathscr{T}_r but are not complete in \mathscr{T}_r .

Proof. We have to show that there exists a continuous linear functional $L_0 \neq 0$ on \mathscr{F}_r such that $L_0(E_n) = 0$ for $n = 0, 1, 2, \cdots$, where

$$E_n(z) = z^n E(\lambda_n z)$$
 for $n = 0, 1, 2, \cdots$

and $(\lambda_n)_{n=0}^{\infty}$ is a suitable sequence of complex numbers. In view of the proof of Theorem 1 it suffices to show that there exists a function

$$h_0 \in \{(e_k)_{k=0}^{\infty}, r\}$$

such that $\mathcal{D}^n h_0(\lambda_n) = 0$ for $n = 0, 1, 2, \cdots$ and $h_0 \not\equiv 0$.

In order to find such a function h_0 we apply Theorem B: by our assumption

$$rac{R}{r}<rac{s}{W(\mathscr{D})}$$

we can find a number H_0 such that

$$rac{R}{r} < H_{\scriptscriptstyle 0} < rac{s}{W(\mathscr{D})}$$
 ,

and by Theorem B there exists a function \widetilde{h}_0 with $c(\widetilde{h}_0)=H_0$ such that $\mathscr{D}^n\widetilde{h}_0$ has a zero in

$$|z| \le \frac{e_{n+1}}{e_n} s$$

for all but finitely many n.

This implies that we can find a sequence $(\lambda_n)_{n=0}^{\infty}$ of complex numbers with

$$|\lambda_n| \leq \frac{e_{n+1}}{e_n} s$$

for $n=0,1,2,\cdots$ such that $|\mathscr{D}^n\widetilde{h}_0(\lambda_n)|<\infty$ for $0\leq n\leq N$ (take for instance $\lambda_n=0$ for $0\leq n\leq N$) and $\mathscr{D}^n\widetilde{h}_0(\lambda_n)=0$ for n>N, where N is a suitable natural number. Since $e_1s< R/r$, we have $|\lambda_n|\leq (e_{n+1}/e_n)s\leq e_1s< R/r$, which implies that $E_n\in\mathscr{F}_r$ for $n=0,1,2,\cdots$.

Now define a polynomial p_0 by

$$p_0(z) = \sum_{n=0}^N \mathscr{D}^n \widetilde{h}_0(\lambda_n) Q_n(z; \lambda_0, \dots, \lambda_{n-1})$$
.

Then p_0 is a polynomial of degree not greater than N and has the property

$$\mathscr{D}^n p_{\scriptscriptstyle 0}(\lambda_n) = \mathscr{D}^n \widetilde{h}_{\scriptscriptstyle 0}(\lambda_n) \quad ext{for} \quad 0 \leqq n \leqq N$$
 ,

and $\mathscr{D}^n p_{\scriptscriptstyle 0}(\lambda_{\scriptscriptstyle n}) = 0$ for n > N (see part 1).

We set now

$$h_{\scriptscriptstyle 0} = \widetilde{h}_{\scriptscriptstyle 0} - p_{\scriptscriptstyle 0}$$
 ,

then

$$\mathcal{D}^n h_0(\lambda_n) = 0$$
 for $n = 0, 1, 2, \cdots$

and $c(h_0) = H_0$.

If we write

$$h_{\scriptscriptstyle 0}(z)=\sum\limits_{k=0}^{\infty}h_{\scriptscriptstyle 0,k}z^k$$
 ,

then

$$\limsup_{k o\infty} \, |\, h_{\scriptscriptstyle 0,k}\!/e_k|^{\scriptscriptstyle 1/k} < r$$
 ,

since $H_0>R/r.$ This means $h_0\in\{(e_k)_{k=0}^\infty,\,r\}.$ So if we set

$$L_{\scriptscriptstyle 0}(g) = \langle g,\, h_{\scriptscriptstyle 0}
angle = rac{1}{2\pi i}\!\int_{\scriptscriptstyle 7} g(z) (h_{\scriptscriptstyle 0})_{\scriptscriptstyle E}(z) dz \; ,$$

then $L_0(E_n)=0$ for $n=0,1,2,\cdots$ and $L_0\neq 0$.

The desired conclusion now follows again from the Hahn-Banach theorem.

3. Uniqueness of the representation by the system $\{z^n E(\lambda_n z)\}$. The purpose of this part is to derive conditions under which the system $\{z^n E(\lambda_n z)\}$ constitutes a basis in its closed linear hull in a certain space \mathscr{F}_r . In order to do this we use a dual relationship between basis theory and interpolation theory developed by M. M. Dragilev, V. P. Zaharjuta and Ju. F. Korobeinik in 1974 (see [4]):

Let X be a nuclear Fréchet space with a topology given by a family of seminorms $\{||\cdot||_p, p \in P\}$; let X' be the strong dual space. We consider two sequence spaces generated by a sequence $\{x_n\}_{n=0}^{\infty}$ of nonzero elements of X:

$$\mathscr{E} = \left\{ c = (c_n)_{n=0}^{\infty} : |c|_p : = \sum_{n=0}^{\infty} |c_n| ||x_n||_p < \infty \text{ , for each } p \in P \right\}$$

with the topology determined by the family of seminorms $\{|c|_p, p \in P\}$, and

$$\mathscr{E}' = \left\{c' = (c'_n)_{n=0}^\infty \colon \text{ there exists a } p \in P \text{ with } |c'|_p' \colon = \sup_n \frac{|c'_n|}{||x_n||_n} < \infty \right\}$$

with the topology of the strong dual with respect to duality, given by the formula

$$\langle c, c' \rangle = \sum_{n=0}^{\infty} c_n c'_n$$
.

THEOREM C. (See [4], [12].) Let X be a nuclear Fréchet space. A sequence $\{x_n\}_{n=0}^{\infty}$ constitutes a basis in its closed linear hull in X if and only if for each sequence $(t_n)_{n=0}^{\infty} \in \mathcal{E}'$ there exists $x' \in X'$ such that

$$x'(x_n) = t_n$$
 for $n = 0, 1, 2, \cdots$.

(In this case one says that the interpolation problem $(X', \{x_n\}_{n=0}^{\infty})$ is solvable).

In the sequel we use Theorem C for the system $E_n(z)=z^n E(\lambda_n z)$ considered in part 2.

Theorem 3. Let $(\lambda_n)_{n=0}^\infty$ be a sequence of complex numbers such that

$$|\lambda_n| \leq rac{e_{n+1}}{e_n} s$$
 $n=0,\,1,\,2,\,\cdots$.

for a real number s > 0. Then the system $\{z^n E(\lambda_n z)\}_{n=0}^{\infty}$ constitutes a basis in \mathscr{F}_r for any r > 0 with the property $R/r \geq s/W(\mathscr{D})$.

Proof. In order to apply the above principle we remark that Theorem C says that $\{E_n\}_{n=0}^{\infty}$ constitutes a basis in its closed linear hull if and only if for each sequence $(t_n)_{n=0}^{\infty}$ with the property

$$|t_n| \leq K||E_n||_{r'} \quad n = 0, 1, 2, \cdots,$$

where r' < r and K is a constant only depending on r', there exists a continuous linear functional $L \in \mathscr{F}'_r$ represented by a function $h \in \{(e_k)_{k=0}^{\infty}, r\}$ such that

$$L(E_n) = \langle E_n, h \rangle = \mathscr{D}^n h(\lambda_n) = t_n$$

for $n = 0, 1, 2, \cdots$.

We take a sequence $(t_n)_{n=0}^{\infty}$ such that inequality (3.1) holds. Since the systems of norms $(||\cdot||_{r'}, r' < r)$ and $(|||\cdot|||_{r'}, r' < r)$ are equivalent in \mathscr{F}_r , inequality (3.1) can be replaced by

This follows from the fact that

$$E_n(z) = z^n \sum_{k=0}^{\infty} e_k \lambda_n^k z^k$$

and by the definition of the norms $|||\cdot|||_{r'}(r' < r)$. Now we obtain

$$\limsup_{n\to\infty} |t_n|^{1/n} \leq r' \limsup_{n\to\infty} \left[\sup_k (e_k |\lambda_n|^k r'^k) \right]^{1/n} .$$

By inequality (1.5) and the assumption $R/r \ge s/W(\mathscr{D})$ we have $|\lambda_n| < R/r$ for $n = 0, 1, 2, \cdots$. This means $E_n \in \mathscr{F}_r$ for $n = 0, 1, 2, \cdots$, and

$$\sup_{k} (e_{k} |\lambda_{n}|^{k} r'^{k}) \leq \sup_{k} \left(e_{k} \left(\frac{R}{r} \right)^{k} r'^{k} \right).$$

Since (R/r)r' < R, we have

$$\sup_{k} \left(e_{k}\!\!\left(rac{R}{r}\!
ight)^{\!k}\!r'^{\!k}
ight) < K_{\!\scriptscriptstyle E}$$
 ,

where K_E is a constant depending on E.

This implies

$$\limsup_n |t_n|^{1/n} \leq r'.$$

Now we obtain

$$\limsup_{n\to\infty} |e_n t_n|^{\scriptscriptstyle 1/n} \leqq (\limsup_{n\to\infty} e_n^{\scriptscriptstyle 1/n}) \! \Big(\limsup_{n\to\infty} |t_n|^{\scriptscriptstyle 1/n} \Big) \leqq \frac{r'}{R} \; .$$

By Theorem A the Gončarov-polynomials $Q_n(z; \lambda_0, \dots, \lambda_{n-1})$ constitute a basis in $\mathscr{F}_{R/r'}$, since

$$rac{R}{r'}>rac{R}{r}\geqrac{s}{W(\mathscr{D})}$$
 .

Consider the polynomials

$$e_n^{-1}Q_n(z; \lambda_0, \dots, \lambda_{n-1});$$

since

$$e_n^{-1}Q_n(z;\lambda_0, \cdots, \lambda_{n-1}) = z^n - \sum_{k=0}^{n-1} \frac{e_{n-k}}{e_n} \lambda_k^{n-k} Q_k(z;\lambda_0, \cdots, \lambda_{k-1})$$
,

(see 1.3) it follows that the bases $\{e_n^{-1}Q_n(z;\lambda_0,\cdots,\lambda_{n-1})\}_{n=0}^{\infty}$ and $\{z^n\}_{n=0}^{\infty}$ are equivalent in $\mathscr{F}_{R/r'}$, i.e.,

$$\sum_{n=0}^{\infty} c_n e_n^{-1} Q_n(z; \lambda_0, \dots, \lambda_{n-1})$$

converges in $\mathscr{F}_{R/r'}$ if and only if $\sum_{n=0}^{\infty} c_n z^n$ converges in $\mathscr{F}_{R/r'}$ (see [14], pg. 188).

Now since $\limsup_{n\to\infty} |e_nt_n|^{1/n} \le r'/R$, we have $\sum_{n=0}^{\infty} e_nt_nz^n$ converges in $\mathscr{F}_{R/r'}$, and therefore $\sum_{n=0}^{\infty} t_nQ_n(z;\lambda_0,\cdots,\lambda_{n-1})$ converges in $\mathscr{F}_{R/r'}$; in other words: there exists a function $h\in\mathscr{F}_{R/r'}$ such that

$$\mathscr{D}^n h(\lambda_n) = t_n \qquad n = 0, 1, 2, \cdots.$$

The fact that $h \in \mathscr{F}_{R/r'}$ implies that for

$$h(z) = \sum_{k=0}^{\infty} h_k z^k$$

we have

$$\limsup_{k o\infty}|h_k|^{{\scriptscriptstyle 1}/k} \leqq rac{r'}{R} < rac{r}{R}$$

and hence

$$\limsup_{k o \infty} \left| rac{h_k}{e_k}
ight|^{{\scriptscriptstyle 1/k}} < r \; .$$

This means $h \in \{(e_k)_{k=0}^{\infty}, r\}$; now by the representation of the continuous linear functionals on \mathscr{F}_r we see that there exists a continuous linear functional $L \in \mathscr{F}'_r$ such that

$$L(E_n) = \langle E_n, h \rangle = \mathcal{Q}^n h(\lambda_n) = t_n \qquad n = 0, 1, 2, \cdots$$

Theorem C implies that the system $\{E_n\}_{n=0}^{\infty}$ constitutes a basis in its closed linear hull in \mathscr{F}_r , by Theorem 1 the system $\{E_n\}_{n=0}^{\infty}$ is complete in \mathscr{F}_r , so $\{E_n\}_{n=0}^{\infty}$ constitutes a basis in \mathscr{F}_r and the proof of Theorem 3 is finished.

By [14] it follows that the system $\{z^n E(\lambda_n z)\}_{n=0}^{\infty}$ constitutes a basis in \mathscr{F}_r which is equivalent to the canonical basis $\{z^n\}_{n=0}^{\infty}$. We remark that under the assumptions of Theorem 2 the system $\{z^n E(\lambda_n z)\}_{n=0}^{\infty}$ does not constitute a basis for \mathscr{F}_r , because the system $\{z^n E(\lambda_n z)\}_{n=0}^{\infty}$ is even not complete in \mathscr{F}_r .

Some other results of this kind can be found in [11], [12] or [13] (see also the references in [11]). But these are all sufficient conditions for a system $\{z^n f(\lambda_n z)\}_{n=0}^{\infty}$ to be a basis in \mathscr{F}_r and there is no similar result to Theorem 2.

REFERENCES

- 1. M. G. Arsove, On the behavior of Pincherle basis functions, Pacific J. Math., 44 (1973), 13-31.
- 2. J. D. Buckholtz and J. L. Frank, Whittaker constants, Proc. London Math. Soc., 23 (1971), 348-370.
- 3. —, Whittaker constants, II, J. Approximation Theory, 10 (1974), 112-122.
- 4. M. M. Dragilev, V. P. Zaharjuta and Ju. F. Korobeinik, A dual relationship between some questions of basis theory and interpolation theory, Soviet Math. Dokl., 15, 2 (1974), 533-537.
- 5. Ed Dubinsky, Linear Pincherle sequences, Pacific J. Math., 55 (1974), 361-369.
- 6. M. A. Evgrafov, The interpolation problem of Abel-Gončarov, GITTL, Moscow, 1954.
- 7. J. L. Frank and J. K. Shaw, Abel-Gončarov polynomial expansions, J. Approximation Theory, 10 (1974), 6-22.
- 8. A.O. Gel'fond and A.F. Leont'ev, On a generalization of Fourier series, Mat. Sbornik N.S., 29 (71) (1951), 477-500.
- 9. F. Haslinger, Basen in Räumen von holomorphen Funktionen, Anz. Österr. Akad. Wiss., Math.-naturw. Kl., 12 (1977), 212-216.
- 10. ——, Generalized Abel-Gončarov bases in spaces of holomorphic functions, (submitted).
- 11. I. I. Ibragimov and N. I. Nagnibida, The matrix method and quasi-power bases in the space of analytic functions in a disk, Russian Math. Surveys, 30 (1975), 107-154.
- 12. Ju. F. Korobeinik, On a duality problem, I, Mat. Sbornik N. S., 97 (139) (1975), 191-229.
- 13. M. A. Kraplin, Two examples of matrix methods in the study of quasi-power bases, Sbornik Nauchno-Techn. Raboti Azovo-Chernomorsk. Inst. Mech., 10 (1957), 313-322.
- 14. Nguyen Thanh Van, Bases de Schauder dans certains espaces de fonctions holomorphes, Ann. Inst. Fourier, 22 (1972), 169-253.
- 15. A. Pietsch, Nukleare lokalkonvexe Räume, Berlin, 1965.

Received July 7, 1978.

University of Vienna Austria