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VALENCE PROPERTIES OF THE SOLUTION OF A
DIFFERENTIAL EQUATION

DOUGLAS M. CAMPBELL AND V. SINGH

Libera proved that the first order linear differential
equation F(z) + zF'(z) = 2f(z) has a convex, starlike or close-
to-convex solution in | z | < 1 if the driving term f(z) is con-
vex, starlike, or close-to convex in | z \ < 1. It was an open
question whether the solution would be univalent if f(z)
were spiral-like or univalent. The paper shows the relation
of Libera's question to the Mandelbrojt — Schiffer conjecture
and the class M defined by S. Ruscheweyh. The paper proves
there are spiral-like functions f(z) for which the solution of
the above differential equation is of infinite valence. The
paper closes with four open problems.

Libera [6] proved that if f(z) = z + ΣϊU ^^n maps | z \ < 1 onto

a convex, starlike, or close-to-convex domain, then so does F(z) =

2Z'1 \Zf(t)dt = z + Σjn=22anz
n/(n + 1). Bernardi [1] then proved that

Jo
if f(z) maps | z \ < 1 onto a convex, starlike, or close-to-convex domain,

tc~ιf(t)dt =
0

Σιn=i(c + ϊ)anz*/(n+c) does also. Lewandowski, Miller, and Zlotkiewicz
noted that Bernardi's result could be rephrased as, for any positive
integer c, the first order linear differential equation
(1) cF(z) + zF\z) = (c + l)f(z)

with convex, starlike, or close-to-convex driving term f(z) has a
convex, starlike, or close-to-convex solution. They then proved [5]
that (1) has a starlike univalent solution for any starlike driving
function f(z) for any complex c with Re c ^ 0.

Libera [8, Problem 2.3] asked whether the differential equation
(1) would have this geometric invariance property if f(z) were
univalent or if f(z) were spiral-like. Before we answer both of these
questions in the negative, let us see how his question is connected
with the Mandelbrojt-Schiffer conjecture for univalent functions.

Mandelbrojt and Schiffer conjectured that if f(z) = Σ a

nz
n and

9(z) — Σ K%n are univalent in | z \ < 1, then so also are the functions
H* = {/*#(£): f*g(z) = Σ aj)*,znln}. This was settled negatively (it
would have implied the Bieberbach conjecture) in three separate
papers. Hayman [4] exhibited a univalent function f(z) such that
f*f(z) grows too fast for z near 1. His analysis shed no light on the
valence of functions in iϊ*. Epstein and Schoenberg [2] exhibited
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a starlike univalent polynomial whose composition with a non-
elementary univalent function was not even locally univalent (but
was at most three valent). Finally, Loewner and Netanyahu [7]
exhibited two close-to-convex functions whose Hadamard composition
is not even locally univalent (but again they were unable to determine
if H* contains functions of infinite valence). Loewner and Netanyahu's
counterexample is to be contrasted with Ruscheweyh and Sheil-SmalΓs
[13] proof of the Polya-Schoenberg conjecture that f*g is starlike
if / and g are starlike.

In 1968 A. W. Goodman [3, p. 1046] in his survey paper on
univalent functions raised the question of determining the maximum
valency for functions in H*.

Using Liberals result for starlike functions, we see that

is starlike and for this g(z) the Hadamard composition

T —κ-^ = - [f(t)dt ,
1 n z Jo= ΣΣ ^

so that Liberals question is a special case of the Mandelbrojt-Schiffer
conjecture with g(z) a specific slow-growing starlike function. (Libera's

result that 2z~ι \ f(t)dt is starlike if f(z) is starlike follows, there-
Jo

fore, from the Polya-Schoenberg theorem.) Libera's question is,
therefore, also related to the class M defined by Ruscheweyh [10],
M = {univalent / : f*g is univalent for all starlike g}. Ruscheweyh
proved that the Bieberbach conjecture holds for M and remarked
that the close-to-convex functions are a subset of M, while M is a
proper subset of the univalent functions by Epstein-Schoenberg's
example. Since Epstein-Schoenberg's example has no known obvious
geometric properties (it is constructed via the Loewner differential
equation) it is of interest to exhibit univalent functions with known
geometric properties that are not in M.

Let us first consider

/CO - (1 - biΓ[(l - z)~1+H - 1] , 0 < b ^ 1 ,

which is obviously univalent upon considering the geometry of
exp (( —1 + hi) log (1 — z)) in \z\ < 1. However,

fWt i +

z Jo — 1 + δ^L b%\ z

and F{zn) = 2/(—1 + bί) at z% = 1 - exp(-2ττ^/6), n = 1, 2, . Thus,
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this univalent f{z) has an infinite valent F(z). Although f(z) maps
onto a domain which "spirals," it is not spiral-like, and so we turn
to a second example of a function not in M which provides an infinite
valent function in i ϊ*.

Let us consider f(z) — z(l + z)~1+ί which satisfies

R e [eiπ/izf'(z)/f(z)] = (1 - \z\2)VΎ\l + z\* > 0

and is, therefore, spiral-like. Since

-\'f(ί)dt = . . 2 [(1 + z)\iz - 1) + 1] ,
z Jo z{% — 1)

it therefore suffices to show that (1 + z)\iz — 1) equals — 1 countably
often in the disc. We will prove this in the context of the following
useful theorem which guarantees that a complex number is in the
range set of an analytic function if it is in the range set of the
analytic function times a "well-behaved part."

T H E O R E M . Let k(z) be analytic in \z\ < 1 and N be a simply
connected region in \z\ < 1 with dNf\ {\z\ = 1} = e*9. Let f(z), g{z)
be analytic in \z\ < 1 and satisfy

( 1 ) fc(«) = /(*).fif(«).
( 2 ) lim g(z) = c Φ 0 as z —> eiθ within N.
(3) / has no asymptotic values within N at eίΰ, i.e., for every

path 7 in N ending at eiθ, f(z) does not tend to a finite or infinite
limit as z —> eiθ along 7.

(4 ) w0 is in the range set of f on N, i.e., for every r > 0, there
is a point z in {\z — eiθ\ < r) Π N with f(z) — w0.

(5) w0 is not in the cluster set of f on dN, i.e., there is no
sequence zn on dN for which f(z) -> w0.
Then cwQ is in the range set of k{z) on N.

Proof. Suppose cw0 were not in the range set of k{z) on N.
Then there is an r > 0 such that k(z) Φ cwQ on N* — {\ z — eiθ \ ̂  r} Π
{N-eiθ}. Let

d — inf I k(z) — cw0 \ .
zedN*

If d were 0, then there would be a sequence of points zn e dN*
with k(zn) — WQC —• 0. If zn accumulated inside \z\ < 1, then by
continuity this would violate k{z) Φ woc on i\Γ*. If zn accumulated
on I z I = 1, then since dN Π {| z \ = 1} = eίθ, we would have zn eventually
on dN and zn —> eίθ. However by (2) and c Φ 0, this would imply
f(zn) —> w0 on dN which would contradict (5). Therefore d > 0.

Then h(z) — (k(z) — w^c)"1 is analytic in iV*, bounded by 1/d on
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dN* — {eiθ} and, by (2) and (4), unbounded in N*. Choose a point
z0 in N* such that \h(zQ)\ > 1/d. Lift the ray t-h(zQ), t ^ 1, that is,
let τ(ί) = {hΓι(t h(z0)):t^ 1}. The path y(t) lies in N* and cannot
go to dN* - {ei$} since \h(z)\ < 1/d on ΘN* - {β*}. Thus τ(ί) must
approach e^. Consequently Λ(») must have an asymptotic value at
eiθ. But by (2) this implies that f(z) has an asymptotic value at eί&

which contradicts (3). Therefore the assumption that cw0 is not in
the range set of k(z) on N cannot hold. This concludes the proof
of the theorem.

We apply this theorem to

k(z) = (1 + z)\iz - 1), /(*) = (1 + z)\ g{z) = (ίz - 1) ,

w0 = 1/(1 + i) ,

N an appropriately large Stolz angle at z = — 1.
We remark that an identical theorem holds four an additive version

and we no longer need to restrict c.
We close the paper with a remark and four related open questions.

Loewner and Netanyahu [7, p. 286] claimed "We should like to remark
that one can also obtain another disproof of Conjecture I (the Mandel-
brojt-Schiffer conjecture) by composing (Convolution)

fθ{z) = [z- z\l - O / 2 ] ( l ~ zΓ

with itself and checking the well known inequality | a\ — α31 ^ 1 for
schlicht mappings. One easily computes that this inequality is not
satisfied for instance for θ = i" This remark is false. A computation
shows α2 = (3 + etoγ/S9 α3 = (2 + ei$)*β, and

- 13

192

and therefore

= 32 + 362 + 982 + 682 + 132 + (β" + e~ιB)

x(3 36 + 36-98 + 68-98 + 68--13)

+ {euβ + e-2i")(98 3 + 36-68 + 98- -13)

+ (em + e" s w(3-68 + 36- -13)

+ {eiiβ + e~m){Z -lZ) .

Consequently

= -9416 sin θ - 2936 sin 20 + 792 sin 30 + 156 sin 40
dθ

= - s i n 0(7040 + 3168sin20 + 5248 cos θ + 1248 sin20cos Θ) .



VALENCE PROPERTIES OF THE SOLUTION 33

Since 7040 + 3168 sin2# + 5248 cos θ + 1248 sin2tf cos θ ^ 544, we see
that the maximum of h(θ) occurs for θ = 0 and is 1.

Problem 1. Do there exist univalent functions / and g such
that the coefficients of F(z) = f*g satisfy | α3 — a\ \ > 1.

Problem 2. Do there exist close-to-convex univalent functions /

and g such that the coefficients of F{z) = f*g satisfy \a3 — a\\ > 1.

f(t)dt at least be

0

normal in the sense of Lehto-Virtanen? (If so then all the integrals
of a univalent function are normal.)

Problem 4. If f(z) and g{z) are univalent must f*g be in £P
for all p < 1/2? A negative answer would provide an entirely dif-
ferent type of disproof of the Mandelbrojt-Schiffer conjecture since
all univalent functions are in Hp, p < 1/2.
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