ON THE SIGNATURE OF GRASSMANNIANS

Patrick Shanahan

1. Introduction. Let $G_{n, k}$ denote the manifold of linear subspaces of \boldsymbol{R}^{n} of dimension $k>0$. Then $G_{n, k}$ is compact and has dimension $k(n-k)$. When n is even $G_{n, k}$ is orientable and we may consider the topological invariant $\operatorname{Sign}\left(G_{n, k}\right)$. The cohomology algebra of $G_{n, k}$ over \boldsymbol{R} was determined by Borel in [3] and thus in principle the problem of computing $\operatorname{Sign}\left(G_{n, k}\right)$ is a problem in linear algebra. In practice this is very awkward, and it is the purpose of this paper to compute this invariant by a simpler method:

TheOrem. The signature of $G_{n, k}$ is zero except when n and k are even and $k(n-k) \equiv 0(\bmod 8)$. In this case (with a conventional orientation)

$$
\operatorname{Sign}\left(G_{n, k}\right)=\binom{\left[\frac{n}{4}\right]}{\left[\frac{k}{4}\right]}
$$

Remark. When n is odd, $G_{n, k}$ is nonorientable and $\operatorname{Sign}\left(G_{n, k}\right)$ is not defined; however, for odd $n \operatorname{Sign}\left(\widetilde{G}_{n, k}\right)=0$, where $\widetilde{G}_{n, k}$ is the orientation covering of $G_{n, k}$.
2. The Atiyah-Bott formula. We recall a few definitions. Let X be a compact orientable manifold of dimension 4l. The signature of X is defined by

$$
\operatorname{Sign}(X)=\operatorname{dim} H^{+}-\operatorname{dim} H^{-}
$$

where $H^{2 l}(X ; \boldsymbol{R})=H^{+} \bigoplus H^{-}$is a decomposition of the middle-dimensional cohomology of X into subspaces on which the cup-product form $B(x, y)=\langle x \cup y, X\rangle$ is positive definite and negative definite, respectively. When $\operatorname{dim} X$ is not divisible by 4 one defines $\operatorname{Sign} X=0$.

More generally, let $f: X \rightarrow X$ be a mapping of X into itself. When the decomposition of $H^{2 l}(X, \boldsymbol{R})$ is invariant under f one defines

$$
\operatorname{Sign}(f)=\operatorname{tr} f^{*}\left|H^{+}-\operatorname{tr} f^{*}\right| H^{-}
$$

where $f^{*}: H^{2 l}(X ; \boldsymbol{R}) \rightarrow H^{2 l}(X ; \boldsymbol{R})$ is the homomorphism induced by f. $\operatorname{Sign}(f)$ is then independent of the choice of H^{+}and H^{-}. When f is homotopic to the identity mapping one obviously has $\operatorname{Sign}(f)=\operatorname{Sign}(X)$.

Now suppose that X is an oriented Riemannian manifold. If $f: X \rightarrow X$ is an orientation preserving isometry, then at each isolated fixed point p of f the differential $d f_{p}: T_{p} X \rightarrow T_{p} X$ is an orthogonal transformation with determinant 1 . Let $\theta_{1}(p), \cdots, \theta_{2 l}(p)$ be the $2 l$ rotation angles associated with the eigenvalues of $d f_{p}$. When the fixed point set of f consists of isolated points one has the formula of Atiyah and Bott ([1], p. 473):

$$
\operatorname{Sign}(f)=(-1)^{l} \sum_{\substack{p \\ f_{\operatorname{xed}}}} \prod_{\nu=1}^{\nu=2 l} \operatorname{ctn}\left(\frac{\theta_{\nu}(p)}{2}\right)
$$

We will apply this formula to a certain mapping $f: G_{n, k} \rightarrow G_{n, k}$.
Remark. When f is an element of a compact group acting on X (and this will be the situation in our application) the formula above is also a consequence of the G-signature theorem of Atiyah and Singer. (See [1], p. 582 or [6], §18.)

For simplicity of notation we confine our attention to the case $n=2 s, k=2 r$; the remaining cases can be dealt with by minor adjustments in the argument.

Let $F: R^{n} \rightarrow R^{n}$ be the linear transformation which rotates the i th coordinate plane $P_{i}=\operatorname{span}\left\{e_{2 i-1}, e_{2 i}\right\}(i=1,2, \cdots, s)$ through the angle α_{i}, where $0<\alpha_{i}<\pi$. The transformation F induces a smooth mapping $f: G_{n, k} \rightarrow G_{n, k}$ which is clearly homotopic to the identity mapping. If P_{I} denotes the k-plane

$$
P_{I}=P_{i_{1}} \oplus \cdots \oplus P_{i_{r}}
$$

where $I=\left(i_{1}, \cdots, i_{r}\right)$ is a multi-index with $i_{1}<i_{2}<\cdots<i_{r}$ and $1 \leqq i_{\nu} \leqq s$, then $f\left(P_{I}\right)=P_{I}$.

Proposition 2.1. If the angles α_{i} are all distinct, then the points $P_{I} \in G_{n, k}$ are the only fixed points of f.

Proof. Let W be a k-dimensional linear subspace of \boldsymbol{R}^{n} not equal to any P_{I}. By regarding W as the row space of a matrix in reduced row echelon form one sees that there exists a $v \in W$ whose orthogonal projections v_{i} on P_{i} are nonzero for at least $r+1$ indices i.

If $F(W)=W$, the vectors $v, F(v), \cdots, F^{k}(v)$ all belong to W, and hence there is a nontrivial relation

$$
\sum_{\nu=0}^{\nu=k} a_{\nu} F^{\nu}(v)=0 .
$$

But this implies

$$
\sum_{\nu=0}^{\nu=k} a_{i} F^{\prime}\left(v_{i}\right)=0
$$

for all i. Writing $\lambda_{j}=\cos \left(\alpha_{j}\right)+i \sin \left(\alpha_{j}\right)$ it follows that the k degree polynomial $q(x)=a_{0}+a_{i} x+\cdots+a_{1} x^{k}$ has zeros λ_{i} and $\bar{\lambda}_{i}$ for each of the $r+1$ indices i for which v_{i} is nonzero. Since the α_{i} are all distinct, the coefficients a_{ν} must all be zero, which contradicts our assumption. Thus when $F(W)=W$, the subspace W must coincide with one of the subspaces P_{I}.
3. The Normal angles $\theta_{\nu}(p)$. We wish to show that with respect to an appropriate metric on $G_{n, k}$ the mapping f is an isometry, and then compute the normal angles $\theta_{\nu}(p)$ at the fixed points p of f. We begin with some remarks about the differentiable structure on $G_{n, k}$.

The smooth structure on $G_{n, k}$ may be defined by identifying $G_{n, k}$ with the left coset space G / H, where $G=O(n)$ is the orthogonal group and $H=O(k) \times O(n-k)$ is the closed subgroup of orthogonal transformations which take span $\left\{e_{1}, \cdots, e_{k}\right\}$ into itself. The space $O(n)$ may be regarded as the space of orthogonal $n \times n$ matrices (and hence as a subspace of $R^{n^{2}}$), or, equivalently, as the space of orthonormal n-frames $a=\left(a_{1}, \cdots, a_{n}\right)$ in \boldsymbol{R}^{n}. We denote the image of an element $a \in G$ under the natural projection $\pi: G \rightarrow G / H$ by \bar{a}, and the image of a tangent vector $v \in T_{a} G$ under $d \pi: T_{a} G \rightarrow T_{\bar{a}} G / H$ by \bar{v}.

The elements of the tangent space $T_{e} G$ are determined by smooth curves passing through the identity matrix e. By differentiating the relation $a a^{t}=e$ one obtains the usual identification of $T_{e} G$ with the space of skew-symmetric $n \times n$ matrices. As a basis for $T_{e} G$ we may take the set $\left\{b_{r s} \mid r<s\right\}$ of matrices $b_{r s}$ having -1 in column s and row $r, 1$ in column r and row s, and 0 everywhere else. The ordering $\left\{b_{12}, b_{13}, b_{23}, b_{14}, b_{24}, \cdots\right\}$ then defines a standard orientation for G. More generally, the system of matrices $\left\{a b_{r s}\right\}$ may be taken as a basis for the tangent space $T_{a} G$ at an arbitrary $a \in G$.

To obtain an oriented basis for the tangent space $T_{\bar{a}} G / H$ we simply restrict ourselves to vectors in $T_{a} G$ which are orthogonal, as vectors in $\boldsymbol{R}^{n^{2}}$, to $T_{a}(a H)$. It is easily shown that the vectors $a b_{i j}$ with $1 \leqq i \leqq k$ and $k+1 \leqq j \leqq n$ provide such a system. The coherence of the orientations will follow from the proof of Proposition 3.1. Note that even when a and a^{\prime} represent the same coset in G / H, the bases $\overline{\left\{a b_{i j}\right\}}$ and $\overline{\left\{a^{\prime} b_{i j}\right\}}$ will in general be different bases.

These facts all have simple interpretations in terms of curves in $O(n)$ and $G_{n, k}$. For example, the tangent vector $\overline{a b_{i j}}$ may be viewed as the infinitesimal motion of the k-plane $\operatorname{span}\left\{a_{1}, \cdots, a_{k}\right\}$
towards its orthogonal complement obtained by rotating the vector a_{i} toward complementary vector a_{j}.

Proposition 3.1. There is a unique Riemannian metric on $G_{n, k}$ for which the standard bases $\overline{\left\{a b_{i j}\right\}}$ are all orthonormal. The mapping $f: G_{n, k} \rightarrow G_{n, k}$ is an orientation preserving isometry with respect to this metric. Moreover, the system of normál angles $\left\{\theta_{\nu}(p)\right\}$ is the same at each fixed point p of f.

Proof. To prove the first assertion it will be enough to show that for arbitrary n-frames a and a^{\prime} in $S O(n)$ the matrix of transition between the bases $\left\{\overline{\left.a b_{i j}\right\}}\right.$ and $\left\{\overline{a^{\prime} b_{i j}}\right\}$ is orthogonal. Let $a^{\prime}=a h$, where $h \in O(k) \times O(n-k)$. Then $\overline{a^{\prime} b_{i j}}=\overline{a^{\prime} b_{i j} h^{-1}}=\overline{a h b_{i j} h^{-1}}$.

Let $h b_{i j} h^{-1}=\sum_{\nu, \mu} q_{i j, \nu \mu} b_{\nu \mu}$. Clearly $q=\left[q_{i j, \nu \mu}\right]$ is the required transition matrix. Writing

$$
h=\left[\begin{array}{cc}
E & 0 \\
0 & F
\end{array}\right], \quad E \in O(k), \quad F \in O(n-k),
$$

we obtain $q_{i j, \nu \mu}=e_{\nu i} f_{\mu_{j}}$, that is, $q=E \otimes F$. Hence

$$
\begin{array}{r}
\sum_{i, j} q_{i j, \nu \mu} q_{i j, \nu^{\prime} \mu^{\prime}}=\sum_{i, j} e_{\nu i} f_{\mu_{j}} e_{\nu^{\prime} i} f_{\mu^{\prime} j} \\
=\sum_{i, j} e_{\nu i} e_{\nu^{\prime} i} f_{\mu_{j} j} f_{\mu^{\prime} j}=\delta_{\nu \nu^{\prime}} \delta_{\mu \mu^{\prime}},
\end{array}
$$

which proves that $q q^{t}=e$. Moreover, it follows from $\operatorname{det} q=$ $(\operatorname{det} E)^{n-k}(\operatorname{det} F)^{k}=1$ that the various bases are coherently oriented.

To see that f is an isometry it is enough to observe that $d f_{\bar{a}} \overline{\left(\overline{a b} b_{i j}\right)}=\overline{F(a) b_{i j}}$.

Finally, let $p=\bar{a}$ be any fixed point of f. We will compare the normal angles at \bar{a} with those \bar{e}.

Denoting $F(e)$ by c we have

$$
\left.d f_{\bar{z}} \overline{b_{i j}}\right)=\overline{c b_{i j}}=\overline{c b_{i j} c^{-1}},
$$

since $c \in O(k) \times O(n-k)$. On the other hand, $f(\bar{a})=\bar{a}$ implies that $F(a)=a h$ for some $h \in O(k) \times O(n-k)$. Thus $c a=a h$ and hence

$$
d f_{\bar{a}} \overline{\left(a b_{i j}\right)}=\overline{F(a) b_{i j}}=\overline{a b_{i j} a^{-1} c a} .
$$

Writing out the matrices D and D^{\prime} of $d f_{\bar{\varepsilon}}$ and $d f_{\bar{\alpha}}$ with respect to the appropriate bases we have

$$
\begin{gather*}
\left.\overline{c b_{i j} c^{-1}}=d f_{\bar{e}} \overline{b_{i j}}\right)=\sum_{\nu, \mu} d_{i j, \nu \mu} \overline{b_{\nu, \mu}}, \tag{1}\\
\left.\overline{c a b_{i j} a^{-1} c^{-1} a}=d f_{\bar{a}}^{\left(a b_{i j}\right.}\right)=\sum_{\nu, \mu} d_{i j, \mu \mu}^{\prime} \overline{a b_{\nu \mu}} . \tag{2}
\end{gather*}
$$

Let $a b_{i j} a^{-1}=\sum_{v, \mu} m_{i j, \mu \mu} b_{\nu \mu}$, and $m=\left[m_{i j, \mu \mu}\right]$. Then (2) becomes

$$
\sum_{\nu, \mu} m_{i j, \nu \mu} \overline{c_{\nu / \mu} c^{-1}}=\sum_{\nu, \mu, \mu} \sum_{s, t} d_{i j, \mu \mu}^{\prime} m_{\nu \mu, s t} \overline{b_{s t}} .
$$

Substituting (1) we obtain

$$
\sum_{\nu, \mu} m_{i j, v, y} d_{\nu, s, s t} \overline{b_{s t}}=\sum_{\nu, \mu} d_{i j, v t}^{\prime} m_{2 \mu, s, s} \overline{b_{s t}}
$$

for each i and j. Thus $m d=d^{\prime} m$. Since m is nonsingular this means that d^{\prime} is similar to d, and hence the normal angles of f at p are the same as those at \bar{e}.

Proposition 3.2. At each fixed point p of $f: G_{2 s, 2 r} \rightarrow G_{2 s, 2 r}$ the normal angles $\left\{\theta_{\nu}(p)\right\}$ are the $2 r(s-r)$ angles $\left\{\alpha_{j} \pm \alpha_{i}\right\}$ with $1 \leqq i \leqq r$ and $r+1 \leqq j \leqq s$.

Proof. It is enough to compute the matrix m of $d f_{\bar{e}}$ relative to the basis $\left\{\overline{b_{i j}}\right\}$. Since $c=F(e) \in O(k) \times O(n-k)$,

$$
d f\left(\overline{\bar{\varepsilon}} \overline{b_{i j}}\right)=\overline{F^{\prime}(e) b_{i j}}=\overline{c b_{i j} c^{-1}}
$$

for $1 \leqq i \leqq r$ and $r+1 \leqq j \leqq s$. Hence, as above, we have

$$
m_{i^{\prime} j^{\prime}, i j}=c_{i i^{\prime}} c_{i j^{\prime}} .
$$

It follows that m is a sum of disjoint 4×4 blocks

$$
\left[\begin{array}{lr}
\cos \left(\alpha_{j}\right) B & \sin \left(\alpha_{j}\right) B \\
\sin \left(\alpha_{j}\right) B & \cos \left(\alpha_{j}\right) B
\end{array}\right]
$$

where $B=\left[\begin{array}{c}\cos \left(\alpha_{i}\right)-\sin \left(\alpha_{i}\right) \\ \sin \left(\alpha_{i}\right) \\ \cos \left(\alpha_{i}\right)\end{array}\right]$. Each such block is the image of the matrix $e^{i \alpha_{j}} B$ under the standard monomorphism $U(2) \rightarrow \mathrm{SO}(4)$. Since the eigenvalues of $e^{i \alpha_{j}} B$ are $e^{i\left(\alpha_{j} \neq \alpha_{i}\right)}$, the proposition follows.
4. Computation of the signature. We apply the Atiyah-Bott formula to the mapping $f: G_{n, k} \rightarrow G_{n, k}$ described above. Since f is homotopic to the identity mapping we obtain

$$
\operatorname{Sign}\left(\boldsymbol{G}_{n, k}\right)=(-1)^{l} \sum_{\substack{p \\ \mathrm{nxxed}^{p}}} \prod_{j \in J} \operatorname{ctn} \frac{\left(\alpha_{j} \pm \alpha_{i}\right)}{2} .
$$

Here $I=\left(i_{1} \cdots, i_{r}\right)$ is the multi-index which corresponds to the fixed point $P_{I}=P_{i_{1}} \oplus \cdots \oplus P_{i_{r}}$ and J is the complementary multi-index.

With the aid of the formula for the cotangent of a sum the right-hand side may be written in the form
where $x_{\nu}=\operatorname{ctn}^{2}\left(\alpha_{\nu} / 2\right)$. Since the formula is true for all systems of distinct angles between 0 and π (noninclusive), it is true in particular when the angles $\alpha_{1}, \alpha_{3}, \cdots$ are taken between 0 and $\pi / 2$ and the angles $\alpha_{2}, \alpha_{4}, \cdots$ are chosen to be their supplements.

Consider first the case s even, r even. Then the indicated choice of angles gives

$$
\begin{aligned}
& x_{2}=x_{1}^{-1} \\
& x_{4}=x_{3}^{-1} \\
& \cdots \cdots \\
& x_{s}=x_{s-1}^{-1}
\end{aligned}
$$

For such a choice most of the terms in the sum vanish, since if there exists an $i \in I$ for which $x_{j}=x_{j}^{-1}$ for some $j \in J$, then

$$
\left(1-x_{j} x_{i}\right)\left(x_{j}-x_{i}\right)^{-1}=\left(1-x_{i}^{-1} x_{i}\right)\left(x_{i}^{-1}-x_{i}\right)^{-1}=0 .
$$

The only terms which survive are those for which no x_{i}^{-1} can be an x_{j}; for such I, the factors may be grouped in pairs of the form

$$
\left[\left(1-x_{j} x_{i}\right)\left(x_{j}-x_{i}\right)^{-1}\right]\left[\left(1-x_{j} x_{i}^{-1}\right)\left(x_{j}-x_{i}^{-1}\right)^{-1}\right]=1
$$

and to evaluate the sum we need only count the number of such multi-indices I. Since these are precisely those multi-indices which are a disjoint union of pairs (odd, odd +1) the sum in question is $\binom{s / 2}{r / 2}$.

If s is even and r is odd, some x_{i}^{-1} must be an x_{j}; thus in this case no terms survive and the sum is 0 .

When s is odd x_{s} is not the inverse of any other x_{ν}. For even r the contributing multi-indices are then exactly as in the first case, giving a value of $\binom{(s-1) / 2}{r / 2}$ for the sum. For odd r the contributing multi-indices are obtained from those already mentioned by adjoining the index s. The extra factors then occur in pairs of the form

$$
\left[\left(1-x_{j} x_{s}\right)\left(x_{j}-x_{s}\right)^{-1}\right]\left[\left(1-x_{j}^{-1} x_{s}\right)\left(x_{j}^{-1}-x_{s}\right)^{-1}\right]=1,
$$

giving a sum of $\binom{(s-1) / 2}{(r-1) / 2}$.
As for the sign preceding the sum, $(-1)^{l}=(-1)^{r(s-r)}=1$ for those cases in which the sum is nonzero.

This completes the proof of the theorem stated at the beginning of the paper.
5. Further remarks.

1. A similar argument may be used to compute the signature of the complex Grassmannian $G_{n, k}(\boldsymbol{C})$ of complex k-dimensional sub-
spaces of C^{n}. The normal angles at a fixed point in this case have the form $\alpha_{j}-\alpha_{i}$.

One obtains

$$
\operatorname{Sign}\left(G_{n, k}(\boldsymbol{C})\right)=\left\{\begin{array}{cc}
\left(\left[\frac{n}{2}\right]\right. \\
{\left[\frac{k}{2}\right]}
\end{array}\right) \quad \begin{array}{cc}
& k(n-k) \text { even } \\
0 & k(n-k) \text { odd }
\end{array}
$$

(For a different approach to the computation of $\operatorname{Sign} G_{n, k}(\boldsymbol{C})$ see Connolly and Nagano [4] (their formula contains a minor error due to a counting mistake).) [Added in proof; see also Mong [5]].
2. The same line of argument used here to compute the signature of $G_{n, k}$ may be used to compute the Euler characteristic $E\left(G_{n, k}\right)$. The Lefschetz fixed point theorem is used in place of the theorem of Atiyah and Bott, and instead of computing the normal angles $\theta_{\nu}(p)$ one need only determine the fixed-point indices $\operatorname{Ind}_{p}(f)$. Since f is an isometry, these must necessarily be 1 . One obtains

$$
E\left(G_{n, k}\right)=\left\{\begin{array}{cc}
{\left[\begin{array}{cc}
{\left[\frac{n}{2}\right]} \\
{\left[\frac{k}{2}\right]}
\end{array}\right]} & k(n-k) \text { even } \\
0 & k(n-k) \text { odd }
\end{array} .\right.
$$

3. The assumption that the angles α_{i} used in the definition of the transformation F are all distinct was necessary to obtain a mapping f with isolated fixed points. When coincidences $\alpha_{i_{1}}=$ $\alpha_{i_{2}}=\cdots$ are permitted the fixed point sets become submanifolds of $G_{n, k}$ of positive dimension. The G-signature theorem of Atiyah and Singer (see [2] or [6]) may then be used to obtain information about the normal bundles of these submanifolds.

References

1. M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes: $I I$, Ann. of Math., 37 (1968), 451-491.
2. M. F. Atiyah and I. M. Singer, The index of elliptic operators: II, Ann. of Math., 87 (1968), 546-604.
3. A. Borel, Cohomologie des espaces fibrées principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math., 57 (1953), 115-207.
4. F. Connolly and T. Nagano. The intersection pairing on a homogeneous Kähler manifold, Michigan Math. J., 24 (1977), 33-39.
5. S. Mong, The index of complex and quaternionic grassmannianos via Lefschetz formula, Advances in Math., 15 (1975), 169-174.
6. P. Shanahan, The Atiyah-Singer Index Theorem: An Introduction, Springer Lecture Notes No. 638, Springer-Verlag, 1978.

Received October 3, 1978. This paper was written while the author was a visitor at the Mathematical Institute, Oxford.

College of the Holy Cross
Worcester, MA 01610

