A COMMUTATIVE BANACH ALGEBRA OF FUNCTIONS OF GENERALIZED VARIATION

A. M. Russell

It is known that the space of functions, anchored at a, and having bounded variation form a commutative Banach algebra under the total variation norm. We show that functions of bounded k th variation also form a Banach algebra under a norm defined in terms of the total $k t h$ variation.

1. Introduction. Let $B V_{1}[a, b]$ denote the space of functions of bounded variation on the closed interval $[a, b]$, and denote the total variation of f on that interval by $V_{1}(f)$ or $V_{1}(f ; a, b)$. If

$$
B V_{1}^{*}[a, b]=\left\{f ; V_{1}(f)<\infty, f(a)=0\right\},
$$

then it is a well known result that $B V_{1}^{*}[a, b]$ is a Banach space under the norm $\|\cdot\|_{1}$, where $\|f\|_{1}=V_{1}(f)$. What appears to be less well known is that, using pointwise operations, $B V_{1}{ }^{*}[a, b]$ is a commutative Banach algera with a unit under $\|\cdot\|_{1}$ - see for example [1] and Exercise 17.35 of [2].

In [4] it was shown that $B V_{k}[a, b]$ is a Banach space under the norm, $\|\cdot\|_{k}$, where

$$
\begin{equation*}
\|f\|_{k}=\sum_{s=0}^{k-1}\left|f^{(s)}(a)\right|+V_{k}(f ; a, b), \tag{1}
\end{equation*}
$$

and where the definition of $V_{k}(f ; a, b) \equiv V_{k}(f)$ can be found in [3]. The subspace

$$
B V_{k}^{*}[a, b]=\left\{f ; f \in B V_{k}[a, b], f(a)=f^{\prime}(a)=\cdots=f^{(k-1)}(a)=0\right\}
$$

is clearly also a Banach space under the norm $\|\cdot\|_{k}^{*}$, where

$$
\begin{equation*}
\|f\|_{k}^{*}=\alpha_{k} V_{k}(f), \tag{2}
\end{equation*}
$$

and $\alpha_{k}=2^{k-1}(b-a)^{k-1}(k-1)!$.
If we define the product of two functions in $B V_{k_{c}^{*}}^{*}[a, b]$ by pointwise multiplication, then we show, in addition, that $B V_{k}^{*}[a, b]$ is a commutative Banach algebra under the norm given in (2). It is obvious that $B V_{k}^{*}[a, b]$ is commutative, so our main programme now is to show that if f and g belong to $B V_{k}^{*}[a, b]$, then so does $f g$, and that

$$
V_{k}(f g) \leqq 2^{k-1}(k-1)!(b-a)^{k-1} V_{k}(f) V_{k}(g), \quad k \geqq 1 .
$$

We accept the case $k=1$ as being known, so restrict our discussion to $k \geqq 2$. Because the same procedure does not appear to be applicable to the cases $k=2$ and $k \geqq 3$, we present different treatments for these cases.

In order to achieve the stated results it was found convenient to work with two definitions of bounded k th variation, one defined with quite arbitrary subdivisions $a=x_{0}, x_{1}, \cdots, x_{n}=b$ of $[a, b]$, and the other using subdivisions in which all sub-intervals are of equal length. If we call the two classes of functions so obtained $B V_{k}[a, b]$ and $\overline{B V_{k}}[a, b]$ respectively, then we show that provided we restrict our functions to being continuous, then these classes are identical. More specifically, if we denote $C[a, b], B V_{k}[a, b]$, and $\overline{B V}_{k}[a, b]$ by $C, B V_{k}$ and $\overline{B V}_{k}$ respectively, then we show that

$$
C \cap B V_{k}=\overline{B V}_{k} .
$$

2. Notation and preliminaries.

Definition 1. We shall say that a set of points $x_{0}, x_{1}, \cdots, x_{n}$ is a π-subdivision of $[a, b]$ when $a \leqq x_{0}<x_{1}<\cdots<x_{n}=b$.

Definition 2. If $h>0$, then we will denote by π_{h} a subdivision $x_{0}, x_{1}, \cdots, x_{n}$ of $[a, b]$ such that $a=x_{0}<x_{1}<\cdots<x_{n} \leqq b$, where $x_{i}-x_{i-1}=h, i=1,2, \cdots, n$, and $0 \leqq b-x_{n} \leqq h$.

Before introducing the two definitions of bounded k th variation we need the definition and some properties of k th divided differences, and for this purpose we refer the reader to [3]. In addition, we make use of the difference operator Δ_{n}^{k} defined by

$$
\Delta_{h}^{1} f(x)=f(x+h)-f(x),
$$

and

$$
\Delta_{n}^{k} f(x)=\Delta_{n}^{1}\left[\Delta_{h}^{k-1} f(x)\right] .
$$

Definition 3. The total k th variation of a function f on $[a, b]$ is defined by

$$
V_{k}(f ; a, b)=\sup _{\pi} \sum_{i=0}^{n-k}\left(x_{i+k}-x_{i}\right)\left|Q_{k}\left(f ; x_{i}, \cdots, x_{i+k}\right)\right| .
$$

If $V_{k}(f ; a, b)<\infty$, we say that f is of bounded k th variation on $[a, b]$, and write $f \in B V_{k}[a, b]$.

Definition 4. If f is continuous on $[a, b]$, then we define the total k th variation of f on $[a, b]$ (restricted form) by

$$
\bar{V}_{k}(f ; a, b)=\sup _{\pi_{h}} \sum_{i=0}^{n-k}\left|\frac{\Delta_{h}^{k} f\left(x_{i}\right)}{h^{k-1}}\right| .
$$

If $\bar{V}_{k}(f ; a, b)<\infty$, we say that f is of restricted bounded k th variation on $[a, b]$, and write $f \in \overline{B V}_{k}[a, b]$.

As before, we will usually write $V_{k}(f)$ and $\bar{V}_{k}(f)$ for $V_{k}(f ; a, b)$ and $\bar{V}_{k}(f ; a, b)$ respectively.

We now show that $C \cap B V_{k}=\overline{B V}_{k}$, and point out at this stage that the restriction to continuous functions is not nearly as severe as it first may appear, because functions belonging to $B V_{k}[a, b]$, when $k \geqq 2$, are automatically continuous - see Theorem 4 of [3].

Lemma 1. Let $I_{1}, I_{2}, \cdots, I_{n}$ be a set of n adjoining closed intervals on the real line having lengths $p_{1} / q_{1}, p_{2} / q_{2}, \cdots, p_{n} / q_{n}$ respectively, where $p_{1}, p_{2}, \cdots, p_{n}, q_{1}, q_{2}, \cdots, q_{n}$ are positive integers. Then it is possible to subdivide the intervals $I_{1}, I_{2}, \cdots, I_{n}$ into sub-intervals of equal length.

The proof is easy and will be omitted.
Lemma 2. If $k \geqq 1$, then $C \cap B V_{k} \subset \overline{B V}_{k}$, using abbreviated notation.

Proof. This is easy and will not be included.
Lemma 3. If $k \geqq 1$, then $C \cap B V_{k} \supset \overline{B V}_{k}$.
Proof. Let us suppose that f is continuous, belongs to $\overline{B V_{k}}[a, b]$, but $f \notin B V_{k}[a, b]$. Then for an arbitrarily large number K, and an arbitrarily small positive number ε, there exists a subdivision $\pi_{1}\left(x_{0}, x_{1}, \cdots, x_{n}\right)$ of $[a, b]$ such that

$$
S_{\pi_{1}} \equiv \sum_{i=0}^{n-k}\left(x_{i+k}-x_{i}\right)\left|Q_{k}\left(f ; x_{i}, \cdots, x_{i+k}\right)\right|>K+\varepsilon
$$

If not all the lengths $\left(x_{i+1}-x_{i}\right), i=0,1, \cdots, n-1$ are rational, then because f is continuous we can obtain a subdivision $\pi_{2}\left(y_{0}, y_{1}\right.$, \cdots, y_{n}) of $[a, b]$ in which all the lengths $\left(y_{i+1}-y_{i}\right), i=0,1, \cdots, n-1$ are rational, and such that $\left|S_{\pi_{1}}-S_{\pi_{2}}\right|<\varepsilon, S_{\pi_{2}}$ being the approximating sum of $V_{k}(f ; a, b)$ corresponding to the π_{2} subdivision. Consequently,

$$
S_{\pi_{2}} \geqq S_{\pi_{1}}-\left|S_{\pi_{1}}-S_{\pi_{2}}\right|>K
$$

In the π_{2} subdivision, all sub-intervals have rational length, so we can apply Lemma 1 to obtain a π_{h} subdivision of $[a, b]$ in which each
sub-interval has length h. If $S_{\pi_{k}}$ is the corresponding approximating sum of $\bar{V}_{k}(f ; a, b)$, then it follows from Theorem 3 of [3] that

$$
\frac{1}{(k-1)!} S_{\pi_{h}} \geqq S_{\pi_{2}}>K,
$$

since for any π_{h} subdivision, and each $i=0,1, \cdots, n-k$,

$$
\frac{\frac{1}{k} k_{k}^{h^{k-1}}\left(x_{i}\right)}{h^{k-1}}=(k-1)!\left(x_{i+k}-x_{i}\right) Q_{k}\left(f ; x_{i}, \cdots, x_{i+k}\right) .
$$

Thus $S_{\pi_{h}}>(k-1)!K$, and this is a contradiction to the assumption that $f \in \overline{B V}_{k}[a, b]$. Hence $f \in \overline{B V}_{k}[a, b]$, and so $\overline{B V}_{k} \subset C \cap B V_{k}$.

Theorem 1. If $k \geqq 1$, then $C \cap B V_{k}=\overline{B V}_{k}$; and if f is a continuous function on $[a, b]$, then

$$
\begin{equation*}
\bar{V}_{k}(f ; a, b)=(k-1)!V_{k}(f ; a, b), \quad k \geqq 1 . \tag{3}
\end{equation*}
$$

Proof. The first part follows from Lemmas 2 and 3. For the second part we first observe that

$$
\begin{equation*}
\bar{V}_{k}(f ; a, b) \leqq(k-1)!V_{k}(f ; a, b) . \tag{4}
\end{equation*}
$$

Let $\varepsilon>0$ be arbitrary. Then there exists a π_{1} subdivision of $[a, b]$ and the corresponding approximating sum $S_{\pi_{1}}$ to $V_{k}(f ; a, b)$ such that

$$
S_{\pi_{1}}>V_{k}(f ; a, b)-\frac{\varepsilon}{2(k-1)!} .
$$

If not all the sub-intervals of π_{1} have rational lengths, then we can proceed as in Lemma 3 to obtain a π_{h} subdivision of $[a, b]$ in which all sub-intervals are of equal length h. Then, if $S_{\pi_{h}}$ is the corresponding approximating sum to $\bar{V}_{k}(f ; a, b)$, we can show that

$$
\begin{aligned}
\frac{1}{(k-1)!} S_{\pi_{h}} & \geqq S_{\pi_{1}}-\frac{\varepsilon}{2(k-1)!} \\
& >V_{k}(f ; a, b)-\frac{\varepsilon}{(k-1)!} .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
\bar{V}_{k}(f ; a, b) & \geqq S_{x_{k}} \\
& >(k-1)!V_{k}(f ; a, b)-\varepsilon,
\end{aligned}
$$

from which it follows that $\bar{V}_{k}(f ; a, b) \geqq(k-1)!V_{k}(f ; a, b)$. This inequality together with (4) gives (3).

Lemma 4. If f and g are any two real valued functions defined on $[a, b], h>0$ and $a \leqq x<x+k h \leqq b$, then

$$
\begin{align*}
\Delta_{h}^{k}[f(x) g(x)] & =f(x+k h) \Delta_{h}^{k} g(x)+\binom{k}{1} \Delta_{h}^{1} f(x+(k-1) h) \Delta_{h}^{k-1} g(x)+\cdots \\
+ & \binom{k}{s} \Delta_{h}^{s} f(x+(k-s) h) \Delta_{h}^{k-s} g(x)+\cdots+\Delta_{h}^{k} f(x) \Delta_{h}^{0} g(x) \tag{5}\\
& =\sum_{s=0}^{k}\binom{k}{s} \Delta_{h}^{s} f(x+(k-s) h) \Delta_{h}^{k-s} g(x), \text { where } \Delta_{h}^{0} g(x)=g(x) .
\end{align*}
$$

Proof. The proof by induction is straightforward and will not be included.

Lemma 5. If f and g belong to $B V_{k}[a, b], k \geqq 1$, then $f g \in B V_{k}[a, b]$.

Proof. The result for $k=1$ is well known, so we assume that $k \geqq 2$, in which case f and g are continuous in [a, b]. Consequently, in view of Theorem 1, there will be no loss of generality in working with equal sub-intervals of $[a, b]$. Using (5) we have, suppressing the " h " in " Δ_{h}^{k} ",

$$
\begin{gather*}
\frac{\Delta^{k}[f(x) g(x)]}{h^{k-1}}=f(x+k h) \frac{\Delta^{k} g(x)}{h^{k-1}}+\cdots+\binom{k}{s} \frac{\Delta^{s} f(x+(k-s) h)}{h^{s}} \frac{\Delta^{k-s} g(x)}{h^{k-s-1}} \tag{6}\\
+\cdots+\frac{\Delta^{k-1} f(x+h)}{h^{k-1}} \Delta^{1} g(x)+\frac{\Delta^{k} f(x)}{h^{k-1}} g(x) .
\end{gather*}
$$

It follows from Theorem 4 of [3] that

$$
\frac{\Delta^{s} f(x+(k-s) h)}{h^{s}}, s=0,1, \cdots, k-1
$$

is uniformly bounded. Hence we can conclude from (6) that fge $\overline{B V}_{k}[a, b]$ by summing over any π_{h} subdivision of $[a, b]$, and noting that f and g belong to $\overline{B V}_{k}[a, b] \subset \overline{B V}_{k-1}[a, b] \subset \cdots \subset \overline{B V}_{1}[a, b]-$ see Theorem 10 of [3]. Since $f g$ is continuous it follows from Theorem 1 that $f g \in B V_{k}[a, b]$.
3. Main results. We now make an application of Theorem 1 to obtain a relationship between $V_{k-1}(f)$ and $V_{k}(f)$ when $f \in B V_{k}^{*}[a, b]$.

THEOREM 2. If $f \in B V_{k}^{*}[a, b], k \geqq 2$, then

$$
\begin{equation*}
V_{k-1}(f) \leqq(k-1)(b-a) V_{k}(f) \tag{7}
\end{equation*}
$$

$o r$

$$
\bar{V}_{k-1}(f) \leqq(b-a) \bar{V}_{k}(f)
$$

Proof. It follows from Theorem 10 of [3] that $f \in B V_{k-1}^{*}[a, b]$, so $V_{k-1}(f)<\infty$. We now establish the inequality. Since $f \in B V_{k}^{*}[a, b]$, $f^{(k-1)}(a)=0$. Hence for any $\varepsilon>0$, we can choose a π_{h} subdivision of $[a, b]$ such that

$$
\begin{equation*}
\left|\frac{\Delta_{h}^{k-1} f(a)}{h^{k-1}}\right|<\frac{\varepsilon}{(b-a)} . \tag{8}
\end{equation*}
$$

There is no loss of generality in choosing such a subdivision in view of Theorem 3 of [3] which tells us that the approximating sums for total k th variation are not decreased by the addition of extra points of subdivision. Accordingly, let $a=x_{0}, x_{1}, \cdots, x_{n} \leqq b$ be a π_{h} subdivision of $[a, b]$ with property (8). Then, suppressing the " h " in " Δ_{h}^{k-1} " and " Δ_{h}^{k} ", we obtain

$$
\begin{aligned}
\sum_{i=0}^{n-k+1}\left|\Delta^{k-1} f\left(x_{i}\right)\right| & =\sum_{i=0}^{n-k+1}\left|\sum_{s=1}^{i}\left[\Delta^{k-1} f\left(x_{s}\right)-\Delta^{k-1} f\left(x_{s-1}\right)\right]+\Delta^{k-1} f\left(x_{0}\right)\right| \\
& =\sum_{i=0}^{n-k+1}\left|\sum_{s=1}^{i} \Delta^{k} f\left(x_{s-1}\right)+\Delta^{k-1} f\left(x_{0}\right)\right| \\
& \leqq \sum_{i=0}^{n-k+1} \sum_{s=1}^{i}\left|\Delta^{k} f\left(x_{s-1}\right)\right|+\sum_{i=0}^{n-k+1}\left|\Delta^{k-1} f\left(x_{0}\right)\right| \\
& \leqq n \sum_{s=1}^{n-k}\left|\Delta^{k} f\left(x_{s-1}\right)\right|+n\left|\Delta^{k-1} f\left(x_{0}\right)\right| \\
& \leqq(b-a) \sum_{s=1}^{n-k}\left|\frac{\Delta^{k} f\left(x_{s-1}\right)}{h}\right|+(b-a)\left|\frac{\Delta^{k-1} f\left(x_{0}\right)}{h}\right| .
\end{aligned}
$$

Therefore, dividing both sides by h^{k-2}, we obtain

$$
\begin{aligned}
\sum_{i=0}^{n-k+1}\left|\frac{\Delta^{k-1} f\left(x_{i}\right)}{h^{k-2}}\right| & \leqq(b-a) \sum_{s=1}^{n-k}\left|\frac{\Delta^{k} f\left(x_{s-1}\right)}{h^{k-1}}\right|+(b-a)\left|\frac{\Delta^{k-1} f\left(x_{0}\right)}{h^{k-1}}\right| \\
& \leqq(b-a) \bar{V}_{k}(f)+\varepsilon
\end{aligned}
$$

from which it follows that

$$
\begin{equation*}
\bar{V}_{k-1}(f) \leqq(b-a) \bar{V}_{k}(f) \tag{9}
\end{equation*}
$$

Consequently, using (2) we obtain

$$
V_{k-1}(f) \leqq(k-1)(b-a) V_{k}(f)
$$

as required.
Corollary. Let p be an integer such that $1 \leqq p<k$. If $f \in$ $B V_{k}^{*}[a, b]$, then $f \in B V_{p}^{*}[a, b]$, and

$$
\begin{equation*}
V_{p}(f) \leqq p(p+1) \cdots(k-1)(b-a)^{k-p} V_{k}(f) \tag{10}
\end{equation*}
$$

or

$$
\bar{V}_{p}(f) \leqq(b-a)^{k-p} \bar{V}_{k}(f) .
$$

Proof. The proof follows from repeated applications of (7), and Theorem 10 of [3].

We now proceed to obtain a relationship between $V_{k}(f g), V_{k}(f)$ and $V_{k}(g)$ when f and g belong to $B V_{k}^{*}[a, b]$. It appears convenient to treat the cases $k=2$, and $k \geqq 3$ separately, so we begin by considering $k=2$.

Theorem 3. If f and g belong to $B V_{2}^{*}[a, b]$, then $f g \in B V_{2}^{*}[a, b]$, and

$$
\begin{align*}
V_{2}(f g) & \leqq V_{2}(f) V_{1}(g)+V_{1}(f) V_{2}(g) \tag{11}\\
& \leqq 2(b-a) V_{2}(f) V_{2}(g) .
\end{align*}
$$

Proof. There is no loss of generality in considering π_{h} subdivisions of $[a, b]$. Let $a=x_{0}, x_{1}, \cdots, x_{n}$ be such a subdivision. Then, noting that $f(a)=0=g(a)$ when $f, g \in B V_{2}^{*}[a, b]$, and writing $f\left(x_{s+1}\right)-f\left(x_{s}\right)=\Delta f\left(x_{s}\right)$, we obtain for $i \geqq 1$,

$$
\begin{align*}
\Delta^{2} f\left(x_{i}\right) g\left(x_{i}\right)= & \Delta\left[\Delta f\left(x_{i}\right) g\left(x_{i}\right)\right] \\
= & \Delta\left[f\left(x_{i+1}\right) \Delta g\left(x_{i}\right)+\left(\Delta f\left(x_{i}\right)\right) g\left(x_{i}\right)\right] \\
= & \Delta\left[\left(\sum_{s=0}^{i} \Delta f\left(x_{s}\right)\right) \Delta g\left(x_{i}\right)+\Delta f\left(x_{i}\right) \sum_{s=0}^{i-1} \Delta g\left(x_{s}\right)\right] \\
= & \sum_{s=0}^{i} \Delta\left(\Delta f\left(x_{s}\right) \Delta g\left(x_{i}\right)\right)+\sum_{s=0}^{i-1} \Delta\left(\Delta f\left(x_{i}\right) \Delta g\left(x_{s}\right)\right) \tag{12}\\
= & \sum_{s=0}^{i}\left[\Delta f\left(x_{s+1}\right) \Delta^{2} g\left(x_{i}\right)+\Delta^{2} f\left(x_{s}\right) \Delta g\left(x_{i}\right)\right] \\
& +\sum_{s=0}^{i-1}\left[\Delta f\left(x_{i+1}\right) \Delta^{2} g\left(x_{s}\right)+\Delta^{2} f\left(x_{i}\right) \Delta g\left(x_{s}\right)\right] .
\end{align*}
$$

Therefore, noting that the last summation in (12) is zero when $i=0$, we have

$$
\begin{aligned}
\sum_{i=0}^{n-2}\left|\Delta^{2} f\left(x_{i}\right) g\left(x_{i}\right)\right| & \leqq \sum_{i=0}^{n-2}\left[\left|\Delta f\left(x_{1}\right)\right|+\cdots+\left|\Delta f\left(x_{i+1}\right)\right|\right]\left|\Delta^{2} g\left(x_{i}\right)\right| \\
& +\sum_{i=0}^{n-2}\left[\left|\Delta^{2} f\left(x_{0}\right)\right|+\cdots+\left|\Delta^{2} f\left(x_{i}\right)\right|\right] \Delta g\left(x_{i}\right) \mid \\
& +\sum_{i=0}^{n-2}\left|\Delta f\left(x_{i+1}\right)\right|\left[\left|\Delta^{2} g\left(x_{0}\right)\right|+\cdots+\left|\Delta^{2} g\left(x_{i-1}\right)\right|\right] \\
& +\sum_{i=1}^{n-2}\left|\Delta^{2} f\left(x_{i}\right)\right|\left[\Delta g\left(x_{0}\right)\left|+\cdots+\left|\Delta g\left(x_{i-1}\right)\right|\right]\right.
\end{aligned}
$$

which after some re-arrangement is equal to

$$
\left(\sum_{i=1}^{n-1}\left|\Delta f\left(x_{i}\right)\right|\right)\left(\sum_{i=0}^{n-2}\left|\Delta^{2} g\left(x_{i}\right)\right|\right)+\left(\sum_{i=0}^{n-2}\left|\Delta^{2} f\left(x_{i}\right)\right|\right)\left(\sum_{i=0}^{n-2}\left|\Delta g\left(x_{i}\right)\right|\right) .
$$

Therefore, dividing by h, and using Definition 4, we observe that $f g \in B V_{2}^{*}[a, b]$, and obtain

$$
\begin{equation*}
\bar{V}_{2}(f g) \leqq \bar{V}_{1}(f) \bar{V}_{2}(g)+\bar{V}_{2}(f) \bar{V}_{1}(g), \tag{13}
\end{equation*}
$$

or

$$
V_{2}(f g) \leqq V_{1}(f) V_{2}(g)+V_{2}(f) V_{1}(g),
$$

using Theorem 1.
To complete the proof we employ (7) with $k=2$.
We are now in a position to consider the general case $k \geqq 3$ for which we adopt a different procedure. When $k \geqq 3$ we make use of the fact that $f^{(k-2)} \in B V_{2}^{*}[a, b]$, and consequently exists throughout $[a, b]$, and is in fact absolutely continuous in that interval.

Theorem 4. Let f and g belong to $B V_{k}^{*}[a, b]$ when $k \geqq 3$. Then $f g \in B V_{k}^{*}[a, b]$, and

$$
\begin{equation*}
\bar{V}_{k}(f g) \leqq 2^{k-1}(b-a)^{k-1} \bar{V}_{k}(f) \bar{V}_{k}(g), \tag{14}
\end{equation*}
$$

or

$$
\begin{equation*}
V_{k}(f g) \leqq 2^{k-1}(b-a)^{k-1}(k-1)!V_{k}(f) V_{k}(g) . \tag{15}
\end{equation*}
$$

Proof. We first observe from Lemma 5 that $f g \in B V_{k}^{*}[a, b]$. It follows from Theorems 2 and 8 of [5] that

$$
\begin{aligned}
\bar{V}_{k}(f g) & =\bar{V}_{2}\left((f g)^{(k-2)}\right) \\
& =\bar{V}_{2}\left(\begin{array}{c}
k-2 \\
s=0
\end{array}\binom{k-2}{s} f^{(k-s-2)} g^{(s)}\right) \\
& \leqq \sum_{s=0}^{k-2}\binom{k-2}{s} \bar{V}_{2}\left(f^{(k-s-2)} g^{(s)}\right) \\
& \leqq 2(b-a) \sum_{s=0}^{k-2}\binom{k-2}{s} \bar{V}_{2}\left(f^{(k-s-2)}\right) \bar{V}_{2}\left(g^{(s)}\right), \text { using (11) } \\
& =2(b-a) \sum_{s=0}^{k-2}\binom{k-2}{s} \bar{V}_{k-s}(f) \bar{V}_{s+2}(g) \\
& \leqq 2(b-a) \sum_{s=0}^{k-2}\binom{k-2}{s}(b-a)^{s} \bar{V}_{k}(f) \cdot(b-a)^{k-s-2} \bar{V}_{k}(g)
\end{aligned}
$$

$$
\begin{aligned}
& =2(b-a)^{k-1} \bar{V}_{k}(f) \bar{V}_{k}(g) \sum_{s=0}^{k-2}\binom{k-2}{s} \\
& =2^{k-1}(b-a)^{k-1} \bar{V}_{k}(f) \bar{V}_{k}(g), \quad \text { as required for (14). }
\end{aligned}
$$

To obtain (15) we employ (3).
Combining Theorems 3 and 4 gives
Theorem 5. If f and g belong to $B V_{k}^{*}[a, b], k \geqq 1$, then $f g \in B V_{k}^{*}[a, b]$, and

$$
V_{k}(f g) \leqq \alpha_{k} V_{k}(f) V_{k}(g),
$$

where $\alpha_{k}=2^{k-1}(k-1)!(b-1)^{k-1}$.
Our final theorem is now apparent.
Theorem 6. If k is a positive integer, then $B V_{k}^{*}[a, b]$ is a commutative Banach algebra under the norm $\|\cdot\|_{k}^{*}$, where

$$
\|f\|_{k}^{*}=\alpha_{k} V_{k}(f)
$$

and $\alpha_{k}=2^{k-1}(k-1)!(b-a)^{k-1}$.

References

1. G. Dickmeis and W. Dickmeis, Beste Approximation in Räumen von beschränkter p-Variation, Forschungberichte Des Landes Nordrhein-Westfalen Nr. 2697 Fachgruppe Mathematik/Informatik, Westdeutscher Verlag, 1977.
2. E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer-Verlag, Berlin, Heidelberg, New York, 1969.
3. A. M. Russell, Functions of bounded kth variation, Proc. London Math. Soc., (3) 26 547-563.
4. -, A Banach space of functions of generalized variation, Bull. Austral. Math. Soc., Vol. 15 (1976), 431-438.
5. ——, Further results on an integral representation of functions of generalized variation, Bull. Austral. Math. Soc., 18 (1978), 407-420.

Received June 1, 1978.
University of Melbourne
Parkville, Victoria 3052
Australia

