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A COMMUTATIVE BANACH ALGEBRA OF FUNCTIONS
OF GENERALIZED VARIATION

A. M. RUSSELL

It is known that the space of functions, anchored at α,
and having bounded variation form a commutative Banach
algebra under the total variation norm. We show that
functions of bounded kth variation also form a Banach
algebra under a norm defined in terms of the total kth
variation.

1* Introduction. Let BVλ[af b] denote the space of functions
of bounded variation on the closed interval [α, δ], and denote the
total variation of / on that interval by VΊ(f) or VΊ(f; a, b). If

BVfla, b] = {/; Vm < <*>, f(a) = 0} ,

then it is a well known result that BV*[a, b] is a Banach space
under the norm [)-1 ii, where | | / | | i = Vλ(f). What appears to be less
well known is that, using pointwise operations, BV*[a, b] is a com-
mutative Banach algera with a unit under J|-1^ — see for example
[1] and Exercise 17.35 of [2].

In [4] it was shown that BVk[a, b] is a Banach space under the
norm, || ||fc, where

(1) ll/IU = ΣΊ/ ί β >(α)l + Vk(f;a,b),
s=0

and where the definition of Vk(f; a, b) = Vk{f) can be found in [3].
The subspace

BVk*[a, b] = {/; / e BVk[a, δ], /(α) - /'(α) = . . = f^\a) = 0}

is clearly also a Banach space under the norm j| ί|*, where

(2) \\f\\ϊ = akVk(f),

and ak = 2k~\b - a)k~\k - 1)!.
If we define the product of two functions in BV*[a, b] by

pointwise multiplication, then we show, in addition, that BV*[a, b]
is a commutative Banach algebra under the norm given in (2). It
is obvious that BVk[a, b] is commutative, so our main programme
now is to show that if / and g belong to BV*[a>9 δ], then so does
fg, and that

Vk(fg) £ 2 k ~ \ k - 1 ) ! ( 6 - a ) k ^ V k ( f ) V k ( g ) , k ^ l .
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We accept the case k = 1 as being known, so restrict our discussion
to k ^ 2. Because the same procedure does not appear to be appli-
cable to the cases k = 2 and k ^ 3, we present different treatments
for these cases.

In order to achieve the stated results it was found convenient
to work with two definitions of bounded kth variation, one defined
with quite arbitrary subdivisions a = x0, xlf , xn = b of [a, 6], and
the other using subdivisions in which all sub-intervals are of equal
length. If we call the two classes of functions so obtained BVk[a, b]
and BVk[a, b] respectively, then we show that provided we re-
strict our functions to being continuous, then these classes are
identical. More specifically, if we denote C[a, 6], BVk[a, b], and
BVk[a, b] by C, BVk and BVk respectively, then we show that

Cf)BVk = BVk.

2* Notation and preliminaries*

DEFINITION 1. We shall say that a set of points xo,xlf ••-,&»
is a ^-subdivision of [α, b] when a <; x0 < x1 < < xn = 6.

DEFINITION 2. If h > 0, then we will denote by πh a subdivision
x0, xu , xn of [a, 6] such that a = x0 < xx < < χn <; 6, where
xt — Xi-χ = h, ί = 1, 2, •••,%, and 0 ^ 6 — xn <̂  ft.

Before introducing the two definitions of bounded fcth variation
we need the definition and some properties of kth divided differences,
and for this purpose we refer the reader to [3]. In addition, we
make use of the difference operator Δ\ defined by

= f(x + h)- f{x) ,

and

Aϊf{x) =

DEFINITION 3. The total kth variation of a function / on [α, b]
is defined by

n-k

Vk(f; a, b) = sup Σ (ooi+k - x€) \ Qk(f; xif , xi+k) | .
π i=0

If Vk(f; a, b) < oo, we say that / is of bounded kth variation on
[α, δ], and write feBVk[a, &].

DEFINITION 4. If / is continuous on [a, 6], then we define the
total kth variation of / on [a, b] (restricted form) by



A COMMUTATIVE BANACH ALGEBRA 457

Vk(f; a, b) < <

W; t

χ>, w e

ι,b)

say

= sup
πh

that

n~k

i—0

f

Δ

is of

*)

restrictedIf Ffc(/; α, 6) < co, we say that / is of restricted bounded ifcth

variation on [α, 6], and write feBVk[a, b].
As before, we will usually write Vk(f) and Vk{f) for Vk(f; a, b)

and Vk(f; a, b) respectively.
We now show that C 0 BVk = BVk, and point out at this stage

that the restriction to continuous functions is not nearly as severe
as it first may appear, because functions belonging to BVk[a, &],
when k ^ 2, are automatically continuous — see Theorem 4 of [3].

LEMMA 1. Let Ilf I2, •••,/„ be a set of n adjoining dosed inter-
vals on the real line having lengths pjqlf pjq2i , pjqn respectively,
where plf p2, , pn, qlf q2, •••,#„ are positive integers. Then it is
possible to subdivide the intervals Iu I2, , In into sub-intervals of
equal length.

The proof is easy and will be omitted.

LEMMA 2. If k ^ 1, then CΠ BVkaBVk, using abbreviated
notation.

Proof. This is easy and will not be included.

LEMMA 3. If k ^ 1, then GΠ BVk^ΈΫk.

Proof. Let us suppose that / is continuous, belongs to BVk[a, 6],
but / g BVk[a, &]. Then for an arbitrarily large number K, and
an arbitrarily small positive number ε, there exists a subdivision
πx(xQy xl9 - -, xn) of [a, b] such t h a t

n-k

Σ(t = Σ Oί+/b - «i) IQkif't ®if , î+fc) I > -K" + ε .

If not all the lengths (xi+ι — ajj, i = 0,1, , n — 1 are rational,
then because / is continuous we can obtain a subdivision π2(y0, yu

- , yn) of [α, 6] in which all the lengths (yi+1—y^, ΐ = 0 , 1 , , n — 1
are rational, and such that |SH — Sπ2\ < ε, Sπ2 being the approximat-
ing sum of Vk(f; a, b) corresponding to the π2 subdivision. Consequ-
ently,

In the π2 subdivision, all sub-intervals have rational length, so we
can apply Lemma 1 to obtain a πh subdivision of [a, b] in which each
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sub-interval has length h. If SXh is the corresponding approximat-
ing sum of Vkif'y a, 6), then it follows from Theorem 3 of [3] that

since for any πh subdivision, and each i = 0, 1, , n — k,

Δήtt& = \k - 1)! (xi+k - »,)<«/; xif , xi+k) .

Thus SXh > (k — 1)! Kf and this is a contradiction to the assumption

that / 6~BVk[a, 6]. Hence / 6 BVk[a, 6], and so BVk czCf)BVk.

THEOREM 1. If k^l, then CΓ\BVk = BVk; and if f is a
continuous function on [a, b], then

( 3 ) V k ( f ; a , b) = ( k - 1 ) ! V k ( f ; a , b ) , k ^ l .

Proof. The first part follows from Lemmas 2 and 3. For the
second part we first observe that

(4) Vk(f; a, 6) ^ (k - 1)! Vk(f; a, b) .

Let s > 0 be arbitrary. Then there exists a πx subdivision of [a, b]
and the corresponding approximating sum Sπι to Vk(f; a, b) such
that

Sπi > Vk{f; a,b)- ε

2(k - 1 ) !

If not all the sub-intervals of πx have rational lengths, then we can
proceed as in Lemma 3 to obtain a πh subdivision of [a, b] in which
all sub-intervals are of equal length h. Then, if Sπh is the corre-
sponding approximating sum to Vk(f; a, b), we can show that

~ ι 2(k - 1)!

> Vk(f; a,b)- ε

(k - D!

Consequently,

Vk(f; a, b) ̂  S.h

>(]e-Dl Vk(f;a,b)-ε,

from which it follows that Vk(f; a, b) ̂  (k - ΐ)\ Vk(f;a,b). This
inequality together with (4) gives (3).
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LEMMA 4. If f and g are any two real valued functions defined
on [α, b], h > 0 and a<^x<.x + kh^b, then

Δϊ[f(χ)g(χ)]=f(χ+kh)Δtg(x) + 1

ίk\
)Δ\f{x + (k- s)h)Jtsg(x) + - + Δ\f(x)Δ\g(x)

s I

k ίk\
= Σ Δs

hf(x + (k — s)h)Δ\~sg{x), where Δ°hg(x)=g(x) .
•=» \ 8 /

Proof. The proof by induction is straightforward and will not
be included.

LEMMA 5. If f and g belong to BVk[a, b], k ^ 1, then
fgeBVk[a,b].

Proof. The result for k = 1 is well known, so we assume that
k ^ 2, in which case / and g are continuous in [α, 6], Consequently,
in view of Theorem 1, there will be no loss of generality in work-
ing with equal sub-intervals of [α, 6]. Using (5) we have, suppres-
sing the "Λ" in "A\",

Δk[f(x)g(x)] _f(jrl 7^Δkg(x)__L m m m , (k\jsf{x + {k-s)h)

(6) **"'

+ ' " + hk

It follows from Theorem 4 of [3] that

Δsf{x + ( k - s)h) o - o i - . . J f c - l

is uniformly bounded. Hence we can conclude from (6) that fg e
BVk[a, b] by summing over any πh subdivision of [a, b], and noting
that / and g belong to BVk[a, b]czBVk^[af δ]c cJSTΪ[α, b] — see
Theorem 10 of [3]. Since fg is continuous it follows from Theorem 1
that fgeBVk[a, b].

3. Main results. We now make an application of Theorem 1
to obtain a relationship between Vk^(f) and Vk{f) when / e J3F*[α, 6].

THEOREM 2. If fe BVξ[af 6], k ^ 2, ίfcerc

( 7 ) V^tf) ^ (fc - 1)(6 - a) Vk(f) ,
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or

Vk-iίf) £ <!> - a)Vk(f) .

Proof. It follows from Theorem 10 of [3] that f e BVkU[af b]f

so V ^ / ) < co. We now establish the inequality. Since / e S7*[α, 6],
/(fc"υ(α) = 0. Hence for any ε > 0, we can choose a πh subdivision
of [a, b] such that

( 8 )
(δ-α)

There is no loss of generality in choosing such a subdivision in view
of Theorem 3 of [3] which tells us that the approximating sums
for total [kth variation are not decreased by the addition of extra
points of subdivision. Accordingly, let a = xQ, xlf , xn <̂  6 be a
πh subdivision of [α, b] with property (8). Then, suppressing the
"h" in "Ak

h~
l" and "Δ\", we obtain

n-k+1 n-k+1

Σ M^/Cx,)^ Σ Σ t ^ 1

t=0

< y y
i=0 s = l

n-k

+ ^-7(«o)

n-k+l

Σ

^ (6 - a) Σ*
h

+ (b-a)
h

Therefore, dividing both sides by hk 2, we obtain

hk ^ (6 - o) Σ
hk

+ (6 - α)

from which it follows that

(9) VUf) ^ Φ - a)Vk(f) .

Consequently, using (2) we obtain

as required.

COROLLARY. Let p be an integer such that 1 <; p < k. If f e
/f[α, 6], then feBV*[a, b], and
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(10) V,{f) ̂  p(p + 1) (k - 1)(6 - α)»"» Vh{f) ,

or

Proof. The proof follows from repeated applications of (7), and
Theorem 10 of [3].

We now proceed to obtain a relationship between Vk(fg), Vk(f)
and Vk(g) when / and g belong to BV*[a, &]. It appears convenient
to treat the cases k — 2, and k ̂  3 separately, so we begin by
considering k = 2.

THEOREM 3. If f and g belong to BV?[a, 6], then fg e BV2*[a, δ],
and

V2(fg) ^ Vt{f)Vι(g)

^2(&

Proof. There is no loss of generality in considering πh sub-
divisions of [a, &]. Let a = x0, xlf , x% be such a subdivision.
Then, noting that f{a) = 0 = #(α) when /, g e jBF2*[α, 6], and writing

+i) - /(#*) = 4f(x.)t we obtain for i ^ 1,

s = 0

(12) = Σ Δ{Δf{xs)Δg{xv)) + Σ Δ{Δf{xt)Δg{xt))

= Σ
8=0

ΣU/ι
s=0

+dΔ

%+,

2g(χ

)Δ*g

«)- I-J1

) +

0

'/(SB.)^^)]

Therefore, noting that the last summation in (12) is zero when
i = 0, we have

+ Σ [ l ^ / ( « o ) l + ••• +
i=0

+ Σ M / ( * 1 + 1 ) l [ M V ( χ o ) l + ••• + \Δ2g(χ{-ΰ\]
i=o

+ Σ V / W I [d9(Po) ! + ••• +
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which after some re-arrangement is equal to

( Σ I Δf(xt) I)(Σ I ̂ g{xτ) I ) + ( Σ I Λ2f(Xi) I ) ( Σ I Δg(xt) l) .

Therefore, dividing by h, and using Definition 4, we observe that
fgeBV2*[a,b\, and obtain

(13)

or

WflO ^ Vι<j

V2(fg) <Ξ W

')VM+ Vt(f)Vι(g),

WM + V,{f)VM ,

using Theorem 1.
To complete the proof we employ (7) with k = 2.
We are now in a position to consider the general case k ^ 3

for which we adopt a different procedure. When & ̂ > 3 we make
use of the fact that f{k~2) e BV2*[a, b], and consequently exists
throughout [α, &], and is in fact absolutely continuous in that
interval.

THEOREM 4. Lei / αweZ g belong to JSF*[α, 6] when fc^3.
[α, 6], and

(14)

or

(15) Wflr) ^ 2*-ι(6 - af-\k - 1)!

Proof. We first observe from Lemma 5 that /#ei?F;ί[α, 6]. It
follows from Theorems 2 and 8 of [5] that

Vk(fg) =

^ Σ

^ 2(6 - a) Σ ( * ~ 2 ) F2(/(fe-s-2))F2(flf(s)), using (11)

Σ ( k ~- 2(6 - α) Σ ( k ~ 2 ) VkM) V.

"̂  2<, 2(6 - α) ( ^ j(δ α)Ffc(/)(δ aγ

using (10)
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= 2(6 - af-Ύk{f)Vk{g) Σ

- 2k~\b - α)*~ι f*(/) V*(flO, as required for (14).

To obtain (15) we employ (3).
Combining Theorems 3 and 4 gives

THEOREM 5. If f and g belong to BV£[a, b], k^l, then
fgeBV£[a,b], and

Vk{fg) £ akVk(f)Vk(g) ,

where ak = 2k~\k — 1)1 (6 — I)*"1.

Our final theorem is now apparent.

THEOREM 6. If k is a positive integer, then BVk*[a, b] is a
commutative Banach algebra under the norm || ||*, where

ll/llί = α * W ) ,

and ak - 2k~\k - 1)\ (6 - α)*"1.
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