RIESZ-PRESENTATION OF ADDITIVE AND σ-ADDITIVE SET-VALUED
 MEASURES

Werner Rupp

Abstract

In this paper we generalize the well known Riesz's representation theorems for additive and σ-additive scalar measures to the case of additive and σ-additive set-valued measures.

1. Introduction. Consider a nonvoid set Ω and an algebra over Ω. An additive set-valued measure Φ on the field (Ω, \mathscr{A}) is a function $\Phi: \mathscr{A} \rightarrow\left\{T \subset R^{m}: T \neq \varnothing\right\}$ from \mathscr{A} into the class of all nonempty subsets of \boldsymbol{R}^{m}, which is additive, i.e.,

$$
\varnothing \neq \Phi(A) \subset \boldsymbol{R}^{m} \quad \text { for all } \quad A \in \mathscr{A}
$$

and

$$
\Phi\left(A_{1} \cup A_{2}\right)=\Phi\left(A_{1}\right)+\Phi\left(A_{2}\right)
$$

for every pair of disjoint sets $A_{1}, A_{2} \in \mathscr{A}$. If \mathscr{A} is a σ-algebra then Φ is called a σ-additive set-valued measure, iff

$$
\Phi\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \Phi\left(A_{n}\right)
$$

for every sequence A_{1}, A_{2}, \cdots of mutually disjoint elements of \mathscr{A}. Here the sum $\sum_{n=1}^{\infty} T_{n}$ of the subsets T_{1}, T_{2}, \cdots of \boldsymbol{R}^{m} consists of all thevectors: " $x=\sum_{n=1}^{\infty} x_{n}$ with $x_{n} \in T_{n}$ for $n \in N$. In the sequel, " $\Phi \mid \mathscr{A}$ is an additive [resp. σ-additive] set-valued measure" is an abbreviation for an algebra [resp. a σ-algebra] over Ω and a function $\Phi: \mathscr{A} \rightarrow$ $\left\{T \subset \boldsymbol{R}^{m}: T \neq \varnothing\right\}$ which is additive [resp. σ-additive]. The calculus of additive and σ-additive set-valued measures has recently been developed by several authors (see [2], [4], [5], [1] and [6]) and the ideas and techniques have many interesting applications in mathematical economics (see [3], [4] and [10]), in control theory (see [8] and [9]), and other mathematical fields. Additive and σ-additive set-valued measures have also been discussed for their own mathematical interest, because they extend the theory of scalar additive and σ-additive measures in a natural way. This is the background of the present paper. Theorems 1 and 2 extend the known representation th yorems of Riesz for bounded, additive [resp. regular, σ additive] scalar measures to the case of bounded, additive [resp. regular, σ-additive] set-valued measures.
2. Some properties of additive set-valued measures. The following Lemma 1 is well known and has appeared in the literature in several forms (see [1], Proposition 3.1, p. 105). We state it here in a form suitable for the sequel, and for completeness we also give the proof.

Lemma 1. If $\Phi \mid \mathscr{A}$ is an additive [resp. σ-additive] set-valued measure, then the function $\mu_{x, \phi} \mid \cdot \mathscr{A}$ with

$$
\mu_{x, \phi}(A):=\sup \{\langle x, y\rangle: y \in \Phi(A)\}
$$

is an additive [resp. σ-additive] scalar measure for all $x \in \boldsymbol{R}^{m}$.
Proof. The set function $\mu_{x, \infty} \mid \cdot \mathscr{A}$ is well defined and with values in $(-\infty,+\infty)$. The additivity of $\mu_{x, n}$ is trivial. Let A_{1}, A_{2}, \cdots be a sequence of mutually disjoint sets $A_{n} \in \mathscr{A}$ and $A=\bigcup_{n=1}^{\infty} A_{n}$. If $z \in \Phi(A)$ then $z=\sum_{n=1}^{\infty} z_{n}$, where $z_{n} \in \Phi\left(A_{n}\right)$ for $n \in N$. Then

$$
\begin{equation*}
\langle x, z\rangle=\sum_{n=1}^{\infty}\left\langle x, z_{n}\right\rangle \leqq \lim _{\kappa} \inf \sum_{n=1}^{\kappa} \mu_{x},\left(A_{n}\right) \tag{1}
\end{equation*}
$$

and therefore $\mu_{x, \phi}(A) \leqq \lim \inf _{k} \sum_{n=1}^{x} \mu_{x, \psi}\left(A_{n}\right)$. If $\mu_{x, \phi}(A)=\infty$ there is nothing else to show. If $\mu_{x, \phi}(A)<\infty$, the additivity implies $\mu_{x, \eta}\left(A_{n}\right)<\infty$ for every n. Given $\varepsilon>0$, choose for each n an element $y_{n} \in \Phi\left(A_{n}\right)$ such that $\mu_{x, \phi}\left(A_{n}\right) \leqq\left\langle x, y_{n}\right\rangle+\varepsilon \cdot 2^{-n}$. Denote $\widetilde{y}_{\kappa}=$ $\sum_{n=1}^{\kappa} y_{n}+\sum_{n>k} z_{n}$. Then $\widetilde{y}_{\kappa} \in \Phi(A)$ and

$$
\begin{equation*}
\lim _{k} \sup \sum_{n=1}^{\kappa} \mu_{x, \phi}\left(A_{n}\right)-\varepsilon \leqq \lim _{\kappa} \sup \left\langle x, \widetilde{y}_{k}\right\rangle \leqq \mu_{x, \phi}(A) \tag{2}
\end{equation*}
$$

Since ε is arbitrarily small, (1) and (2) imply $\mu_{x, \phi}(A)=\sum_{n=1}^{\infty} \mu_{x, \phi}\left(A_{n}\right)$.
We call an additive set-valued measure $\Phi \mid \mathscr{A}$ bounded, iff $\bigcup_{A \in \mathscr{M}} \Phi(A)$ is a bounded subset of \boldsymbol{R}^{m}. In the case that Φ is σ-additive the following Lemma 2 is a result of Z. Artstein (see [1], p. 105). If Φ is only additive, the proof is given in [12], Korollar 2a. $|\nu|$ denotes the total variation of an additive scalar measure $\nu \mid . \Omega$ and $e_{1}, \cdots, e_{2 m}$ the $2 m$ vectors of the form ($0, \cdots, \pm 1, \cdots, 0$).

Lemma 2. Let $\Phi \mid \cdot \mathscr{A}$ be a bounded, additive set-valued measure [resp. a σ-additive set-valued measure with bounded $\Phi(\Omega)$] and $\hat{\mu}:=$ $\sum_{i=1}^{2 m}\left|\mu_{e_{i}, \Phi}\right| . \quad$ Then $\hat{\mu} \mid \mathscr{A}$ is a nonnegative, finite additive [resp. σ-additive] scalar measure with

$$
\sup \{|y|: y \in \Phi(A)\} \leqq \widehat{\mu}(A)
$$

for all $A \in \mathscr{A}$.

Let $B(\Omega, \mathscr{A})$ denote the set of all uniform limits of finite linear combinations characteristic functions of sets in \mathscr{A} and $B_{+}(\Omega, \mathscr{A})$ the subset of all nonnegative functions of $B(\Omega, \mathscr{A}) . B(\Omega, \mathscr{A})$ is a Banach space. The norm on $B(\Omega, \mathscr{A})$ is denoted by \| \|.

Lemma 3. If $\Phi \mid \mathscr{A}$ is a bounded, additive set-valued measure, then:
(a) Every $f \in B(\Omega, \mathscr{A})$ is $\mu_{x, \phi}$ integrable for all $x \in \boldsymbol{R}^{m}$.
(b) If $f \in B_{+}(\Omega, \mathscr{A})$ then $\int f d \Phi$ with $\left(\int f d \Phi\right)(x):=\int f d \mu_{x, "}$ is a sublinear functional on \boldsymbol{R}^{m}.

Proof. (a) Choose $x \in \boldsymbol{R}^{m}$ and $A \in \mathscr{A}$. By Lemma $1 \mu_{x, \phi}$ is an additive scalar measure and by Lemma 2

$$
\left|\mu_{x, \phi}(A)\right| \leqq|x| \widehat{\mu}(A) .
$$

Therefore

$$
\left|\mu_{x, \phi}\right|(A) \leqq|x| \hat{\mu}(A)
$$

and hence

$$
\left|\int f d \mu_{x, \phi}\right| \leqq \int|f| d\left|\mu_{x, \phi}\right| \leqq\|f\|\left|\mu_{x, \phi}\right|(\Omega)<\infty \quad \text { for all } \quad f \in B(\Omega, \mathscr{A})
$$

(b) The function $\mu_{,, \phi}(A) \mid \boldsymbol{R}^{m}$ with $\left(\mu_{,, \phi}(A)\right)(x):=\mu_{x, \phi}(A)$ is sublinear for every $A \in \mathscr{A}$. Therefore $\int t d \Phi$ is sublinear for every simple function $t \in B_{+}(\Omega, \mathscr{A})$ and hence $\int f d \Phi$ for every $f \in B_{+}(\Omega, \mathscr{A})$.

Consider the system ($\mathscr{K}, \delta)$ of all nonvoid, compact subsets of \boldsymbol{R}^{m} with the Hausdorff distance δ and $\mathscr{L}_{m}:=\{K \in \mathscr{K}: K$ convex $\}$. (\mathscr{K}, δ) is a metric space and
$\left(\mathscr{L}_{m}, \delta\right)$ is complete
(see [4], (5.6), p. 362). Let Λ_{m} be the closed unit ball in \boldsymbol{R}^{m} and $s: \mathscr{L}_{m} \rightarrow \mathscr{C}\left(\Lambda_{m}\right)$ with $s(T):=s(\cdot, T)$ and $s(x, T):=\sup \{\langle x, y\rangle: y \in T\}$ for $x \in \Lambda_{m}, T \in \mathscr{L}_{m}$. By [11] s is an isometric function.

Lemma 4. If $\Phi \mid \mathscr{A}$ is an additive set-valued measure such that $\Phi(A)$ is compact for all $A \in \mathscr{A}$, then Φ is σ-additive iff $\delta\left(\Phi\left(A_{n}\right),\{0\}\right) \rightarrow 0$ for every sequence A_{1}, A_{2}, \cdots, in \mathscr{A} with $A_{n} \downarrow \varnothing$.

Proof. See [12], Satz 1 or [6], Prop. 3.4.
3. Representation theorems. Our aim is to identify certain additive [resp. σ-additive] set-valued measures as linear mappings between suitable linear topological spaces. Let $B A(\Omega, \mathscr{A}, m)$ be the set of all bounded, additive set-valued measures $\Phi \mid \mathscr{A}$ with $\Phi(A) \in \mathscr{L}_{m}$ for all $A \in \mathscr{A}$ and E_{m} the set of all functions $s(\cdot, T): \Lambda_{m} \rightarrow \boldsymbol{R}$ with $T \in \mathscr{L}_{m} \cdot E_{m}$ is a convex cone in the Banach space $\mathscr{C}\left(\Lambda_{m}\right)$ of all realvalued continuous functions on Λ_{m}. Therefore $V_{m}:=E_{m}-E_{m}$ is a linear subspace of $\mathscr{C}\left(\Lambda_{m}\right)$. The norm on $\mathscr{C}\left(\Lambda_{m}\right)$ is denoted by $\left\|\|_{1}\right.$. Finally $\mathscr{L}_{+}\left(B(\Omega, \mathscr{A}) ; V_{m}\right)$ denotes the set of all continuous, linear mappings $\varphi: B(\Omega, \mathscr{A}) \rightarrow V_{m}$, where $\varphi(f) \in E_{m}$ for all $f \in B_{+}(\Omega, \mathscr{A})$.

Theorem 1. The mapping $\pi: B A(\Omega, \mathscr{A}, m) \rightarrow \mathscr{L}_{+}\left(B(\Omega, \mathscr{A}) ; V_{m}\right)$ defined by $(\pi(\Phi))(f):=\int f d \Phi$ is one-to-one and onto for all $m \in N$.

Proof. (1) First we show that π is well defined. Choose $\Phi \in$ $B A(\Omega, \mathscr{A}, m)$ and $f \in B(\Omega, \mathscr{A})$. By Lemma 3(a) the function $\int f d \Phi$ is well defined and by Lemma $3(\mathrm{~b}) \int f^{+} d \Phi$ and $\int f^{-} d \Phi$ are sublinear functionals on \boldsymbol{R}^{m}. With the Hahn-Banach theorem it follows that

$$
\left(\int f^{+} d \Phi\right)(x)=\sup \left\{\langle x, y\rangle:\langle\cdot, y\rangle \leqq\left(\int f^{+} d \Phi\right)(\cdot)\right\}
$$

and

$$
\left(\int f^{-} d \Phi\right)(x)=\sup \left\{\langle x, y\rangle:\langle\cdot, y\rangle \leqq\left(\int f^{-} d \Phi\right)(\cdot)\right\}
$$

for every $x \in \boldsymbol{R}^{m}$. The set $T_{ \pm}:=\left\{y \in \boldsymbol{R}^{m}:\langle\cdot, y\rangle \leqq\left(\int f^{ \pm} d \Phi\right)(\cdot)\right\}$ is an element of \mathscr{L}_{m} and therefore $\int f^{ \pm} d \Phi \in E_{m} . \quad$ Since $\int f d \Phi=\int f^{+} d \Phi-$ $\int f^{-} d \Phi, \int f d \Phi \in V_{m}$. Obviously the equality

$$
(\pi(\Phi))(\alpha f+\beta g)=\alpha(\pi(\Phi))(f)+\beta(\pi(\Phi))(g)
$$

holds and

$$
\left\|\int f d \Phi-\int g d \Phi\right\|_{1} \leqq\|f-g\| \sup _{x \in m}\left|\mu_{x, \Phi}\right|(\Omega)
$$

for all $f, g \in B(\Omega, \mathscr{A})$ and $\alpha, \beta \in \boldsymbol{R}$. So π is well defined.
(2) Second we show that $\pi(\Phi)=\pi\left(\Phi^{\prime}\right)$ implies $\Phi=\Phi^{\prime}$ for all $\Phi, \Phi^{\prime} \in B A(\Omega, \mathscr{A}, m)$. Let $\Phi, \Phi^{\prime} \in B A(\Omega, \mathscr{A}, m)$ and $\pi(\Phi)=\pi\left(\Phi^{\prime}\right)$. Then $\mu_{x, 4}(A)=\mu_{x, \Phi}(A)$ for every $x \in \Lambda_{m}$ and $A \in \mathscr{A}$. The Hahn-Banach theorem and $\Phi(A), \Phi^{\prime}(A) \in \mathscr{L}_{m}$ for every $A \in \mathscr{A}$ imply $\Phi=\Phi^{\prime}$.
(3) Third we have to show that for an arbitrarily chosen $\varphi \in \mathscr{L}_{+}\left(B(\Omega, \mathscr{A}) ; V_{m}\right)$ there is a $\Phi \in B A(\Omega, \mathscr{A}, m)$ with $\pi(\Phi)=\varphi$. Choose $\rho \in \mathscr{L}_{+}\left(B(\Omega, \mathscr{A}) ; V_{m}\right)$. For every $f \in B_{+}(\Omega, \mathscr{A})$ there exists
only one $T(f) \in \mathscr{L}_{m}$ with $\varphi(f)=s(\cdot, T(f))$. Define $\Phi \mid \mathscr{A}$ by $\Phi(A):=$ $T\left(\chi_{A}\right)$, where χ_{A} is the characteristic function of A. Since φ is linear the equation

$$
T\left(\chi_{A_{1}}+\chi_{A_{2}}\right)=T\left(\chi_{A_{1}}\right)+T\left(\chi_{A_{2}}\right)
$$

holds for disjoint sets $A_{1}, A_{2} \in \mathscr{A}$, i.e., $\Phi \mid \mathscr{A}$ is an additive set-valued measure with $\Phi(A) \in \mathscr{L}_{m}$ for all $A \in \mathscr{A}$. Moreover, by (1.2) and the continuity of φ, it follows

$$
\begin{aligned}
\delta(\Phi(A),\{0\}) & =\left\|s\left(\cdot, T\left(\chi_{A}\right)\right)\right\|_{1} \\
& =\left\|\varphi\left(\chi_{A}\right)\right\|_{1} \\
& \leqq \sup \left\{\|\varphi(g)\|_{1}: g \in B(\Omega, \mathscr{A}),\|g\| \leqq 1\right\}<\infty
\end{aligned}
$$

for all $A \in \mathscr{A}$. Therefore Φ is bounded. Let $x \in \Lambda_{m}$. Then $\varphi_{x}: B(\Omega, \mathscr{A}) \rightarrow \boldsymbol{R}$ with $\varphi_{x}(f):=(\varphi(f))(x)$ is a continuous linear functional and by the Riesz representation theorem ([7], Theorem 1, p. 258) there is a bounded, additive scalar measure $\lambda_{x} \mid \mathscr{A}$ with $\varphi_{x}(f)=$ $\int f d \lambda_{x}$ for $f \in B(\Omega, \mathscr{A})$. So

$$
\mu_{x},(A)=s\left(x, T\left(\chi_{A}\right)\right)=\varphi_{x}\left(\chi_{A}\right)=\lambda_{x}(A)
$$

holds for all $A \in \mathscr{A}$. That means $\pi(\Phi)=\varphi$.
$B(\Omega, \mathscr{A})^{\prime}$ denotes the topological dual of $B(\Omega, \mathscr{A})$ and $b a(\Omega, \mathscr{A})$ the set of all bounded, additive scalar measures ν on \mathscr{A}. So we get the following corollary of Theorem 1.

Corollary 1. There is an isometric isomorphism between $B(\Omega, \mathscr{A})^{\prime}$ and $b a(\Omega, \mathscr{A})$ such that the corresponding elements η and ν satisfy the identity $\eta(f)=\int$ fdע for all $f \in B(\Omega, \mathscr{A})$.

Proof. We have to show only that each $\eta \in B(\Omega, \mathscr{A})^{\prime}$ determines a $\nu \in b a(\Omega, \mathscr{A})$ such that $\int f d \nu=\eta(f)$ for $f \in B(\Omega, \mathscr{A})$. Let $\eta \in$ $B(\Omega, \mathscr{A})^{\prime}$ and $(\varphi(f))(x):=x \eta(f)$ for $f \in B(\Omega, \mathscr{A})$ and $x \in[-1,1] . \quad \varphi$ is an element of $\mathscr{L}_{+}\left(B(\Omega, \mathscr{A}) ; V_{1}\right)$ and by Theorem 1 there exists a $\Phi \in B A(\Omega, \mathscr{A}, 1)$ with $\pi(\Phi)=\varphi$, i.e., $\int f d \mu_{x, n}=x \eta(f)$ for $f \in B(\Omega, \mathscr{A})$ and $x \in[-1,1]$. Therefore

$$
\eta\left(\chi_{A}\right)=\sup \{y: y \in \Phi(A)\}
$$

and

$$
-\eta\left(\chi_{A}\right)=-\inf \{y: y \in \Phi(A)\}
$$

for $A \in \mathscr{A}$. This means that $\Phi(A)$ consists only of one point $\nu(A)$ and ν is an element of $b a(\Omega, \mathscr{A})$. Furthermore

$$
\int f d \nu=\left(\int f d \Phi\right)(1)=\eta(f) \text { for } f \in B(\Omega, \mathscr{A})
$$

Now let Ω be a topological space. A σ-additive set-valued measure $\Phi \mid \mathscr{B}(\Omega)$ on the Borel sets $\mathscr{B}(\Omega)$ of Ω is called regular, iff $\mu_{x, \phi} \mid \mathscr{B}(\Omega)$ is regular for every $x \in \Lambda_{m} . \quad R C A(\Omega, \mathscr{B}(\Omega), m)$ denotes the set of all regular, σ-additive set-valued measures $\Phi \mid \mathscr{B}(\Omega)$ such that $\Phi(B) \in \mathscr{L}_{m}$ for $B \in \mathscr{B}(\Omega)$. If Ω is a compact Hausdorff space, $\mathscr{C}:=\mathscr{C}(\Omega)$ and \mathscr{C}^{\prime} the topological dual of \mathscr{C} then $\mathscr{L}_{+}^{b}\left(\mathscr{C}, V_{m}\right)$ denotes the set of all $\varphi \in \mathscr{L}_{+}\left(\mathscr{C}, V_{m}\right)$ such that: there is a $\eta \in \mathscr{C}^{\prime}$ with $\|\varphi(f)\|_{1} \leqq \eta(|f|)$ for $f \in \mathscr{G}$.

Theorem 2. If Ω is a compact Hausdorff space then the mapping $\pi: R C A(\Omega, \mathscr{P}(\Omega), m) \rightarrow \mathscr{L}_{+}^{b}\left(\mathscr{C}, V_{m}\right)$ defined by $(\pi(\Phi))(f):=\int f d \Phi$ is one-to-one and onto for all $m \in N$.

Proof. By Lemma 2 each $\Phi \in R C A(\Omega, \mathscr{B}(\Omega), m)$ is bounded and hence $R C A(\Omega, \mathscr{B}(\Omega), m) \subset B A(\Omega, \mathscr{B}(\Omega), m)$. Analogous to (1) of Theorem 1 one shows $\pi(R C A(\Omega, \mathscr{B}(\Omega), m)) \subset \mathscr{C}_{+}\left(\mathscr{C}, V_{m}\right)$. Let $\Phi \in$ $R C A(\Omega, \mathscr{B}(\Omega), m)$. By Lemma 2 the σ-additive scalar measure $\hat{\mu}=\sum_{i=1}^{2 m}\left|\mu_{e_{i}, \phi}\right|$ is finite and

$$
\begin{aligned}
\|(\pi(\Phi))(f)\|_{1} & \leqq \sup _{x \in \Lambda_{m}} \int|f| d\left|\mu_{x, \phi}\right| \\
& \leqq \int|f| d \hat{\mu}
\end{aligned}
$$

therefore $\pi(\Phi) \in \mathscr{L}_{+}^{b}\left(\mathscr{C}, V_{m}\right)$. If Φ^{\prime} is also an element of $R C A(\Omega$, $\mathscr{B}(\Omega), m)$, then $\pi(\Phi)=\pi\left(\Phi^{\prime}\right)$ implies $\int f d \mu_{x, \phi}=\int f d \mu_{x, \phi^{\prime}}$ for $x \in \Lambda_{m}$, $f \in \mathscr{C}$, and by the regularity of $\mu_{x, \Phi}$ and $\mu_{x, \Phi^{\prime}}$ we have $\Phi=\Phi^{\prime}$. Now we show that for each $\varphi \in \mathscr{L}_{+}^{b}\left(\mathscr{C}, V_{m}\right)$ there is a $\Phi \in R C A(\Omega, \mathscr{B}(\Omega), m)$ such that $\pi(\Phi)=\varphi$. Let $\varphi \in \mathscr{L}_{+}^{b}\left(\mathscr{C}, V_{m}\right)$. By the Riesz representation theorem ([7], Theorem 3, p. 265) there is a nonnegative, regular, σ-additive scalar measure $\lambda_{\varphi} \mid \mathscr{B}(\Omega)$ with $\|\varphi(f)\|_{1} \leqq \int|f| d \lambda_{\varphi}$ for $f \in \mathscr{C}$. Furthermore for each $f \in \mathscr{C}, f \geqq 0$, there is only one $T(f) \in \mathscr{L}_{m}$ such that $\varphi(f)=s(\cdot, T(f))$. Let $B \in \mathscr{B}(\Omega)$. Since λ_{φ} is regular there exists a sequence f_{1}, f_{2}, \cdots, in \mathscr{C} such that $0 \leqq f_{n} \leqq 1$ and $\int\left|\chi_{B}-f_{n}\right| d \lambda_{\varphi} \rightarrow 0$. (1.2) implies

$$
\begin{aligned}
\delta\left(T\left(f_{n}\right), T\left(f_{k}\right)\right) & =\left\|\varphi\left(f_{n}-f_{\kappa}\right)\right\|_{1} \\
& \leqq \int\left|f_{n}-f_{\kappa}\right| d \lambda_{\varphi} \xrightarrow{n, \kappa \rightarrow \infty} 0
\end{aligned}
$$

and by (1.1) there is a $\widetilde{T}(B) \in \mathscr{L}_{m}$ with $\delta\left(T\left(f_{n}\right), \widetilde{T}(B)\right) \rightarrow 0$. Define $\Phi \mid \mathscr{B}(\Omega)$ by $\Omega(B):=\widetilde{T}(B)$. The definition is independent of the choice of the sequence f_{1}, f_{2}, \cdots, and, since φ is linear and $\delta\left(T_{1}+T_{2}, T_{1}^{\prime}+T_{2}^{\prime}\right) \leqq$ $\delta\left(T_{1}, T_{1}^{\prime}\right)+\delta\left(T_{2}, T_{2}^{\prime}\right)$ for $T_{i}, T_{i}^{\prime} \in \mathscr{L}_{m}(i=1,2)$, we have $\widetilde{T}\left(B_{1} \cup B_{2}\right)=$ $\widetilde{T}\left(B_{1}\right)+\widetilde{T}\left(B_{2}\right)$ for disjoint sets $B_{1}, B_{2} \in \mathscr{P}(\Omega)$, i.e., $\Phi \mid \mathscr{F}(\Omega)$ is an additive set-valued measure with $\Phi(B) \in \mathscr{L}_{m}$ for $B \in \mathscr{B}(\Omega)$. Furthermore, Φ is σ-additive, since by (1.2) and Lemma 4

$$
\delta\left(\Phi\left(B_{n}\right),\{0\}\right) \leqq \lambda_{\varphi}\left(B_{n}\right) \longrightarrow 0
$$

for every sequence B_{1}, B_{2}, \cdots in $\mathscr{B}(\Omega)$ such that $B_{n} \downarrow \varnothing$. Let $x \in \Lambda_{m}$ and $\varphi_{x}(f):=(\varphi(f))(x)$ for $f \in \mathscr{C} . \quad \varphi_{x}$ is a continuous linear functional on \mathscr{C} and by the Riesz representation theorem ([7], Theorem 3, p. 265) there is a regular, σ-additive scalar measure ν_{x} on $\mathscr{B}(\Omega)$ such that $\int f d \nu_{x}=\varphi_{x}(f)$ for $f \in \mathscr{C}$. If we can show the equality $\nu_{x}=\mu_{x, \varphi}$, then the regularity of Φ and $\pi(\Phi)=\varphi$ follows. Since $\left|\int f d \nu_{x}\right| \leqq \int|f| d \lambda_{\varphi}$ for $f \in \mathscr{C}$ and because of the regularity of ν_{x} and λ_{φ} the inequality

$$
\left|\nu_{x}\right|(U) \leqq \lambda_{\varphi}(U)
$$

is true for every open subset U of Ω and therefore

$$
\begin{equation*}
\left|\nu_{x}\right|(B) \leqq \lambda_{\varphi}(B) \tag{}
\end{equation*}
$$

for $B \in \mathscr{B}(\Omega)$. If $B \in \mathscr{B}(\Omega)$ then there is a sequence f_{1}, f_{2}, \cdots in \mathscr{C} such that $0 \leqq f_{n} \leqq 1$ and $\int\left|\chi_{B}-f_{n}\right| d \lambda_{\varphi} \rightarrow 0$. By (*)

$$
\int\left|\chi_{B}-f_{n}\right| d\left|\nu_{x}\right| \longrightarrow 0
$$

and therefore

$$
\mu_{x, \phi}(B)=\lim _{n \rightarrow \infty} s\left(x, T\left(f_{n}\right)\right)=\lim _{n \rightarrow \infty} \int f_{n} d \nu_{x}=\nu_{x}(B)
$$

$r c a(\Omega, \mathscr{B}(\Omega))$ denotes the set of all regular, σ-additive scalar measures ν on $\mathscr{B}(\Omega)$. From Theorem 2 we get the following corollary.

Corollary 2. If Ω is a compact Hausdorff space, then there is an isometric isomorphism between \mathscr{C}^{\prime} and rca $(\Omega, \mathscr{B}(\Omega))$ such that the corresponding elements η and ν satisfy the identity $\eta(f)=\int f d \nu$ for all $f \in \mathscr{C}$.

Proof. We have to show only that each $\eta \in \mathscr{C}^{\prime}$ determines a $\nu \in \operatorname{rca}(\Omega, \mathscr{P}(\Omega))$ such that $\int f d \nu=\eta(f)$ for $f \in \mathscr{C}$.

Let $\eta \in \mathscr{C}^{\prime}$. Then there are positive linear functionals $\eta_{1}, \eta_{2} \in \mathscr{C}^{\prime}$ with $\eta=\eta_{1}-\eta_{2}$. For each $i=1,2$ we define $\left(\varphi_{i}(f)\right)(x):=x \cdot \eta_{i}(f)$ for $f \in \mathscr{C}$ and $x \in[-1,1] . \quad \varphi_{i}$ is an element of $\mathscr{L}_{+}\left(\mathscr{C}, V_{1}\right)$ and since

$$
\left\|\mathscr{P}_{i}(f)\right\|_{1} \leqq\left|\eta_{i}(f)\right| \leqq \eta_{i}(|f|)
$$

for $f \in \mathscr{C}$, we conclude $\varphi_{i} \in \mathscr{L}_{+}^{b}\left(\mathscr{C}, V_{1}\right)$ for $i=1,2$. By Theorem 2 there is a $\Phi_{i} \in R C A(\Omega, \mathscr{B}(\Omega), 1)$ such that $\int f d \mu_{x, \Phi_{i}}=x \cdot \eta_{i}(f)$ for $x \in[-1,1], f \in \mathscr{C}$ and $i=1$, 2. Therefore $\int f d\left(\mu_{1, \varphi_{i}}+\mu_{-1, \Phi_{i}}\right)=0$ for every $f \in \mathscr{C}$ and the regularity of $\mu_{x, \Phi_{i}}$ implies $\mu_{1, \Phi_{i}}=-\mu_{-1, \Phi_{i}}$ for $i=1,2$. Since

$$
\mu_{1, \Phi_{i}}(B)=\sup \left\{y: y \in \Phi_{i}(B)\right\}
$$

and

$$
\mu_{-1, \Phi}(B)=-\inf \left\{y: y \in \Phi_{i}(B)\right\},
$$

the set $\Phi_{i}(B)$ consists of only one point $\nu_{i}(B)$ for every $B \in \mathscr{B}(\Omega)$ and ν_{i} is an element of $\operatorname{rca}(\Omega, \mathscr{B}(\Omega))$ for $i=1,2$. The σ-additive measure $\nu:=\nu_{1}-\nu_{2}$ is also an element of $r c a(\Omega, \mathscr{P}(\Omega))$ and

$$
\begin{aligned}
\int f d \nu & =\int f d \nu_{1}-\int f d \nu_{2} \\
& =\left(\int f d \Phi_{1}\right)(1)-\left(\int f d \Phi_{2}\right)(1) \\
& =\eta_{1}(f)-\eta_{2}(f) \\
& =\eta(f)
\end{aligned}
$$

for every $f \in \mathscr{C}$.

References

1. Z. Artstein, Set-Valued Measures, Trans. Amer. Math. Soc., 1965 (1972), 103-121.
2. R. J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl., 12 (1965), 1-12.
3. - Existence of competitive equilibria in markets with a continuum of traders, Econometrica, 34 (1966), 1-17.
4. G. Debreu, Integration of correspondences, in L. LeCam, J. Neyman, E. L. Scott, editors, Proc. Fifth Berkeley Symposium Math. Stat. and Probability, II, Part 1, Berkeley: University of California Press, 1967 a, 351-372.
5. G. Debreu and D. Schmeidler, The Radon-Nikodym derivative of a correspondence, in LeCam, J. Neyman, E. L. Scott, editors, Proc. Sixth Berkeley Symposium Math. Stat. and Probability, Berkeley: University of California Press, 1972, 41-56.
6. L. Drenowski, Additive and countably additive correspondences, Ann. Soc. Math. Pol., (1976), 25-54.
7. N. Dunford and J. Schwartz, Linear Operators, Part I, Interscience Publishers, Inc., New York, 1958.
8. H. Hermes, Calculus of set-valued functions and control, J. Math. Mech., 18 (1968/69), 47-59.
9. H. Hermes and J. P. Lasalle, Functional Analysis and Time Optimal Control, Academic Press, New York, 1969.
10. W. Hildenbrand, Core and equilibria of a large economy, Princeton University Press, 1974.
11. L. Hörmander, Sur la fonction d'appui des ensembles convexes dans un espace localement convexe, Arkiv för Math., 3 (1954), 181-186.
12. W. Rupp, σ-Additivitätskriterien für mengenwertige Inhalte und σ-Additivität des stetigen Integrals einer Korrespondenz, zur Veröffentlichung bei Manuscriptica Mathematica eingereicht, 1977.

Received October 9, 1977.
Fachbereich Mathematik
Universität Regensburg
Universitätsstr. 31
D-8400 Regensburg 2
F. R. Germany

