RIESZ-PRESENTATION OF ADDITIVE AND σ-ADDITIVE SET-VALUED MEASURES

WERNER RUPP

In this paper we generalize the well known Riesz's representation theorems for additive and σ -additive scalar measures to the case of additive and σ -additive set-valued measures.

1. Introduction. Consider a nonvoid set Ω and an algebra \mathscr{N} over Ω . An additive set-valued measure Φ on the field (Ω, \mathscr{N}) is a function $\Phi: \mathscr{N} \to \{T \subset \mathbb{R}^m: T \neq \emptyset\}$ from \mathscr{N} into the class of all non-empty subsets of \mathbb{R}^m , which is additive, i.e.,

$$\varnothing \neq \varPhi(A) \subset R^m$$
 for all $A \in \mathscr{M}$

and

$$\Phi(A_1 \cup A_2) = \Phi(A_1) + \Phi(A_2)$$

for every pair of disjoint sets $A_1, A_2 \in \mathscr{N}$. If \mathscr{N} is a σ -algebra then φ is called a σ -additive set-valued measure, iff

$$\varPhi\Bigl(\bigcup_{n=1}^{\infty}A_n\Bigr)=\sum_{n=1}^{\infty}\varPhi(A_n)$$

for every sequence A_1, A_2, \cdots of mutually disjoint elements of \mathcal{M} . Here the sum $\sum_{n=1}^{\infty} T_n$ of the subsets T_1, T_2, \cdots of \mathbb{R}^m consists of all the vectors: " $x = \sum_{n=1}^{\infty} x_n$ with $x_n \in T_n$ for $n \in N$. In the sequel, " $\Phi \mid \mathscr{M}$ is an additive [resp. σ -additive] set-valued measure" is an abbreviation for an algebra [resp. a σ -algebra] over Ω and a function $\Phi: \mathscr{A} \to$ $\{T \subset \mathbb{R}^m: T \neq \emptyset\}$ which is additive [resp. σ -additive]. The calculus of additive and σ -additive set-valued measures has recently been developed by several authors (see [2], [4], [5], [1] and [6]) and the ideas and techniques have many interesting applications in mathematical economics (see [3], [4] and [10]), in control theory (see [8] and [9]), and other mathematical fields. Additive and σ -additive set-valued measures have also been discussed for their own mathematical interest, because they extend the theory of scalar additive and σ -additive measures in a natural way. This is the background of the present paper. Theorems 1 and 2 extend the known representation theorems of Riesz for bounded, additive [resp. regular, σ additive] scalar measures to the case of bounded, additive [resp. regular. σ -additive] set-valued measures.

WERNER RUPP

2. Some properties of additive set-valued measures. The following Lemma 1 is well known and has appeared in the literature in several forms (see [1], Proposition 3.1, p. 105). We state it here in a form suitable for the sequel, and for completeness we also give the proof.

LEMMA 1. If $\Phi \mid \mathscr{N}$ is an additive [resp. σ -additive] set-valued measure, then the function $\mu_{x,\phi} \mid \mathscr{N}$ with

$$\mu_{x, \emptyset}(A)$$
: = sup { $\langle \langle x, y \rangle$: $y \in \Phi(A)$ }

is an additive [resp. σ -additive] scalar measure for all $x \in \mathbb{R}^m$.

Proof. The set function $\mu_{x,\varphi}|_{\mathscr{N}}$ is well defined and with values in $(-\infty, +\infty]$. The additivity of $\mu_{x,\gamma}$ is trivial. Let A_1, A_2, \cdots be a sequence of mutually disjoint sets $A_n \in \mathscr{N}$ and $A = \bigcup_{n=1}^{\infty} A_n$. If $z \in \Phi(A)$ then $z = \sum_{n=1}^{\infty} z_n$, where $z_n \in \Phi(A_n)$ for $n \in N$. Then

(1)
$$\langle x, z \rangle = \sum_{n=1}^{\infty} \langle x, z_n \rangle \leq \liminf_{\kappa} \inf_{x \in I} \sum_{n=1}^{\kappa} \mu_{x, n}(A_n)$$

and therefore $\mu_{x,\phi}(A) \leq \liminf_{\kappa} \sum_{n=1}^{\kappa} \mu_{x,\phi}(A_n)$. If $\mu_{x,\phi}(A) = \infty$ there is nothing else to show. If $\mu_{x,\phi}(A) < \infty$, the additivity implies $\mu_{x,\psi}(A_n) < \infty$ for every *n*. Given $\varepsilon > 0$, choose for each *n* an element $y_n \in \Phi(A_n)$ such that $\mu_{x,\phi}(A_n) \leq \langle x, y_n \rangle + \varepsilon \cdot 2^{-n}$. Denote $\widetilde{y}_{\kappa} = \sum_{n=1}^{\kappa} y_n + \sum_{n>\kappa} z_n$. Then $\widetilde{y}_{\kappa} \in \Phi(A)$ and

(2)
$$\limsup_{\kappa} \sup_{x \in I} \sum_{n=1}^{\kappa} \mu_{x,\phi}(A_n) - \varepsilon \leq \limsup_{\kappa} \langle x, \tilde{y}_k \rangle \leq \mu_{x,\phi}(A) .$$

Since ε is arbitrarily small, (1) and (2) imply $\mu_{x,\phi}(A) = \sum_{n=1}^{\infty} \mu_{x,\phi}(A_n)$.

We call an additive set-valued measure $\Phi \mid \mathscr{N}$ bounded, iff $\bigcup_{A \in \mathscr{N}} \Phi(A)$ is a bounded subset of \mathbb{R}^m . In the case that Φ is σ -additive the following Lemma 2 is a result of Z. Artstein (see [1], p. 105). If Φ is only additive, the proof is given in [12], Korollar 2a. $|\nu|$ denotes the total variation of an additive scalar measure $\nu \mid \mathscr{N}$ and e_1, \dots, e_{2m} the 2m vectors of the form $(0, \dots, \pm 1, \dots, 0)$.

LEMMA 2. Let $\Phi|\mathscr{N}$ be a bounded, additive set-valued measure [resp. a σ -additive set-valued measure with bounded $\Phi(\Omega)$] and $\hat{\mu}$: = $\sum_{i=1}^{2m} |\mu_{e_i,\Phi}|$. Then $\hat{\mu}|\mathscr{N}$ is a nonnegative, finite additive [resp. σ -additive] scalar measure with

$$\sup \{ |y| \colon y \in \Phi(A) \} \leq \hat{\mu}(A)$$

for all $A \in \mathcal{M}$.

446

Let $B(\Omega, \mathscr{M})$ denote the set of all uniform limits of finite linear combinations characteristic functions of sets in \mathscr{M} and $B_+(\Omega, \mathscr{M})$ the subset of all nonnegative functions of $B(\Omega, \mathscr{M})$. $B(\Omega, \mathscr{M})$ is a Banach space. The norm on $B(\Omega, \mathscr{M})$ is denoted by $|| \quad ||.$

LEMMA 3. If $\Phi \mid \mathscr{A}$ is a bounded, additive set-valued measure, then:

(a) Every $f \in B(\Omega, \mathscr{A})$ is $\mu_{x,\varphi}$ -integrable for all $x \in \mathbb{R}^m$.

(b) If $f \in B_+(\Omega, \mathcal{A})$ then $\int f d\Phi$ with $(\int f d\Phi)(x) := \int f d\mu_{x,\pi}$ is a sublinear functional on \mathbb{R}^m .

Proof. (a) Choose $x \in \mathbb{R}^m$ and $A \in \mathscr{A}$. By Lemma 1 $\mu_{x,\phi}$ is an additive scalar measure and by Lemma 2

$$|\mu_{x,\emptyset}(A)| \leq |x|\,\hat{\mu}(A) \;.$$

Therefore

$$|\mu_{x,\phi}|(A) \leq |x| \hat{\mu}(A)$$

and hence

$$\left|\int f d\mu_{x, \emptyset}\right| \leq \int |f| d \, |\mu_{x, \emptyset}| \leq ||f|| \, |\mu_{x, \emptyset}|(\Omega) < \infty \quad \text{for all} \quad f \in B(\Omega, \mathscr{M}) \; .$$

(b) The function $\mu_{\cdot,\phi}(A) | \mathbb{R}^m$ with $(\mu_{\cdot,\phi}(A))(x) := \mu_{x,\phi}(A)$ is sublinear for every $A \in \mathscr{M}$. Therefore $\int t d\Phi$ is sublinear for every simple function $t \in B_+(\Omega, \mathscr{M})$ and hence $\int f d\Phi$ for every $f \in B_+(\Omega, \mathscr{M})$.

Consider the system (\mathcal{K}, δ) of all nonvoid, compact subsets of \mathbb{R}^m with the Hausdorff distance δ and $\mathcal{L}_m := \{K \in \mathcal{K}: K \text{ convex}\}$. (\mathcal{K}, δ) is a metric space and

(1.1)
$$(\mathscr{L}_m, \delta)$$
 is complete

(see [4], (5.6), p. 362). Let Λ_m be the closed unit ball in \mathbb{R}^m and $s: \mathscr{L}_m \to \mathscr{C}(\Lambda_m)$ with $s(T): = s(\cdot, T)$ and $s(x, T): = \sup \{\langle x, y \rangle : y \in T\}$ for $x \in \Lambda_m$, $T \in \mathscr{L}_m$. By [11]

(1.2) s is an isometric function.

LEMMA 4. If $\Phi \mid \mathscr{S}$ is an additive set-valued measure such that $\Phi(A)$ is compact for all $A \in \mathscr{S}$, then Φ is σ -additive iff $\delta(\Phi(A_n), \{0\}) \to 0$ for every sequence $A_1, A_2, \dots, \text{ in } \mathscr{S} \text{ with } A_n \downarrow \emptyset$.

Proof. See [12], Satz 1 or [6], Prop. 3.4.

WERNER RUPP

3. Representation theorems. Our aim is to identify certain additive [resp. σ -additive] set-valued measures as linear mappings between suitable linear topological spaces. Let $BA(\Omega, \mathcal{M}, m)$ be the set of all bounded, additive set-valued measures $\Phi \mid \mathcal{M}$ with $\Phi(A) \in \mathcal{L}_m$ for all $A \in \mathcal{M}$ and E_m the set of all functions $s(\cdot, T): \Lambda_m \to R$ with $T \in \mathcal{L}_m \cdot E_m$ is a convex cone in the Banach space $\mathscr{C}(\Lambda_m)$ of all realvalued continuous functions on Λ_m . Therefore $V_m := E_m - E_m$ is a linear subspace of $\mathscr{C}(\Lambda_m)$. The norm on $\mathscr{C}(\Lambda_m)$ is denoted by $|| \quad ||_1$. Finally $\mathcal{L}_+(B(\Omega, \mathcal{M}); V_m)$ denotes the set of all continuous, linear mappings $\varphi: B(\Omega, \mathcal{M}) \to V_m$, where $\varphi(f) \in E_m$ for all $f \in B_+(\Omega, \mathcal{M})$.

THEOREM 1. The mapping $\pi: BA(\Omega, \mathcal{A}, m) \to \mathscr{L}_+(B(\Omega, \mathcal{A}); V_m)$ defined by $(\pi(\Phi))(f): = \int f d\Phi$ is one-to-one and onto for all $m \in N$.

Proof. (1) First we show that π is well defined. Choose $\Phi \in BA(\Omega, \mathcal{M}, m)$ and $f \in B(\Omega, \mathcal{M})$. By Lemma 3(a) the function $\int f d\Phi$ is well defined and by Lemma 3(b) $\int f^+ d\Phi$ and $\int f^- d\Phi$ are sublinear functionals on \mathbb{R}^m . With the Hahn-Banach theorem it follows that

$$\Bigl(\int f^+ d arPhi\Bigr)(x) = \sup \Bigl\{ \langle x, \, y
angle : \langle \cdot, \, y
angle \leqq \Bigl(\int f^+ d arPhi\Bigr)(\cdot) \Bigr\}$$

and

$$\Bigl(\int f^- d \varPhi\Bigr)(x) = \sup \Bigl\{ \langle x, \, y
angle : \langle \cdot, \, y
angle \leq \Bigl(\int f^- d \varPhi\Bigr)(\cdot) \Bigr\}$$

for every $x \in \mathbb{R}^m$. The set $T_{\pm} := \left\{ y \in \mathbb{R}^m : \langle \cdot, y \rangle \leq \left(\int f^{\pm} d\Phi \right) (\cdot) \right\}$ is an element of \mathscr{L}_m and therefore $\int f^{\pm} d\Phi \in E_m$. Since $\int f d\Phi = \int f^+ d\Phi - \int f^- d\Phi$, $\int f d\Phi \in V_m$. Obviously the equality

$$(\pi(\varPhi))(lpha f + eta g) = lpha(\pi(\varPhi))(f) + eta(\pi(\varPhi))(g)$$

holds and

$$\left\|\int f d arphi - \int g d arphi
ight\|_{_{1}} \leq \|f - g\| \sup_{x \in [m]} |\mu_{x, oldsymbol{\theta}}|(arOmega)|$$

for all $f, g \in B(\Omega, \mathcal{M})$ and $\alpha, \beta \in \mathbf{R}$. So π is well defined.

(2) Second we show that $\pi(\Phi) = \pi(\Phi')$ implies $\Phi = \Phi'$ for all $\Phi, \Phi' \in BA(\Omega, \mathcal{A}, m)$. Let $\Phi, \Phi' \in BA(\Omega, \mathcal{A}, m)$ and $\pi(\Phi) = \pi(\Phi')$. Then $\mu_{x, \Phi'}(A) = \mu_{x, \Phi'}(A)$ for every $x \in \Lambda_m$ and $A \in \mathcal{A}$. The Hahn-Banach theorem and $\Phi(A), \Phi'(A) \in \mathcal{L}_m$ for every $A \in \mathcal{M}$ imply $\Phi = \Phi'$.

(3) Third we have to show that for an arbitrarily chosen $\varphi \in \mathscr{L}_+(B(\Omega, \mathscr{A}); V_m)$ there is a $\varphi \in BA(\Omega, \mathscr{A}, m)$ with $\pi(\varphi) = \varphi$. Choose $\varphi \in \mathscr{L}_+(B(\Omega, \mathscr{A}); V_m)$. For every $f \in B_+(\Omega, \mathscr{A})$ there exists only one $T(f) \in \mathscr{L}_m$ with $\varphi(f) = s(\cdot, T(f))$. Define $\Phi \mid \mathscr{A}$ by $\Phi(A) := T(\chi_A)$, where χ_A is the characteristic function of A. Since φ is linear the equation

$$T(\chi_{A_1} + \chi_{A_2}) = T(\chi_{A_1}) + T(\chi_{A_2})$$

holds for disjoint sets A_1 , $A_2 \in \mathscr{A}$, i.e., $\Phi | \mathscr{A}$ is an additive set-valued measure with $\Phi(A) \in \mathscr{G}_m$ for all $A \in \mathscr{A}$. Moreover, by (1.2) and the continuity of φ , it follows

$$egin{aligned} \delta(arPsi_{A}), \left\{0
ight\}) &= ||s(\cdot, \ T(\chi_{\scriptscriptstyle A}))||_{1} \ &= ||arphi(\chi_{\scriptscriptstyle A})||_{1} \ &\leq \sup\left\{||arphi(g)||_{1} \colon g \in B(arOmega, \mathscr{A}), \ ||g|| \leq 1
ight\} < \infty \end{aligned}$$

for all $A \in \mathscr{A}$. Therefore Φ is bounded. Let $x \in A_m$. Then $\varphi_x: B(\Omega, \mathscr{A}) \to \mathbb{R}$ with $\varphi_x(f):=(\varphi(f))(x)$ is a continuous linear functional and by the Riesz representation theorem ([7], Theorem 1, p. 258) there is a bounded, additive scalar measure $\lambda_x | \mathscr{A}$ with $\varphi_x(f) = \int f d\lambda_x$ for $f \in B(\Omega, \mathscr{A})$. So

$$\mu_{x}$$
, $(A) = s(x, T(\chi_A)) = \varphi_x(\chi_A) = \lambda_x(A)$

holds for all $A \in \mathscr{N}$. That means $\pi(\Phi) = \varphi$.

 $B(\Omega, \mathscr{A})'$ denotes the topological dual of $B(\Omega, \mathscr{A})$ and $ba(\Omega, \mathscr{A})$ the set of all bounded, additive scalar measures ν on \mathscr{A} . So we get the following corollary of Theorem 1.

COROLLARY 1. There is an isometric isomorphism between $B(\Omega, \mathscr{A})'$ and $ba(\Omega, \mathscr{A})$ such that the corresponding elements η and ν satisfy the identity $\eta(f) = \int f d\nu$ for all $f \in B(\Omega, \mathscr{A})$.

Proof. We have to show only that each $\eta \in B(\Omega, \mathscr{M})'$ determines a $\nu \in ba(\Omega, \mathscr{M})$ such that $\int f d\nu = \eta(f)$ for $f \in B(\Omega, \mathscr{M})$. Let $\eta \in B(\Omega, \mathscr{M})'$ and $(\varphi(f))(x) := x\eta(f)$ for $f \in B(\Omega, \mathscr{M})$ and $x \in [-1, 1]$. φ is an element of $\mathscr{L}_+(B(\Omega, \mathscr{M}); V_1)$ and by Theorem 1 there exists a $\varphi \in BA(\Omega, \mathscr{M}, 1)$ with $\pi(\varphi) = \varphi$, i.e., $\int f d\mu_{x, \vartheta} = x\eta(f)$ for $f \in B(\Omega, \mathscr{M})$ and $x \in [-1, 1]$. Therefore

$$\eta(\chi_A) = \sup \{y \colon y \in \varPhi(A)\}$$

and

$$-\eta(\chi_{\scriptscriptstyle A}) = -\inf \left\{y \colon y \in arPsi_{\scriptscriptstyle A})
ight\}$$

for $A \in \mathscr{M}$. This means that $\Phi(A)$ consists only of one point $\nu(A)$ and ν is an element of $ba(\Omega, \mathscr{M})$. Furthermore

$$\int f d\nu = \left(\int f d\Phi\right)(1) = \eta(f) \quad \text{for} \quad f \in B(\Omega, \mathcal{M}) \ .$$

Now let Ω be a topological space. A σ -additive set-valued measure $\Phi \mid \mathscr{B}(\Omega)$ on the Borel sets $\mathscr{B}(\Omega)$ of Ω is called *regular*, iff $\mu_{x, \Phi} \mid \mathscr{B}(\Omega)$ is regular for every $x \in A_m$. $RCA(\Omega, \mathscr{B}(\Omega), m)$ denotes the set of all regular, σ -additive set-valued measures $\Phi \mid \mathscr{B}(\Omega)$ such that $\Phi(B) \in \mathscr{L}_m$ for $B \in \mathscr{B}(\Omega)$. If Ω is a compact Hausdorff space, $\mathscr{C} := \mathscr{C}(\Omega)$ and \mathscr{C}' the topological dual of \mathscr{C} then $\mathscr{L}^b_+(\mathscr{C}, V_m)$ denotes the set of all $\varphi \in \mathscr{L}_+(\mathscr{C}, V_m)$ such that: there is a $\eta \in \mathscr{C}'$ with $||\varphi(f)||_1 \leq \eta(|f|)$ for $f \in \mathscr{C}$.

THEOREM 2. If Ω is a compact Hausdorff space then the mapping π : $RCA(\Omega, \mathscr{B}(\Omega), m) \to \mathscr{L}^{b}_{+}(\mathscr{C}, V_{m})$ defined by $(\pi(\Phi))(f) := \int f d\Phi$ is one-to-one and onto for all $m \in N$.

Proof. By Lemma 2 each $\Phi \in RCA(\Omega, \mathscr{B}(\Omega), m)$ is bounded and hence $RCA(\Omega, \mathscr{B}(\Omega), m) \subset BA(\Omega, \mathscr{B}(\Omega), m)$. Analogous to (1) of Theorem 1 one shows $\pi(RCA(\Omega, \mathscr{B}(\Omega), m)) \subset \mathscr{L}_+(\mathscr{C}, V_m)$. Let $\Phi \in RCA(\Omega, \mathscr{B}(\Omega), m)$. By Lemma 2 the σ -additive scalar measure $\hat{\mu} = \sum_{i=1}^{2m} |\mu_{e_i, \phi}|$ is finite and

$$egin{aligned} ||(\pi(arPhi))(f)||_1 &\leq \sup_{x \, \epsilon \, ec A_m} \int |f| \, d \, |\mu_{x, \phi}| \ &\leq \int |f| \, d \, \hat{\mu} \, \, , \end{aligned}$$

therefore $\pi(\Phi) \in \mathscr{L}_{+}^{b}(\mathscr{C}, V_{m})$. If Φ' is also an element of $RCA(\Omega, \mathscr{M}(\Omega), m)$, then $\pi(\Phi) = \pi(\Phi')$ implies $\int f d\mu_{x,\Phi} = \int f d\mu_{x,\Phi'}$ for $x \in \Lambda_{m}$, $f \in \mathscr{C}$, and by the regularity of $\mu_{x,\Phi}$ and $\mu_{x,\Phi'}$ we have $\Phi = \Phi'$. Now we show that for each $\varphi \in \mathscr{L}_{+}^{b}(\mathscr{C}, V_{m})$ there is a $\Phi \in RCA(\Omega, \mathscr{M}(\Omega), m)$ such that $\pi(\Phi) = \varphi$. Let $\varphi \in \mathscr{L}_{+}^{b}(\mathscr{C}, V_{m})$. By the Riesz representation theorem ([7], Theorem 3, p. 265) there is a nonnegative, regular, σ -additive scalar measure $\lambda_{\varphi} | \mathscr{M}(\Omega)$ with $||\varphi(f)||_{1} \leq \int |f| d\lambda_{\varphi}$ for $f \in \mathscr{C}$. Furthermore for each $f \in \mathscr{C}, f \geq 0$, there is only one $T(f) \in \mathscr{L}_{m}$ such that $\varphi(f) = s(\cdot, T(f))$. Let $B \in \mathscr{M}(\Omega)$. Since λ_{φ} is regular there exists a sequence f_{1}, f_{2}, \cdots , in \mathscr{C} such that $0 \leq f_{\pi} \leq 1$ and $\int |\chi_{B} - f_{\pi}| d\lambda_{\varphi} \to 0$. (1.2) implies

$$\begin{split} \delta(T(f_n), \ T(f_k)) &= ||\varphi(f_n - f_k)||_1 \\ &\leq \int |f_n - f_k| \, d\lambda_{\varphi} \xrightarrow{n, \, \kappa \to \infty} 0 \end{split}$$

RIESZ-PRESENTATION

and by (1.1) there is a $\widetilde{T}(B) \in \mathscr{L}_m$ with $\delta(T(f_n), \widetilde{T}(B)) \to 0$. Define $\Phi | \mathscr{B}(\Omega)$ by $\Omega(B) := \widetilde{T}(B)$. The definition is independent of the choice of the sequence f_1, f_2, \cdots , and, since φ is linear and $\delta(T_1 + T_2, T'_1 + T'_2) \leq \delta(T_1, T'_1) + \delta(T_2, T'_2)$ for $T_i, T'_i \in \mathscr{L}_m(i = 1, 2)$, we have $\widetilde{T}(B_1 \cup B_2) = \widetilde{T}(B_1) + \widetilde{T}(B_2)$ for disjoint sets $B_1, B_2 \in \mathscr{B}(\Omega)$, i.e., $\Phi | \mathscr{B}(\Omega)$ is an additive set-valued measure with $\Phi(B) \in \mathscr{L}_m$ for $B \in \mathscr{B}(\Omega)$. Furthermore, Φ is σ -additive, since by (1.2) and Lemma 4

$$\delta(\Phi(B_n), \{0\}) \leq \lambda_{\varphi}(B_n) \longrightarrow 0$$

for every sequence B_1, B_2, \cdots in $\mathscr{B}(\Omega)$ such that $B_n \downarrow \emptyset$. Let $x \in \Lambda_m$ and $\varphi_x(f) := (\varphi(f))(x)$ for $f \in \mathscr{C}$. φ_x is a continuous linear functional on \mathscr{C} and by the Riesz representation theorem ([7], Theorem 3, p. 265) there is a regular, σ -additive scalar measure ν_x on $\mathscr{B}(\Omega)$ such that $\int f d\nu_x = \varphi_x(f)$ for $f \in \mathscr{C}$. If we can show the equality $\nu_x = \mu_{x,\ell}$, then the regularity of Φ and $\pi(\Phi) = \varphi$ follows. Since $\left| \int f d\nu_x \right| \leq \int |f| d\lambda_{\varphi}$ for $f \in \mathscr{C}$ and because of the regularity of ν_x and λ_{φ} the inequality

 $|\boldsymbol{\nu}_x|(U) \leq \lambda_{\varphi}(U)$

is true for every open subset U of Ω and therefore

$$(\mathbf{r}^*)$$
 $|\boldsymbol{\mathcal{V}}_x|(B) \leq \lambda_{\varphi}(B)$

for $B \in \mathscr{B}(\Omega)$. If $B \in \mathscr{B}(\Omega)$ then there is a sequence f_1, f_2, \cdots in \mathscr{C} such that $0 \leq f_n \leq 1$ and $\int |\chi_B - f_n| d\lambda_{\varphi} \to 0$. By (*)

$$\int |\chi_B - f_n| \, d \, |\boldsymbol{\nu}_x| \longrightarrow 0$$

and therefore

$$\mu_{x,\varphi}(B) = \lim_{n\to\infty} s(x, T(f_n)) = \lim_{n\to\infty} \int f_n d\nu_x = \nu_x(B) .$$

 $rca(\Omega, \mathscr{B}(\Omega))$ denotes the set of all regular, σ -additive scalar measures ν on $\mathscr{B}(\Omega)$. From Theorem 2 we get the following corollary.

COROLLARY 2. If Ω is a compact Hausdorff space, then there is an isometric isomorphism between \mathscr{C}' and $rca(\Omega, \mathscr{B}(\Omega))$ such that the corresponding elements η and ν satisfy the identity $\eta(f) = \int f d\nu$ for all $f \in \mathscr{C}$.

Proof. We have to show only that each $\eta \in \mathscr{C}'$ determines a $\nu \in rea(\Omega, \mathscr{B}(\Omega))$ such that $\int f d\nu = \eta(f)$ for $f \in \mathscr{C}$.

WERNER RUPP

Let $\eta \in \mathscr{C}'$. Then there are positive linear functionals $\eta_1, \eta_2 \in \mathscr{C}'$ with $\eta = \eta_1 - \eta_2$. For each i = 1, 2 we define $(\varphi_i(f))(x) := x \cdot \eta_i(f)$ for $f \in \mathscr{C}$ and $x \in [-1, 1]$. φ_i is an element of $\mathscr{L}_+(\mathscr{C}, V_1)$ and since

$$||\varphi_i(f)||_1 \le |\eta_i(f)| \le \eta_i(|f|)$$

for $f \in \mathscr{C}$, we conclude $\varphi_i \in \mathscr{L}^{\flat}_+(\mathscr{C}, V_1)$ for i = 1, 2. By Theorem 2 there is a $\varphi_i \in RCA(\Omega, \mathscr{B}(\Omega), 1)$ such that $\int f d\mu_{x, \varphi_i} = x \cdot \eta_i(f)$ for $x \in [-1, 1], f \in \mathscr{C}$ and i = 1, 2. Therefore $\int f d(\mu_{1, \varphi_i} + \mu_{-1, \varphi_i}) = 0$ for every $f \in \mathscr{C}$ and the regularity of μ_{x, φ_i} implies $\mu_{1, \varphi_i} = -\mu_{-1, \varphi_i}$ for i = 1, 2. Since

$$\mu_{i,\varPhi_i}(B) = \sup \{y \colon y \in \varPhi_i(B)\}$$

and

$$\mu_{-1,\varphi}(B) = -\inf \left\{ y \colon y \in \Phi_i(B) \right\},\,$$

the set $\Phi_i(B)$ consists of only one point $\nu_i(B)$ for every $B \in \mathscr{B}(\Omega)$ and ν_i is an element of $rca(\Omega, \mathscr{B}(\Omega))$ for i = 1, 2. The σ -additive measure $\nu: = \nu_1 - \nu_2$ is also an element of $rca(\Omega, \mathscr{B}(\Omega))$ and

$$egin{aligned} \int f doldsymbol{
u} &= \int f doldsymbol{
u}_1 - \int f doldsymbol{
u}_2 \ &= \left(\int f doldsymbol{\Phi}_1
ight)(1) - \left(\int f doldsymbol{\Phi}_2
ight)(1) \ &= \eta_1(f) - \eta_2(f) \ &= \eta(f) \end{aligned}$$

for every $f \in \mathcal{C}$.

References

1. Z. Artstein, Set-Valued Measures, Trans. Amer. Math. Soc., 1965 (1972), 103-121.

2. R. J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl., 12 (1965), 1-12.

3. _____, Existence of competitive equilibria in markets with a continuum of traders, Econometrica, **34** (1966), 1–17.

4. G. Debreu, *Integration of correspondences*, in L. LeCam, J. Neyman, E. L. Scott, editors, Proc. Fifth Berkeley Symposium Math. Stat. and Probability, II, Part 1, Berkeley: University of California Press, 1967 a. 351-372.

5. G. Debreu and D. Schmeidler, *The Radon-Nikodym derivative of a correspondence*, in LeCam, J. Neyman, E. L. Scott, editors, Proc. Sixth Berkeley Symposium Math. Stat. and Probability, Berkeley: University of California Press, 1972, 41-56.

6. L. Drenowski, Additive and countably additive correspondences, Ann. Soc. Math. Pol., (1976), 25-54.

7. N. Dunford and J. Schwartz, *Linear Operators*, Part I, Interscience Publishers, Inc., New York, 1958.

8. H. Hermes, Calculus of set-valued functions and control, J. Math. Mech., 18 (1968/69), 47-59.

452

RIESZ-PRESENTATION

9. H. Hermes and J. P. Lasalle, Functional Analysis and Time Optimal Control, Academic Press, New York, 1969.

10. W. Hildenbrand, Core and equilibria of a large economy, Princeton University Press, 1974.

11. L. Hörmander, Sur la fonction d'appui des ensembles convexes dans un espace localement convexe, Arkiv för Math., 3 (1954), 181-186.

12. W. Rupp, o-Additivitätskriterien für mengenwertige Inhalte und o-Additivität des stetigen Integrals einer Korrespondenz, zur Veröffentlichung bei Manuscriptica Mathematica eingereicht, 1977.

Received October 9, 1977.

FACHBEREICH MATHEMATIK UNIVERSITÄT REGENSBURG UNIVERSITÄTSSTR. 31 D-8400 REGENSBURG 2 F. R. GERMANY