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HOMOTOPY WITH M-FUNCTIONS

RICHARD JERRARD AND MARK D. MEYERSON

1* Introduction* ikf-functions were introduced by G. Darbo [1]
and R. Jerrard [5] as a generalization of continuous functions between
topological spaces. They are weighted, finitely-valued functions with
a property corresponding to that of usual continuity. In [1] and [5]
it was shown that ordinary singular homolόgy groups for compact
polyhedra are actually m-homotopy type invariants. In [6] it was
shown that m-homotopy type is a stronger invariance than homotopy
type in the sense that two spaces may have different homotopy types
but the same m-homotopy type. R. Schultz [8] has noted that m-
homology differs from singular homology on some compact metric
spaces. It has also been brought to our attention that in a If 75
letter, G. Bredon indicated a method of proving that m-homotopy
classes of PL m-functions on finite complexes are in 1 — 1 correspond-
ence with chain homotopy classes of chain maps. His approach is
quite different from the one used in this paper. Here we define m-
homotopy groups (actually JS-modules) and give some of their pro-
perties. We show that for a compact polyhedron, the nth. singular
homology group and the nth m-homotopy group are actually
isomorphic.

We show, for example, that the nth m-homotopy group has a
natural definition as mπn(Y) — hom(Sn, Y) in a certain category of
m-functions, which is an iϋ-module under the addition of m-functions
defined below. This addition turns out to be the extension to m-
functions of the usual product in homotopy groups. Since hom(X, Y)
is always an i?-module in this category, we see that m-homotopy
groups (and hence singular homology groups) are special cases of
the ϋί-module hom(X, Y), which is a joint m-homotopy (and topological)
invariant of X and Y.

Next we show that m-homotopy theory is a homology theory
by proving it satisfies the Eilenberg-Steenrod axioms [4]. The excision
axiom is of special interest since it completely fails to hold for usual
homotopy. It is proven to hold in m-homotopy theory by introducing
several combinatorial lemmas (§4).

There is a connection between the results here and the Dold-
Thom theorem [2]. They showed that Hm(Y) = πm(AG(Y)) where
AG(Y) is the topological free abelian group on the pointed polyhedron
Y. There is a natural relationship between m-functions from X to
Y and functions from X to AG(Y). However, we show that there
are m-functions X-+Y with no corresponding continuous function
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X—* AG(Y) and vice versa.

2* MΛunctions* We give below a brief definition of m-functions.
For motivation we refer the reader to [5].

Let X and Y be Hausdorff spaces and R a ring with identity
and without zero divisors (in most examples R = Z or R). Suppose
we are given that:

( i ) / : X^ Y is a multiple-valued function such that each f{x)
is a finite or empty subset of Y,

(ii) f:XxY-+R is a, (standard) function which defines / as
a subset of X x Y by / = c\{(x, y)\f(x, y) Φ 0}, and

(iii) for any xeX and any open set VαY such that dV Π f(X) =
0 there exists a neighborhood Z7 of x such that for a?' e U,

ΣΛ,y) Σ
ye V ye V

Then an m-function (denoted just by /) is / together with the weight-
ing factor determined by the defining function f. The multiplicity
of / is m(f) = Σirer/0&, y)\ it is independent of x if X is connected.
The empty m-function, denoted by 0 is defined by 0 : 1 x 7 - > 0.
Any continuous function can be regarded as an m-function by assiging
it multiplicity one.

The composition of / : X-+Y and g: Y —• Z is defined by g°f(x, z) =
Σ*er/0&> 2/)̂ (l/, s)» so HausdorfF spaces and m-functions over R form
a category R-T2, with T2 as a subcategory. Any two m-f unctions
may be added: / + g is defined by / + g = / + </. Also, if α 6 R we
define the m-function αf by α/= α/. Then hom(X, Y) is an i2-module and
there are functors hom( , Z) and hom(Z, ):i2-Γ2—>(i2 modules).
The restriction of / : X - * F to a subset i c l i s defined by f\A =
/oΐ when ΐ is the inclusion i: A—>X An m-function F: X x I-*Y
is an m-homotopy between i^|Xx{0} and JF |XX{1} (denoted by — m).
One can form m-homotopy classes of m-f unctions and these preserve
the ring structure, that is, [/ + g] = [/] + [g] and [αf] = α[/].

We shall work primarily in the category R0-phT2 of pointed
pairs of Hausdorff spaces and m-homotopy classes of m-functions
over R of multiplicity zero, together with its hom-sets (they are
iϋ-modules) and its hom-functors (see [7]). An m-function on pointed
pairs / : (X, A, xQ) —>(Y, B, yQ) must satisfy f\A:A-+B and /1 x0: xύ-^y^

LEMMA 2.1. In R0-phT2 the above condition for an m-function
to be pointed is equivalent to f\xo= 0 also, for

f:X >Y, f:(X,A,x0) >(Y,yo,yo)
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if and only if f\A— 0 . In particular the morphisms do not depend
upon the choice of base point in the image space.

Proof. We know from the pointedness condition that f(xQ, y) = 0
if y Φ y0, and then from the zero multiplicity that f(x0, y0) = 0. Thus
x0 has no image points of nonzero multiplicity and /1 x0 = 0 . A
similar argument gives the second conclusion, and the converses are
trivial.

Working only with m-functions of zero multiplicity entails almost
no loss of generality. To any given m-function of multiplicity a e R
can be added the constant m-f unction of multiplicity ( — a) and image
yQ to get an m-f unction of multiplicity zero which is the representa-
tive of the given m-f unction in R0-phT2.

3* M-homotopy groups. In this section we define m-homotopy
groups and the subsidiary concepts of boundary operator and induced
homomorphism. We also obtain the surprising result that the usual
product [/][#] of two group elements is actually m-homotopic to
[/ + #]> the addition defined in §2. Thus the group operation is
addition and m-homotopy groups turn out to be hom-sets in RQ-
phT2, which are JS-modules.

For any pair (X, A) = (X, A, 0) and integer % ^ l w e define the
nth. m-homotopy group, mπn(X, A) to have as underlying set, the
set of m-homotopy classes of m-functions (of multiplicity zero)
/ : (Bn, Sn~\ 1) -> (X, A). Bn

f Sn~\ and 1 are subsets of E* defined
by Bn = {x\\x\ ^ 1}, Sn~ι = {x\\x\ = 1}, and 1 - {(1,0,0, ••-,())}. In
usual homotopy, A Φ 0 and (X, A) — (X, A, x0). But by Lemma 2.1
our definition will include this one.

To define mττo(X, A) we let XA be the set of path components of
X not meeting A. Then mττo(X, A) consists of the m-homotopy
classes of m-functions / : (S°, 1) -> (XA) of arbitrary multiplicity.

Note that in the definition of mπn(X, A) we can replace Bn, Sn~\
and 1 by In, Ίn, and 0 respectively, where / = [0, 1], Ίn = \In), and
0 denotes {(0, 0, •••, 0)}.

Before defining the group operation, we note the following
implications of our above definition and Lemma 2.1:

( i ) For n ^ 1, if [/] e mπn(X, A), then / has multiplicity zero
in every path component of X.

(ii) For n ^ 2, if [f]emπn(X9 A), then flS91'1 has multiplicity
zero in every path component of A.

(iii) mττo(X) = Rm where X has m path components.
We define, for n Ξ> 1, the product of / and g in the traditional

way by fg: (Bn~ι x [—1, l])/~ -> X according to:
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(For w = 1, drop 6 from the above.)

THEOREM 3.1. fg ~mf + g (where f and g represent elements
of mπn(X,A), for n^ 1).

Proof. First define the m-functions fu gλ: (Bn~l x [-1, 1])/ >X
by:

for - 1 ^ ί ^ 0: Λ(δ, ί, a?) = /(δ, 2ί + 1, x\ gλφ, ί, a?) = 0

for 0 ^ t g 1: Λ(6, ί, a?) = 0, gφ, t, x) = j?(δ, 2ί - 1, α)

Then fg = fι + #i and so fg=f1 + g1 We need only prove that
/ ~m/i and g ~mgx. The proofs are similar; we give the first.

Consider the family of homeomorphisms dτ: B
n~x x [—1, τ] —» Bn~ι x

[-1,0] defined by drφ, t) = (6, (ί + l)/(r + l ) - l ) ( τ e l ) . The m-
homotopy F: ((S "1 x [-1, 1])/-) x [-1, 1] -> X given by 2̂ (6, t, τ) =
/ o dT for ί ^ r and 2̂ (6, t, r) = 0 for t > τ carries /(τ = 0) to
Λ(τ = l).

We extend the group operation to dimension zero by using m-
function addition as the operation there also.

COROLLARY 3.2. For n ^ 1 the m-homotopy group mπn(X, A) is
the R-module hom[CB*, S*^1, 1), (X, A)]. Letting A = 0, mπn(X) =
hom[(5 , S Λ 1), (X)] = hom[(S , 1), (X)].

The last isomorphism can be easily proven by analogy to usual
homotopy.

If / : (X, A) -• (Γ, 5) and n ^ 1 then /*: mπ%(X, A) -> mτr%(F, S)
is defined by fΛβ] = lf°g]. For n - 0, /J f f] = [(flΓ^Y^og).
(Alternatively we could adjust the definition of mπ0 instead of that
of /*.) The remarks above on hom-functors imply that /* and the
boundary operator d* defined below are well-defined on m-homotopy
classes of m-functions. Let δn: B

n -> Sn be the natural continuous
map implied by BnjSn~ι & Sn, for n^l (δn collapses Sn~' to 1, so
that dn: (B\ Sn~\ 1) -> (Sn, 1, 1)). When we use (I\ Ίn

9 0), 3n becomes
the map δn: I

n -> Ίn+1 implied by Γ/Ίn^Ίn+1. Let <50:S°->S° (or
'/—>'/) be the identity map. We sometimes drop the subscript n
as superfluous. Let 3*: mπn+1(X, A) -> mπn(A), called the boundary
operator, be defined by 3J/] = [f°dn]. Then for injections i: (A) ->
(X) and j : (X) —> (X, A) we have the m-homotopy sequence:
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> mπn+ί(X9 A) -^-> mπn{A) - ^ mπn(X) -^~> mπn(X, A) >

> mπo(A) - ^ mπQ(X) -^U mττo(X, A) > 0 .

The functorial axioms for m-homotopy follow from the fact that
hom[(J5%, S*""1, 1), ( , )] is a functor. Also 5* is a natural map
since Λ°3*[flr] = [/°0°δ] - 3*°/*[fir].

THEOREM 3.3. The m-homotopy sequence is exact.

Proof. We use the definition of m-homotopy groups which
considers m-f unctions from (/%, "JΛ, 0). The proof is divided into
four cases with only case d considering n — 0.

(a) (Exactness at mπn(A).) Suppose [/] e mπn+1(X, A), so that
f:(In+1, 7*+1, 0)->(X, A). Define Γ: In+1 x I^ In+1 by Γt(x) = tx.
Let (<5Λ x 1): Iw x /-> Ί * + 1 x I be the function (δΛ x l)(x, t) =
(δΛ(a?), t). Now define G: (I%, Ί , 0) x I-> (J5Γ) by G = foΓo(δn x 1).
Since G1 — fo8n and Go — 0 (a constant m-f unction of zero mul-
tiplicity must be empty), G shows that i^δ^f/] = 0, and so imd^c
ker i*.

Now suppose that [/] 6 mπ%{A) (so that / : (/w, Ίn, 0) ~> (A)) and
that i j / ] = 0. Then there exists F: (In, Ίn, 0) x /-* (X) with F o =
/ and JF7! = 0 . There exists a continuous family of continuous
functions Dt: (In, Ίn) -> (Ίn+\ Ίn x IU /" x 1) for t e I, with A = δΛ

and Do: ? - > ? x 0 the natural injection. Then FoDt: (In, In, 0)->
(A), since Fl 'J x / U In x 1 - 0 . So in mπn{A)y [/] - [FJ = [FoDQ] =
[Fo D,] = [Foδ] = δ^t-P]. Hence ker i* c im 3*.

(b) (Exactness at m7r%(X).) Suppose [/]ewπ n(A), so that
/ : (I , Ί , 0) -> (A). Now for Γ as in (a), /of : (I f

 β/ , 0) x I->
(X, A), foΓλ = f and /of0 - 0 , so n i j / ] - 0 and im i* c k e r j \ .

Now suppose that [/] 6 mπn(X) (so that / : (/*, 'Γf 0) -^ (X)) and
JΛf] = 0. Then there exists F: (In, Ί , 0) x /-> (X, A) with -Po = /
and Fj. = 0. There is a continuous function H: (In, Ίn) x /->
(/*+1, */* x 0) such that H\In x 1 is a homeomorphism onto In x
1 UT1 x / and H\In x 0 is the identity (H "pulls" the top of In+1

over the sides, while "collapsing" the sides). Then Fo H: (In, Ίn, 0) x
J->(X) and FoHι:(In

fΊ
n

f0)-^(A). Hence in mτr.(X), i*[FoH}] =
[FoH,] = [FoHQ] = [/]. Thus ker i* c im i*.

(c) (Exactness at mπn(Xf A).) Suppose [/] emπ^X), so that
/ : (/*, 'J , 0) -> (X). Since 8n^: P'1 -+ Ίn, foδΛ^ = 0 . So in mπn(X),
dJΛf] = [/°^-i] = 0, and imi^ c k e r 3#.

Now suppose that [/] 6 mττ%(X, A) (so that / : (In, T\ 0) -> (X, A))
and 3J/] = 0. Then there exists F: (J "1, 7 "1

f 0) x /-> (A) with
jp7

0 = fed and ί\ = 0 . There are continuous functions f or 0 <; r <: 1:
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with

and

aτ: I"-1 x [0, r/2]

aT(xf t) —

x I

Δτ\ x

such that

. 2 ' J

ϊ-\ =δ
2)

2ί)

x /

X ~k> ' ] ) U ( i" Xl) = °
i? I intί In~ι x —, 1 J is a homeomorphism onto

intC/"-1 x /) .

We define H: [{In~\ 'In~\ 0) x /] x /-> (X, A) by

(F°α r 0 < ί^r/2
H(x, t, r) - foAτ τ/2 ^ t ^ 1 .

Then i ϊ | (τ = 1): (I , 7 , 0) -> (X), so [fΓ|(τ = 1)] emπn(X), and
jff|(τ = 0) = / o J 0 e [ / ] , since Λ - l r . Thus j*[H\(τ = 1)] = [/] and
ker 3^ czimi^.

(d) (Exactness for n = 0.) At mτro(A), im 3^ c ker i* follows from
the first part of (a). Now suppose [f]emπo(A) (so /:(•/, 0)-> (A))
and that ί*[/] = 0. Then there exists F: (•/, 0) x /-> (X) with JP0 = /
and ί\ = 0 . Define cr: (/, T, 0) -> (X, A) by g(t) = Ft(ΐ). Then 3+[g] =
[ffo«o] = [(ff 10) + (fir11)] = [/11] - [/]. So ker i* c im 3,.

At mπo(X) we have im ΐ^ c ker j * because if [/] e mπo(A) then
/ : (Ί, 0) - (A) and hence / | X 4 = 0 . Note that j*[(/] = [{j\XA)og}.
Now suppose [/]6mπo[X] and j*[f] = 0. Then /|X^— mβr where
gr: (Ί, 0) -> (A). It follows that [g] e mττo(A) and i*[g] = [/].

At mτro(X, A) we take [/L e mπo(X, A). Then / : ("J, 0) -> (X),
[/]emττo(X), and j\[f] = [f]A. Thus i^ is onto.

4* Three lemmas about boxes* In order to prove the excision
axiom, we introduce several definitions and lemmas. By an ^-dimen-
sional box we mean the Cartesian product of n (orthogonal) compact
line segments. By a &-face of a box, we mean any sub-box which
is formed by taking the product of k of the original segments and
replacing the remaining n — k segments by (in each case) either
endpoint. If T is a collection of boxes, we let O(T)(E(T)) be the
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subcollection of those boxes of odd (even) dimension. | | represents
the cardinality of a set.

LEMMA 4.1. Let t be a proper k-face of an n-dimensional box,
V, and let T be the set of faces of V containing t. Then |O(Γ)| =
\E(T)\

Proof We may assume that V — J*. Note that a face of V is
then determined by an ordered w-tuple where the entries are chosen
from among /, 0, and 1.

Let t correspond to an w-tuple consisting of Jc entries of / and
(n — k) entries of a single point, 0 or 1. Choosing an m-face con-
taining t is equivalent to choosing (m — k) of the (n — k) positions
consisting of a single point, to be replaced by I. So we must show
that

n ~ k\ ' In — k\
= Σ 7 where k^m^n .

\ηfl — fc/
meven

This is equivalent to showing that Σβoddί ζ) = Σ βvβnί ̂  J, for r =

n — k, 0 ̂  s ̂  r. One sees that this is true by considering

(x- 1)* = Σ ( r W " e - Σί r V r ~ s , for x = l.
\ S dd ̂  β ]

Now suppose /* is subdivided into finitely many boxes by sub-
dividing each / in the product In — I x I x x I into segments.
Let T be the collection of all these ^-dimensional boxes and all those
faces which meet the interior of I*. For teT, we identify the box
t with the function t: In —> In for which t(x) is the point of t closest
to x (if x e t, t(x) = x). For t e T and / : In -> X an m-f unction, we
let ft = fot.

LEMMA 4.2. For f and Tas above, f = (Σseucn /• — ΣAreom Λ)(~-l)w.

PrOOf. Σse^(Γ) fa ~ Έjreθ(T) fr ~ ΈjseE(T)f ° S — *Σjreθ(T) f ° T =

/°(ΣS€JB(D s — Σreo(D ^) So it suffices to show that

Q = ( A. ̂  — 2 J '
\8 6ϋ'(5Γ) reθ(Γ)

is the identity m-f unction on /*. (The functions are added here by
considering them as m-f unctions.) Let {vt}T=ι be the ^-dimensional
elements of T. Fix αeintt; fc, for some k. To each vif associate^*,
the collection of elements, t, of T, such that t(α) = ̂ (α). We next
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show that {vf} partitions T and that each vf consists of those faces
of Vi containing a special face tt.

In general, for u a set formed by Cartesian product of subsets
of each coordinate axis, let uk be the projection of u onto the fcth
coordinate axis. We then write u = ux x u2 x x un. Given t e T,
t(a)k is the point of t closest to ak. (t(a)k is either ak, one of the two
endpoints of tk, or, if tk is a point, tk itself. Only one of these can
occur.) So vf and vf are disjoint for i Φ j .

Let t e T be fixed. Suppose we replace some of the tk which are
points by the interval in our subdivision of the kth coordinate axis
with endpoint tk between ak and the other endpoint. Then the new
Cartesian product gives us a box seT with s(a) = ί(α) and t a face
of s. Making all possible such replacements, we get t 6 vf for some
ί, with t a face of vt. Hence {vf} partitions T.

The elements of vf can be constructed from vt by considering
each (Vi)k. If ak $ (vt)k we replace (vt)k by its endpoint nearest ak.
The new Cartesian product will give us an element of vf, and any
element of vf is of this form. By making all such replacements we
get tif the element of vf which we require.

Now, for a e int vk, we have

Σ s- Σ r).

But for % Φk, ( Σ ej?(*;) 8 — Σreo(v*) T) maps a to v4(α) with multiplicity
\E(vf)\ — \O(vf)\ ~ 0. So the only image point of a under g with
nonzero multiplicity is a itself, which has multiplicity one. But this
is true for any a in \Jΐ=1 int vkf a dense open subset of I \ Hence
g is the identity m-function on In.

Note that the image of ft is the image of f\t. This lemma
allows us to "break up" m-f unctions in a manner which corresponds
to the subdivision operator on simplices used in simplicial homology.

LEMMA 4.3. Given an m-function, f:In—>Y, and an open cover
of Y, {Ua}9 there exist m-functions fa such that f — Σfa and im (fa) c
Ua. Further, if we choose Z, a face of In such that f\Z=0
(assuming such a face exists), then we may choose {fa} such that
fa\Z = 0 for all a.

Proof. For xeln, let f(x) = {s/JJU with r, the weight at (x, yt).
By the definition of m-functions, there exists Wx c In, a neighborhood
of x, and {FjΓtn, disjoint open subsets of elements of {Ua}, such that
f\Wx is an m-function with image in UίU^i Clearly each component
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of f\Wx has its image in some Vt. Partition I* into cubes of mesh
less than the Lebesgue number of the cover {Wx}x&In. Let T be
the collection of these cubes together with those faces (of any dimen-
sion) which meet in t/\ Then / - (Σ.e*<Γ>/. - Σreo(Γ>/r)(-l) by
Lemma 4.2. For each teT,ft equals the sum of its component m-
functions, each of which has its image in some Ua. We partition
the component m-f unctions of ft and add so that ft = Σ« fta and the
image of fta lies in Ua. Letting fa = Σ«/««f the first part of the
lemma is proved.

Suppose we choose Z a face of In such that f\Z=0. For
te T, let t be the set of points of t closest to Z. Let [t] =
{reT\t = r } .

We may assume that each projection Zk is either l o r 0. If
Zk = 0, then (t)k is a single point. Also, [t] consists precisely of
those reT such that rk = (t)k if Zk Φ 0 and r* = [(ί )*, b] if £* = 0
(and 6 may equal (t)k). It follows that [t] contains an element, t'f
of maximal dimension (namely, dim f = (dim ϊ") + (w — dim Z)) and
that [£] consists of the faces of ί' containing ί".

Note that if z e ^ and r = s(i.e., r, s e [t] for some t) then r(z) =
«(«). If Z is p-dimensional, let ^ ' be the open dense subset of Z
minus the (p — l)-dimensional boxes in the subdivision of /\ But
now, by the same argument as in the proof of Lemma 4.2, for z e Zr,
z ί t\ ( — ΓΓ(Σre£([ί]) r — Σ.eo<m> β) has multiplicity zero at each image
point of z. Choose an equivalence class [t]. Then t' and all its faces
lie in some single Wx. So we can write jf°(—l)Λ(Σre^([«]> r — Σseocm) β) =
Σ«/ί*« (allowing some ft*a's to be empty) so that the image of ffia

lies in Ua (just by partitioning the components and summing as
before). Note that for zeZ' — t'9ft*a has multiplicity zero at each
image point of z. Let f* — Σffia where we let t take one value in
each equivalence class.

Now f=Σfί so it remains to show that f*\Z=0 for each a. Fix
aeZf and let v be the single (^-dimensional) box in T containing a.
Then v' = v and /* =/„* + Σ*'*./**. But f*a is just the sum of
certain components of +/„ and fv(a) = /(α). Since f\Z = 0 , /«* has
multiplicity zero at each image point of α. Hence fί\Z' — 0 . It
follows that fa\Z— 0 and we are done.

5* ikf-homotopy theory is a homology theory* In §2 we
described m-homotopy theory, mπn. We wish to show this is a
homology theory. In §3 we proved the exact sequence axiom and
noted that the functorial axioms are satisfied. We also noted that
the dimension axiom is satisfied, i.e., that mπo(Z) — Rm where m is
the number of path components of Z.
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THEOREM 5.1 (The excision axiom). If Uczint A, then the inclu-
sion map i: (X — U, A — U) —> (X, A) induces an isomorphism
i*: mπn(X — U,A—U)-> mπn(X, A) for all n.

Proof Suppose [/] 6 mπn(X, A), so / : (/•, J , 0) -> (X, A). By
Lemma 4.3, there exists g, h: (In, 0) -• (X) such that f = g + h and
im (g) c X — U and im (ft) c int A. But then in mπn(Xf A), [h] = 0
(just consider h°Γt where Γt: In-^ In, Γt(x) = tx). Since / and ft,
represent elements of mπn(X, A), so does g = / — ft; in fact [#] = [/].
But im (fir) c X — £7, and ϊm(g\Ίn) c : *̂ > s o im(# I"/*) c A — Z7. Hence
g represents an element of mπn(X — U,A—U) and i* maps the m-
homotopy class of g to the m-homotopy class of / and so is onto.

In the present paragraph, [•] will represent an m-homotopy class
in mπn(X -U,A-U). Suppose [/] e mπn(X -U,A~U) and there
exists F: (In, Ίn, 0)x/-> (X, A) with Fo = f F, = 0 (i.e., / is null-m-
homotopic in mπn(X, A)). Then F: (In+\ 0 x / ) - > (X), so by Lemma
4.3, we write F = G + H with G: (/ +1, 0 x 1) -> (X - Ό) and
H: (In+\ 0 x I) -> (int A). Since f = GQ + Ho, im(HQ) c im(/) U im(G0) c
X-E7. So imCffo) c A - C7, and [Ho] = 0 (consider i^oΓ,). Hence,
as before, [/] = [Go]. Now ί\ = 0 = Gx + fix, so imίGJ = i m ^ ) c
A - 17. But then [GJ = [HJ - 0. Since im(G) c X - ? 7 , G = F - H,
im(F\Ίn x I )cA, and im(iϊ)cA, we can conclude that im(G|7* x ί ) c
A-U. So G: (I\ J , 0) x I -> (Z - U, A - U) and G: [Go] = [GJ.
Hence [/] = [Go] = [GJ = 0, and i* is one-to-one.

We have neglected the case where n = 0. In this case, mπo(F, J5)
is essentially the possible finite assignments of multiplicities to com-
ponents of YB. Let X' be a component of X. If Xf is disjoint from
A, then X' is a component of X — U. If X' meets A, let X" be a
component of X' — U. Suppose ueX"ΠU. Then, since Ua int A,
some neighborhood of u lies in A and also meets X". Hence X"
meets A. On the other hand, if X"Π U—0f then X" is a component
of X and so X' Π U = 0 and X" = X'. In either case, X" meets
A — ί7. So I 4 = ( I - U)A_π. It is now easy to check that £* is an
isomorphism for w = 0 also.

Hence m-homotopy theory is a homology theory. By uniqueness
we can conclude that mπn(X, A) = Hn(X, A) where (X, A) is any
compact polyhedral pair and Hn is singular homology.

6. Examples; the Dold-Thom theorem* In this final section
we consider the connections between m-homotopy groups, singular
homology groups, and the Dold-Thom expression of homology groups
as homotopy groups.
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PROPOSITION 6.1. The m-function image of a compact set is
compact.

Proof. Suppose f:X—>Y is an m-function, AcX is compact,
and {Va} is an open cover of f(A). For a e A, if f(a) = {yu , yn},
choose Va. such that yt e Va.. Then by the definition of m-function,
there exist neighborhoods V*(yt) c VUi and Z7(α) such that for
V$\J*=iV* and xeU,y$f(x). Now let' Ê , •••, Um cover it, with
V?, •••, Vk the collection of all corresponding neighborhoods in Y.
These cover f\A), and for each V* some Vaj contains V*. So Vβi,
• , F«fc is an open subcover of f'(A).

EXAMPLE 6.2. Although m-functions are pointwise finite, they
need not be globally or even locally finite. And / (say with R — Z
or jβ) need not attain a maximum, even on a compact set. In
Figure 1 we sketch the graph of an m-function / :/—>/, such that
as x / 1 , I f{x) I —• co and max^ f(x, y) —• °o.

FIGURE 1

For an m-function, /, an ordinary point (as opposed to a tangent
point) is a point (x, y) where / is locally single-valued (in [5] it is
shown that in a neighborhood of an ordinary point / is a continuous
function). Call a point x e X ordinary if {(x, y) \ y 6 f(x)} consists only
of ordinary points. One can show that if X is Baire and Y is metric
or 2nd countable then the ordinary points form an open dense subset
of X. There are examples with X not Baire and Y = I such that
X has no ordinary points.

COROLLARY 6.3. M-homotopy theory each and m-homology theory
(see [5]; we denote this latter theory by mHn) both satisfy the axiom
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of compact supports (see [9]).

Proof. If [/] e mπn(X, A), then / : (/•, •/•, 0) -> (X, A) and we let
Xf = im(/), A! = im(/| In). Then [/]* e mπn{X', A) (where [•]* repre-
sents an equivalence class in mπn(X\ A)) and the map i* induced by
the injection ί: (X', Af) -> (X, A) maps [/]* to [/]. In the case where
[/] e mHn(X, A), / : An -> X and X' - f'(Δn) is compact. Let A' =
Xf Π A. Then [/]" emHn(X', A')([ Γ represents an equivalence class
in mHn(X', A')), and i* maps [/]" to [/].

We conclude (see [4]) from this corollary that if (X, A) is any
polyhedral pair, Hn(X, A) ρ& mHn(X, A) F& mπn(X, A). For example,
suppose for some specific pair, (X, A), we know that z e Hn(X, A) is
nonzero. Then mHn(X, A) is nontrivial, but what is the m-function
corresponding to zl This question is answered by describing the
two isomorphisms above. For [z] e Hn(X, A), z = Σ?=i rΛ> a formal
sum where each at: A

n —> X is a singular simplex. Let / = Σ?=i ̂ σ i
be an m-f unction sum. Then the map z-+f induces a homomorphism
from H(X, A) to mH(X, A) which is the unique isomorphism between
them. Similarly, if [/] e mπn(X, A), / : (Δn, Δn, 0) -> (X, A). In par-
ticular, f:An->X and so / determines an element [/]" in mHn(X, A).
This map (/ —> /, but with the second / we ignore the last two
elements of the triple) induces a homomorphism from mπ(X, A) to
mH(X, A) which must be the unique isomorphism.

There is a relationship between the results here and the Dold-
Thom theorem [2]: Hm(Y) = πm(AG(Y)) where Y is a pointed polyhedron
and AG( Y) is the topological free abelian group on Y. We next define
AG(Y) and describe this relationship.

Regarding Γ V F as a subset of Y x Y we use the notation

y = (Vf * ) , - ! / = (*, y), * = (*, *). Starting with an element of Y' -
ΣΓ=i Π?=i (^ V F) we remove any simultaneous occurrences of y and
— y, remove all occurrences of *, and identify two resulting k-tuples
if one is a permutation of the other. (The summation above is free
union.) This equivalence relation, R, gives us a quotient map,
π:Y'-*Y'/R = AG(Y). Addition in AG(Y) is by juxtaposition of
representatives of elements followed by π.

Given spaces X and Y there is a natural mapping from m-f unctions
f:X-+Y to (standard) functions f*:X-+AG(Y). Namely, if /(&) =
{Vi, •••,!/»} then let /*(&) = Σ?=i/fo Vi)Vi> Although this correspon-
dence seems to identify a class of "nice" m-functions to a class of
"nice" continuous functions from X to AG(Y)9 we show below that
there are degenerate examples on each side.

EXAMPLE 6.4. / may be m-function, but /* not continuous. The
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graph in Figure 1 indicates how we might define an m-function /
such that /*: /—> AG(I) fails to be continuous (at 1). It is convenient
to take * = 0. Thus we can identify I V I to [—1, 1] in a natural
way. Let UaAG(I) consist of those points (wlf w2, , wn) for which
Σ?=i v>i < 1/10 (the addition is in R and is independent of representa-
tion of the point). It is easy to verify that π'\U) and hence U is
open. But we can define / so that f*-\U) Π [1/2, 1] = 1. Along any
vertical line the distances between adjacent lines, Lλ and L2, L2 and
I/3, etc., can be taken to be proportional to 1, 1/4, 1/9, 1/16, , 1/n2,
etc. Given a vertical line, if we choose n large, the sum of the
vertical distances from Ln to Lt(i < n) can be made arbitrarily large.
Define / using this information.

EXAMPLE 6.5. jf* may be continuous, but / not an m-function.
In Figure 2, we indicate an example of a weighted multiple-valued
function / for which we can define /* as above. Then, although /
fails to be an m-function (/(0) is infinite) /* is continuous. The only
point where the continuity of /* is questionable is at 0. There
/*(0) = *. If U is a neighborhood of * in AG(I), then π~\*) czπ'^U)
and π-'O n ((I V J ) x ( ί V I)) c π'ι(U) Π ((/ V I) x (/ V I)) which is
open in (/VI) x (IVI). Since / is compact there exists ε > 0 such
that if \x - y\ < ε then (x, ~y}eU (the brackets represent unordered
pair, so (x, -y) = x + (~-y) where addition is in AG(I) not R). So,
from the figure we see that there exists δ > 0 such that if x <
δ, f*(x) 6 U.

0

1

if

O

* ? ό

9

FIGURE 2
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