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ON THE REDUCTION OF CERTAIN DEGENERATE
PRINCIPAL SERIES REPRESENTATIONS

OF SP («, C)

THOMAS A. FARMER

This paper has its origins in the problem of proving
irreducibility or reducibility for principal series representa-
tions of certain noncompact, complex, semi-simple groups by
Fourier-analytic methods; for example, the abelian methods
of Gelfand-Naimark for SI (n, C), and the non commutative
(nilpotent) methods of K. Gross for Sp {n, C). As is well-
known, principal series representations are induced from
unitary characters of a parabolic subgroup, the series being
termed "nondegenerate" if the parabolic is minimal (i.e., the
Borel subgroup) and otherwise "degenerate". Here we
consider degenerate principal series for Sp (n, C) correspond-
ing to maximal parabolic subgroups (more general than the
situation studied by Gross) and reduce them with respect
to the "opposite" parabolic. Let n, denote the complex
dimension of the isotropic subspace corresponding to the
maximal parabolic, let 0 < nt < n9 and nQ = n — nx. The
resulting reduction is described in terms of the natural
representation of the complex orthogonal group O(nlfC)
acting on the space L2(Cni*no) and the tensor product of nx

copies of the oscillator representation of Sp (n0, C). In the
terminology introduced by R. Howe, this harmonic analysis
reduces to the theory of a "dual reductive pair", and any
further resolution of the question of irreducibility by these
methods will depend upon the study of the oscillator
representations for such a dual reductive pair.

We now describe our work in more detail. As a presentation

of the complex symplectic group, take

Σ = *:gMng' =

where Mn = \H- ~ Q I In is the n x n identity matrix, and gf

denotes the transpose of g. Specify a complete set of conjugacy
class representatives of the maximal parabolic subgroups H in
Σn (c.f., [9], §8) by defining H = Z'SA, where the subgroups Z, S,
and A are given below. Let the isotropic subspace of C2n cor-
responding to H have dimension nlf with 0 < nx ^ n and n0 — n — nx.
Then the blocking scheme used in defining Z, S, and A has diagonal
blocks of dimensions nγ x nlf n0 x n0, nx x n19 and nQ x n0 from
upper left to lower right.
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Clearly, S is isomorphic to Sp (w0, C), A is isomorphic to Gl (X, C)
and elements of S commute with elements of A. Also, it is easily-
shown that Z and Zf are normalized by SA and hence, ZSA and
i?'SA are semidirect products.

The maximal parabolic subgroup H — Z'SA gives rise to a
degenerate principal series of representations Tχ of Σn induced from
unitary characters X on H. We shall realize Tχ in the Hubert space
L\Z) as follows: Let dz denote Haar measure on the unimodular
group Z. Denote by dih and drh, respectively, fixed left and right
Haar measures on H, and let 8H be the modular function defined by
δH(h) = dihjdji. By direct calculation (cf., [3], §6), HZ is an open
subset of Σn whose complement is a set of Haar measure zero. Thus,
we can extend the positive character 8H and any unitary character
1 on H to functions defined almost everywhere on Σn by defining
δH(hz) = δπ(h) and X(hz) = X(h) for any hz e HZ. Also, each right
coset of H in Σn, except for a set of cosets whose union is a null
set, contains a unique element of Z. It follows that the canonical
action of Σn on the right coset space H\Σn gives rise to an "action"
of Σn on Z: for any g e Σn and z e Z, let zg be the unique element
of Z such that H(zg) = Hzg, provided that such an element exists.
To be specific, denote by Z9 the subset of Z such that zg exists,
then Z9 is an open subset of Z whose complement is a null set.
Therefore, if feL\Z) then the function z->f(zg), for fixed geΣn,
is defined almost everywhere in Z. Now, the formula ([2], §30)
defining the (continuous) unitary, representations Tχ of Σn9 which
form a (degenerate) principal series is

(1.1) Tχ(g)f(z) - δπ(zgrί"X(zg)f(zg) (g eΣn,fe L\Z)) .
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Let us briefly explain the Fourier-analytic reduction of the
restriction of Tχ to the (opposite) parabolic subgroup ZSA. Fix nγ

with 1 ^ nt < n, fix X, and let T = Tχ. We observe that the restric-
tion T\z of T to Z is just the right regular representation of Z.
Thus, it is natural to replace T with the unitarily equivalent represen-
tation f= ^T^'1 where & is the Plancherel transform of L\Z),
for f\z decomposes as a direct integral. The operator & maps
L\Z) unitarily onto the Hibert space L2(Λ, X, dm(X)), of X-valued,
square-integrable functions on A. Here A is the dual object of Z,
dm(X) is the Plancherel measure on A, and X = HS(L2(CnίXn°)) is the
Hubert space of Hilbert-Schmidt operators on L2(CniXn°). It is also
the case that t\s decomposes as a direct integral, and one can ex-
plicitly analyze f(zsa) for all zsa e ZSA. The operators of f\ZSΛ

involve a representation /: S—> ̂ (Xf2(C*lXn°)) which is the tensor
product of nx copies of the oscillator representation of Sp (n0, C), as
well as a representation D: A-> ̂ (L 2((> x* 0)), in which Gl(nlf C) acts
on L%CnίXn°) by generalized dilations. The above results are contained
in §2 of this paper.

Let J#"(T\ZSA) denote the commuting algebra of f\ZSA. There
are sufficiently many operators of f\ZSA which are diagonalizable to
force *5tf\f\ZSA) to be decomposable. Moreover, the components of
.Sϊf'(f\ZSA) are essentially copies of the intersection, jtf"(ϊ) n £f'(D\Al)
of the commuting algebras of I and D\Aι where At = 0{nu G). That
is, there is an isometric isomorphism of von Neumann algebras,
which we exhibit, between J^\f\ZSΛ) and J#"(I) Π .S*f'(D\Aι). This
is the content of §3.

It should be noted that there are two special cases in which
complete results are known. The case nx = n is special since Z is
abelian. It is not difficult to show that J*f'(f\ZSA) is one-dimensional
and, hence, for all X, Tχ is already irreducible upon restriction to
ZSA. Also, the irreducibility problem has been completely solved
in the case nt = 1, n0 = n — 1, in [3], which may be regarded as the
prototype for the general case. There it is proved that Tχ is
irreducible unless X is the trivial character on H, in which case, Tχ

splits into the sum of two irreducible representations of Σn. The
complete results of [3] rest on the fact that the commuting algebra
jy"(J) Π *£f'(D\Ay) i s J u s t 2-dimensional when nx = 1. In the general
case, this algebra is infinite dimensional and the full analysis of T
on all of Σn depends upon its explicit description.1

The author wishes to thank Steven Gaal and the referee of an
earlier version of this paper for advice and helpful criticism.

1 R. Howe's results show that the joint representation of Sp (n0, C) X O(nίf C) de-
composes continuously. It follows that the commuting algebra is infinite dimensional.
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2 The operators f(zsa). In order to analyze t\ZSΛ we need
to introduce the dual object of Z, the resulting Plancherel transform
of L\Z) and the oscillator representation of Sp (n0, C).

Procedures of Kirillov [5] can be applied to the simply connected,
nilpotent lie group Z to yield the dual object — the set of equivalence
classes of irreducible, unitary representations of Z. The results are
given below.

Denote the elements of Z by (x, y, ί), where t = η — yxf so that
t is symmetric. In this way Z is identified with V x V x Λo,
where V = O x*° and Λo = {ί eC* ι X Λ l: t = ί'}. Multiplication in Z is
now given by

Also, the center of Z is easily seen to be {0} x {0} x ΛQ and the
Haar measure of the unimodular group Z is real Lebesgue measure
dz = dx dy dt on the Euclidean space F x V x Λo.

For XeΛ0 with rank λ = r, let C(λ) eO(nltC) be such that
0

C(λ)λC(λ)' =

Also, let X =

0 0
I r 0
0 0

, where λr is a symmetric, invertible r x r matrix.

C%lX%0, thought of as a measure space with real

Lebesgue measure. Finally, throughout this paper we shall let
(u\v) == Retr iw' for all u, veCpxg.

THEOREM 2.1. Every irreducible, unitary representation of Z
is unitarily equivalent to Πlatβtχ) for some choice of a, β e V and
X e Λo, where Π{(X)β)λ) is defined as follows:

(1) If X = 0 then Π{atβiχ) is 1-dimensional and is given by

\χ) + (β\v)]

is 00-dimen-

C(X)x

Π o (Ύ u tλ —

for (xfyft)eZ.
(2 ) If rank X = r Φ 0, then Π{a>β>λ): Z

sional and is given by

{n,βΛ%, V, t)f(u) = exp2ττi [a\C(xγ
0r 0

0 I

- 2C(X)'uy') \f[u C(X)x
Ir 0

0 0

for feL\X) and (x,y,t)eZ. Moreover Π{aίtβvh) and Π^h>h) are
unitarily equivalent if and only if X1 — λ2, α t = a2 + λxα, α^cί
β1 = ^ + x^ /or some α, 6 e F.

The Plancherel transform of L2(Z) does not require the entire
dual object of Z, but only the representations corresponding to
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"maximal orbits". These are the representation Π{0>0>λ), where X is
invertible (i.e., r = nx). Thus, let A = {XeA0:τa,nkX = wj and for
XeA denote ΠiOtOiX) by λ, then λ acts in the Hubert space L\V) by
the formula

(2.2) λ(a, y, t)f(u) = exp [2τri(λ|jfc - 2uy')]f(u + α?)

for / e L2( F) and z = (a?, 2/, t) e £.
Let ^ - SS(V) x ^ ( F ) x *S^(Λ), where S*(V) (respectively

£^(A0)) is the vector space of all infinitely differentiable, rapidly
decreasing functions with domain V (respectively Ao). Then Sf is
a dense subspace of L\Z) with which we can state and prove the
following results concerning the Plancherel transform & of L\Z),

THEOREM 2.3. (1) The Plancherel measure m on A is given by

dm(X) = 22*o*rWH-i> . \detX\2nodX

where dX is the restriction to A of the Lebesgue measure on Ao. (2)
The mapping f —> Kf defined for f 6 £f by

Kf(x, y, X) = ί ( f(x - y, v, t) exp [2ττi(λ|ί - 2vyr)]dtdv

extends uniquely to a linear isometry of L\Z) onto L\ V X V X Ao,
dxdydm(X)). This is the function-valued Plancherel transform. (3)
The mapping f —> / defined weakly for f sS^ by

( f(z)X{z)dz
Jz

extends uniquely to an isometry & of L\Z) onto L\A9 HS(L\ V))9

dm(X)). This is the Plancherel transform of L\Z).

Proof. A computation shows that f(X) is an integral operator
with kernel Kf. The mapping / —> Kf is decomposed as in [3] (1.8)
into ordinary, partial Fourier transforms

#, #, λ) = \ ftx, vf X) exp [~2πi(y\v)]dv
JV

x, V, λ) = 2- it ι-1)'ϊ ( f(x, v, t) exp [-2πi{\ \ t)]dt
Λ 0

(/ e ,Pt the factor c = 2~Wl(%1~1)/2 makes J ^ an isometry) and a trans-
formation ^ : L 2 ( 7 x V x Ao, dxdydx)->L\V x V x AQ, dxdydm(X))
given by

i V> λ) = c/(a? - 2/, 2λτ/, λ) .
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In fact, Kf = ^^l^^f for all / e &. Now dm(X) is chosen so that
& is an isometry and hence / -> Kf is an isometry.

To prove (3) and (2), one shows that the mapping Kf —> / , defined
for f eSζ extends to a linear isometry of L\ V x V x Ao, dxdydmix))
onto L\Λ, HS{L\V)\ dm(X)).

The tensor product of nx copies of the oscillator representation
of S occurs naturally in the present setting. Note that S normalizes
Z. Specifically, for seS and z — (x, y,t)eZ

SZS — {XS22 y^2it ySu XSi2t v ~"~ ^822^12^ ι~ 2/&2î n2/

- xs'12s21y' - ys'21s12x
r) .

Let XeΛ and fix seS. The mapping z —> X^szs"1) is an irreducible,
unitary representation of Z acting in L\V) which agrees with λ on
the center of Z. Thus, these two irreducible representations are
unitarily equivalent, and so, there is a unitary operator λ(s) on L2( V)
such that

\iszs~1) = (zeZ) .

For each s, λ(s) is unique up to scalar multiples of absolute value 1,
and, as we will show, λ(s) can be normalized so that s —> λ(s) is a
unitary representation of S acting in L\V). Let us now be more
explicit.

Identify S with ΣnQ and define the following subgroups of ΣnQ

using the blocking scheme with two diagonal blocks of size n0 x n0:

M =

L =

Also, let p =

I b

0 /

a 0

0 α v : a 6 Gl(n0, C), α v =

0 - /
/ 0 The set L U M U {p} generates Σno ([3], p.

404), so to define λ on S it is enough to define it on this generating
set.

by
DEFINITION 2.4. Given XeΛ, define λ: L U MU {p} ->

X(l(a))f(u) = I det α \n'f(ua) (l(a) e L)

X{m(b))f{u) = exp [ - 2πί(Xu \ ub)]f(u) (m(6) 6 Λf)

X{p)f(u) = τ(λ) I det 2λ |Λ

F))

where C7is the Fourier transform of L\V) defined for feL\V) by
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Uf(u)=\ f(v)exp[2πi(u\v)]dv

and τ(λ) is a complex number with modulus 1, which will be
determined in the proof of Theorem 2.5.

THEOREM 2.5. The mapping X, defined on L\J M\J {p} above,
extends uniquely to be a continuous unitary representation of Σno

(and hence S) acting in L\V) which satisfies

X{sZS~ι) = λ(8)λ(s)λ(8Γ ι

for all seS and zeZ.

Proof. It is easy to verify that the restrictions of λ to L, M,
and LM are continuous unitary representations of these groups.
Now apply Lemma 1 of [3]. To prove that condition (2).of Lemma
1 is satisfied, we use the following: Observe that m(I)pm(I) —
pm( — I)p. Let m = m(I), then m"1 == m( —/). From the definitions
of the operators λ(m) and X(p), a computation shows that

and hence YΊ(λ) = X(p)~ίX(m)X(p)~1X(m)X(p)X(m) e J^"(λ), the commut-
ing algebra of λ. This is true regardless of the value of γ(λ) with
|7(λ)| = 1. Thus, letting

Γ2(λ) = [T(λ)-1λ(p)]-1λ(m)[7(λ)-1λ(p)]-1λ(rn)[7(λ)-1λ(p)]λ(m) ,

we have F2(λ) = y(X)Y1(X)ej^\\). But λ is irreducible so jy"(λ) is
1-dimensional and hence F2(λ) = c(X)I for some unique c(X) e C with
|c(λ)| = 1. Define y(X) = c(λ) then Y^X) = / and it follows that

X(m)X(p)X(m) =

which is condition (2) of Lemma 1 of [3].

Just as the representation λ of S arises from interwining
operators X(s) between λ and z —> X^szs'1), a representation D of A
arises from intertwining operators D(a) between (αλα'Γ and z —>

For α e i and z = (a?, #, t) 6 ̂ , we have

cCιza = (a'x, a'y, a'ta) ,

and from formula (2.2), the representations (aXa'T and z
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are easily seen to agree on the center of Z. Hence, these two
irreducible representations of Z are unitarily equivalent and, in fact,
the operator D(a) given by

D(a)f(u) = I det a \n°f(a'u) (f e L\ V))

intertwines them. Also, the fact that

= X(sa~ιzas~~ι) = \(CΓ18Z8~1OL)

suggests that D(a) may also intertwine λ and (aXa'T and, indeed,
this is the case. We summarize these facts in the next theorem.

THEOREM 2.6. The mapping D: A —• ^f{L\ V)) is a continuous
unitary representation of A which satisfies

(1) D{a)-\aXarT{z)D{a) = \(orιza)
(2 ) D(a)X(s)D(ayi = (αλα'Γ(β)

for all XeΛ, aeA, seS, and zsZ.

We omit the proof of the above theorem since it is fairly
straightforward (cf., [3], Theorem 2), however, we make the follow-
ing observation related to the proof. For each invertible symmetric
matrix X there exists β 6 Gl (nl9 C) such that X — ββ'm Consequently,
the action of A on A defined by a X — aXa! is transitive, and from
this follow two important facts: First, the function 7 defined on A
in the proof of Theorem 2.5 is constant. Secondly, we have the

COROLLARY. LetXeA and let IeA denote the nx x nγ identity
matrix, then X is unitarily equivalent to I.

View L\V) as the tensor product (gΓ1 L\Cn°) by defining

/i (8)/2 ® * ( 8 ) Λ » = U^)flu2) fnι{unι) ,

where ut is the ΐth row of u and •/< e L\Cn°). By inspection of /
and comparison with Theorem 2 of [3], one sees that / is a tensor
product of nγ copies of the oscillator representation 7 of [3].

We may now compute the operators f(zosa) for zosa e ZSA.
Recall that the formula (1.1) for T(g) involves the action of g on Z
given by H(zg) = Hzg. If g — zosa then the action becomes zzosa =
a^s^zzosa. Also, dH(zg) = dH(zzosa) = δJ/((sα)(α~1s~1^osα)) = δH(sa),
since dH(hz) is defined to be dH(h) for any hzeHZ. Furthermore,
δH(sa) = δji(cί) because S has no nontrivial characters. Similarly,
X(zzQsa) = l{a) for any unitary character 1 on H. Thus, (1.1) becomes
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(2.7) T(zosa)f(z) = 8H{a)-υ2l{a)f{a-ίs-ίzz0sa)

for / eL\Z). Now let / eL\Z) n L\Z) and / = ̂ / , then / e ^ =
L2(Λ, #S(L2(7)), dm(λ)) and ̂ (LX(Z) n L\Z)) forms a dense subspace
of Sίf. The next theorem determines the transformed representa-
tion T\ZSA.

THEOREM 2.8. For f e L\Z) n Z/2(Z) αraZ zsa e

f(zsa)f(X) = δ//(α)1/2Z(α)λ

/or almost every XeΛ.

Proof. For every λ e Λ, T(zosα)/(λ) =

(z^a)f(X) = J T(zosa)f(z)X(z)dz -

(1) - δB(a)'1/2X(a) [

( 2 ) - 5H(α)

( 3 ) = δ//(α)

( 4 ) = δ*(α)

which gives the theorem. Equation (1) is a change of variables, (2)
is the fact disaza^s'1) = δH(a)dz (cf., [6], II. 7), (3) is an application
of Theorem 2.5, and (4) is from Theorem 2.6 (1). The formula in
the Theorem is said to hold "almost everywhere" since there may
be a null set in A where the right-hand-side is not in HS(L\V)).

3. The commuting algebra of f \ZSA. We seek necessary and

sufficient conditions for B e Jϊf(J%f), the bounded linear operators on

the Hubert space 3ίf = L\A, HS(L\ V)\ dm(X)), to be in the com-

muting algebra J#"(f\ZSA). Suppose Bej&"(f\ZSA). Then, in parti-

cular, B commutes with t(z) and f(s) for all zeZ and seS. We

will first see what conditions on B these facts impose. Then we

will obtain additional conditions from the fact that B commutes

with f(a) for aeA.

Realize HS(L% V)) as L\ V) ® L\ V). From the observation that

^T - L\Λ, L\ V) (g) L\ V), dm(X)) = j L\ V) ® L\ V)dm{X) is a di-

rect integral of Hubert spaces, we have the notions of decomposa-

ble and diagonalizable operators ([7], I. 3). From Theorem 2.8, it

is clear that f(z) and f(s) are decomposable operators for zeZ and

s eS and can be denoted:
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f(z) = \ I®X(z)dm(X)

f(s) = \ λ(s) (g) X(s)dm(X) .
Λ

To show from this that B is decomposable requires the following
technical lemma of Stone-Weierstrass type.

Let X be a locally compact, σ-compact, Hausdorff space with
positive Borel measure μ, which is finite on compact sets. Let H
be a separable Hubert space. For a e L°°{X, μ), let M(a) denote the
diagonalizable operator on L\X, H, μ) given by M{a)f{x) — a(x)f(x).

LEMMA 3.1. Let j y be a subalgebra of C(X) Π L^iX, μ) over C
such that

(a) 1 6 *X
(b) a 6 S*/ implies a e S/f

(c) J ^ separates points of X.
If Be ^f(L2(X, H, μ)) and BM{a) = M{a)B for all a e <5f, then BM(a) =
M(a)B for all a e L°°(X, μ).

THEOREM 3.2. Suppose Be^'{T\ZSA). Then
(a) B is decomposable.
(b) There exists a mapping X^B(X) of A into £<f(L\V)),

defined a.e. [m], such that B = \ I?(λ) (x) Idm(X).

(c) B(λ) 6 J/'(λ) for almost every XeΛ.

Proof (a) Let j ^ = {λ --> exp [2πi(X\t)]ι t eΛ0}. j / is a sub-
algebra over C of C(Λ) Π L°°(Λf m), which satisfies the conditions of
Lemma 3.1. Furthermore, if a e *5/ then the associated diagonaliza-
ble operator M(a) e £f(££f), given by M(a)f(X) = α(λ)/(λ), is an
operator of the representation t\z. In fact, if α(λ) = exp [2πi(X \ t)]
then M{a) = t(z), where z = (0, 0, t). Therefore BM(a) = M{a)B for
every a e *$/ and the lemma implies that this holds for every a e
L°°(Λ, m). Since {M{a)\ a e L°°(Λ, m)} is exactly the set of diagonaliza-
ble operators on £%?, B must be decomposable ([7], I. 3.2).

(b) Since B is decomposable, there exists an essentially bounded

mapping λ->J5 ;, defined a.e. [m] with values in £f{L\V) (g) L%V)),

such that B = [ Bλdm(X).
J •i - f — ^

Since B commutes with T(z) = \ I (x) X(z)dm(X) for every zeZ,
— ^ Jyi

Bλ commutes with I®X(z) except for X in an m-null set Nz. Z is
separable; let {zt: i 6 ̂ } be a countable dense subset of Z and let

N= Uie r̂>NH. Then m(N) = 0 and for λeiVc, J5; commutes with

/(x)λ(X) for all ie,J^ Thus we have two continuous maps, z -->
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Bλ(IφX(z)) and z —> (/(g) X(z))Bλ, which agree on a dense subset of

Z. It follows that Bλ e J^'(I(g)λ) for all XeNc. Since λ is ir-

reducible, for each XeNc there exists B(X) e £f(L2( V)) such that

Bλ = B(X) (g) J ([1], VI. 3.14). Therefore, B = \ B(X) <g) /dm(λ).

(c) Since 5 commutes with f(s) = 1 X(s) (x) X(s)dm(X) for every

seS, U(λ)(g)/ commutes with λ(s)(x)λ(s) a.e. [m]. Just as in the
proof of (b), since S is separable there exists an m-null set N such
that for every XeNc and every s e S,

(B(X) (g) I)(X(s) (gj λ(s)) = (λ(β) (g λ(s))(J5(λ) ® I ) .

It follows that B(X)X(s) (g) X(s) = X(s)B(X) ® X(s) and hence J5(λ)λ(s) =
λ(s)2?(λ). Thus, jβ(λ) e .i^'(λ) for almost every λ.

Continue to suppose that Bej^ff{t\ZSA) so that B satisfies (a), (b),
and (c) of Theorem 3.2. We will now make use of the condition that
BT{ά) = f{ά)B for all a e A. Recall that a denotes both an element

a 0 0 0

of Gl (nl9 C) and the corresponding element ^ ^ ,-x ^ of A.

0 0 0 /
Concerning the transitive action of A on A given by a X — aXa'',

let ^ be the stability subgroup oί A at IeA. That is, Ax =
{a 6 A: αα' = I}, which can be identified with O(nu C). Let p: A —> A
be the projection p(a) = a I — aaf'. We will need to know that a
measurable set JV is an m-null set in A if and only if p~\N) is a
null set in A with respect to Haar measure. This result can be
obtained by first showing that dη(X) — |det X\~{ni+1)dX is an A-invariant
measure on A. It follows (as in [1], V. 3) that N is an )?-null set
in A if and only if p~\N) is a null set in A. Since m and η are
clearly equivalent we have the needed result. We are now able to
prove

THEOREM 3.3. // Bej*f'(t\ZSA) then there exists a mapping
X —> JS(λ) of A into ,Sf(L2( V)) which is weakly continuous and
satisfies:

(a) B

(b) B(aa') = D{a)B{I)D{άyx for all aeA;
(c) B(I)ej*"(D\Aι);
(d) B(X) e j*"(λ) for all X e A.

Proof. From Theorem 3.2, we have a weakly measurable mapp-

ing λ-^jB^λ) such that B = \ B^X)® Idm(X). The major part of
J Λ
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this proof is to show that there is an equivalent mapping which is
weakly continuous. By Theorem 2.8, if a e A and / 6 0*(L\Z) Π L\Z))
then

Γ(α)/(λ) = δH(ar*Z(<*)D(a)f(a-* • X)D(aΓ

for almost every λ e A, where a"1 X = a~W~\ The condition that
BT(a) = f(a)B for all aeA is seen to be equivalent to

(1) For all aeA, B,(X) = Dia^B^aXa^Dia) a.e. [m(λ)] .

Consider the weakly measurable mapping a -» D{aYιB1{aaf)D{a)
of A into £f(L%V)). For fixed αeA, (1) implies

(2 ) DiaβY^aββ'a^Dtaβ) = DiβT^ββ'Wβ) a.e.

since a null set in Λ pulls back under p"1 to a null set in A. Fix
Φ, ψeL( V) and define the measurable, essentially bounded function
w: A —> C by

u>G8) - (D(βΓB1(ββf)D(β)φf ψ) ,

where ( , ) is the inner product of L(V). Then, by (2), w(β)dβ
defines a left invariant Borel measure on A. By uniqueness of Haar
measure, w must be almost everywhere constant. Moreover, if this
number is denoted wφiψ then, by application of the Riesz representa-
tion theorem to the bilinear form (φ, ψ) —> wφ%ψ, there exists a unique
Le^(L2(V)) such that

( 3 ) Diβr^iββ'Wβ) = L a.e. [dβ] .

Consider the weakly measurable maps β —> B^ββ') and β —>
D{β)LD{β)~ι of A into j^(L 2( F)). Since Λ = {α e A: αα' = /}, the
first map is constant on left cosets of Ax. The second map is con-
tinuous (with respect to either the strong or the weak operator
topology of J*f(L\ V))). Also, (3) implies that the two maps coincide
almost everywhere. We can conclude that β —> D^LDίβ)"1 is both
continuous and constant on left cosets of At. Because of this fact,
the mapping ββr —> D(β)LD(β)r is well-defined on A. It is also con-
tinuous since β —> D{β)LD{β)~1 is continuous and p is open. Define
B(ββr) = D(β)LD(β)', then B{ββf) and B,{ββ') differ only on a "strip"
set of measure zero in A, which projects to a null set in A. Thus,
λ —• JB(λ) is a continuous mapping such that (a) holds.

Parts (b) and (c) follow immediately from the definition of 2?(λ).
To prove (d), recall from Theorem 3.2 (c) that J5(λ)ejy"(λ) for
almost every XeA. In particular, B(λ0) e J/ ;(λ0) for some λ0 =
ββ'eA. Let XeA, then λ = aXoa' = aββ'a! for some aeA. Now
apply the definition of ί?(λ) along with Theorem 2.6 (2).
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We now have the main theorem.

THEOREM 3.4. The mapping

B(I) > B = j D(β)B(I)D(βΓ ® Idm(ββ')

is an isomorphism of von Neumann algebras from J*f'(D\Al) ΓΊ J^'(/)
onto J#"(f\z8Λ).

Proof. The mapping in the theorem makes sense because the
condition B(I) e J#"(D\Λι) guarantees that ββ' -* D(β)B(I)D(β)-1 (gj I
is well-defined. It is straightforward to verify separately that Be
J#"(t\z)f Bej#"(f\s)9 and Bej#"(t\Λ). Also, using properties of
decomposable operators, it is easy to show that B{I) -> B is an
isometric, *-algebra isomorphism. The fact that it is surjective is
proved in Theorem 3.3.
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