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PERIODIC SOLUTIONS OF HIGHER
ORDER SYSTEMS

P. W. BATES AND J. R. WARD, JR.

Results are given providing sufficient conditions for the
existence of periodic solutions higher order nonlinear vector
differential equations. The conditions include the possibility
of both sublinear and superlinear growth in the nonlinear
terms.

1* Introduction* Consider the system of equations

(1.1) u™ + g(t, u,u', ••., w< -») = f(t) , 0 < t < T ,

where u, g, and / are Λ-vectors. We will establish the existence
of T-periodic solutions to (1.1) for large classes of nonlinearities g
and forcing terms /. In particular we include cases where g is
bounded, sublinear, or superlinear in u9 with arbitrary growth in
the other arguments of g in the latter case. We also include cases
in which g is mildly singular in t or vanishes at an endpoint of the
interval.

The second order scalar version of (1.1) has received attention
recently with new and interesting results (see, e.g., [2] and [3]).
The second order vector case of (1.1) has also been investigated by
several authors recently with interesting results, often based on the
sign of x g (see, e.g., [1], [5], [6]). Recently the second author in
[8] obtained results which apply to higher order vector equations
which lead to operators nonnegative outside a large ball.

Our results here do not depend on sign conditions in the sense
that if the function g in (1.1) satisfies our conditions so does — g. Also
our results do not depend on the existence of a Nagumo function
for g. Roughly speaking we assume that the nonlinearity g is
either sublinear at infinity (see Cor. 2.2) or superlinear at the origin
(see Cor. 2.3). Although we see our results as being of principle
interest for higher order scalar and vector equations we obtain results
which appear to be new even in the second order scalar case (see
Example 3.3). We wish also to remark that while our results are
all stated for periodic boundary conditions, our methods could be
applied equally well to some other boundary value problems, e.g.,
the Neumann problem x'(0) = x'(T) = 0 for second order equations.

For the proof of our result we will rely on an abstract result of
Mawhin [4] which is an extension of the Leray-Schauder continuation
theorem.

Let X and Z be normed vector spaces, L: D(L) Q X -> Z a linear
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Fredholm mapping of index zero and N: X —> Z a continuous mapping.
It follows that there exist continuous projections P: X —> X and
Q: Z -> Z such that Im (P) = Ker (L) and Im (L) = Ker (Q) = Im (/- Q).
Moreover the mapping

I/: D{L) Π Ker (P) ^ (/ - P)X -> Im L

is invertible; denote its inverse by L"1. Let G be an open bounded
subset of X. The mapping N is said to be L-compact on G if QN(G)
is bounded and L~\I — Q)N: G -> X is compact. Let J be an isomor-
phism from Im (Q) onto Ker (L); such a J exists since these subspaces
have the same finite dimension.

THEOREM (Mawhin; see [4], p. 40). Let L be a Fredholm map-
ping of index zero and let N be L-compact on G. Suppose

( i ) For each X 6 (0, 1), every solution u of

Lu = XNu

is such that u£ dG.
(ii) QNuΦQfor each u e Ker (L) Π3G and d(JQN,Gf)KeγL,O)Φθ.

Then the equation Lu = Nu has at least one solution in D(L) (Ί G.
Here c£( , , •) refers to the Brouwer degree.

We will use the notation:

a I = max | α< | for aeRk , Lλ(J, i?*)

for the integrable functions defined on an interval J and taking
values in Rk, with norm denoted by || -|]i, and C(J, Rk) for the con-
tinuous functions, with norm defined by ||Λ|| — sup {\h(t)\: t e J}.

2. The results• Consider the wth order nonlinear system.

(2.1) u^ + g{t, u,u',.. , u^-») = /(ί) , t 6 J = (0, Γ) ,

where g:JxRkxn-+Rk is continuous and feL^R16). We will
impose general conditions on g and / which will allow us to use the
Mawhin theorem stated in §1, and then give special classes of such
functions in our corollaries. Section 3 contains some examples.

Let r = (rip) eRkxn be fixed and define

Ω = { a e R k X n : \aip\ < rip, l ^ i ^ k 9 θ ^ p ^ n - l } .

Suppose that the function g satisfies
(Gl) there exists a function C: R —> Rk such that for L ^ 0 and

j = 1, ••-,&, \g, (t, u\ ••., u{n~1])\ ^ L for te J a n d u = (uξ)eΩ implies
that | ^ | ^ C5(L), and
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(G2) there exists a function β e L^J, Rk) such that if ueΩ,
then ! gά{t, u\ , tt<-") | ^ /9,(t), 1 ύ j ^ k.

In the above expressions we are using u\ to represent the element
in the ith row and pth column of a real k x n matrix.

Define the projection Q on L^J, Rm), m ^ 1, by

T Jo

THEOREM 2.1. Suppose that (Gl) and (G2) are satisfied and that
for 1 <̂  i ^ k}

(dQQfA) + T—dl/Jli + IIA Hi) <

ί
Further9 suppose that

k

(2.3) Σ a* sgn «)Q[</<( , < 0, - , 0) - /J > 0

/or « 0, , 0) e 342, wΛβre a, e {-1, 1}, 1 ^ i ^ k. Then (2.1)
a T-periodic solution.

Proof. We show that the hypotheses of Mawhin's theorem hold
with the operators defined below.

Let X - C(*-1}(j; Rk), Z = Ir^J, #*), and

G = .{tte X: (w(t), , u( -1)(t)) e i2, t 6 J} .

Define L: dom L Q X ~> Z by

dom L = {u 6 X: wι -1} e AC{J), u^(0) - ^(2>)(Γ), 0 ^ p ^ n - 1} ,

L^ = u{n) for ίi e dom L .

Define iV:X-+£ by

Nu(t) = /(ί) - βf(ί, %(*), , ^^"""(ί)) for w 6 X .

It is easily verified that ImL is closed and that Ker L=Rk ~Zyim L
and, therefore, L is a Fredholm map of index zero. Define the
projections P:X-+ Ker L and Q: Z -+Z, such that ImL = Ker Q, by

Qfc = JL Γ h(s)ds = PA .
Γ Jo

The restriction of L to (J — P)X Π dom L is one-to-one and so L has
a partial inverse,

IT1: I m L - > ( / - P)XΠ domL. Furthermore, since g is continu-
ous and domL is compactly imbedded in X, it follows that
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L~\I — Q)N: X -»X is completely continuous.
We claim that if u e dom L Π dG and 0 < λ < 1, then Lu Φ XNu.
Suppose this is not the case, then there exists X e (0, 1) and a

function uedomL with

(2.4) u { m ) + \ g ( t , u , , u ^ - 1 ) = Xf , t e J .

Furthermore, since w e dG, || uίp) \\ <̂  r,,, 1 ^ i ^ &, 0 <L p <, n — 1,
and for some m and i there is a £*e J such that |w}m)(£*)| = rim.
Also, by the periodicity condition, there are points tpeJ such that
uf\tp) = 0, l^<pSn-l.

Integrating the i t h row of (2.4) and using the mean value
theorem for integrals, gives another point, toeJ, such that

\gj(tOfu(to\ •• ,tt ( -1 )(t0))| = IQΛI,

which implies that \us(t0)\ ^ Cy(|Q/y|), by (Gl). Integrating the jth
row of (2.4) n — m times between the indicated limits yields

= λ Γ
Jtm

Using (G2), it follows that

r i . ^ Γ -- 1 ( | | / i | | 1 +11/9^10, if l^m^n^

and

Either case contradicts the hypotheses of the theorem.
Next, because Ker L = Rk, the condition that QNu Φ 0 for

u 6 Ker L ΠdG becomes

Q[f - g( , < 0, • -, 0)] Φ 0 for « 0, , 0) e 3Ω .

This is guaranteed by (2.3).
Finally, (2.3) implies that QN is homotopic on Ker LΓ\dG to

the matrix A = diag(—α<), implying that the Brouwer degree,
d(QN9 G Π Ker L, 0), is nonzero.

The hypotheses of Mawhin's theorem are satisfied and, hence,
there exists a function u e dom L f]G such that Lu — Nu, that is,
u is a Γ-periodic solution to (2.1) and satisfies \\uip)\\ ^ ripf 1 <* i ^ fc,
0 ^ p ^ w - 1.

REMARKS, (a) The solution, u, lies in Cn~\J) with u U ) only
existing almost everywhere. If we assume that / is continuous,
then we can conclude that uίn) is continuous on J .
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(b) To extend the solution periodically one must, of course,
assume that both / and g are T-periodic in t.

(c) The function C in (Gl) is not assumed to be continuous. If
g(tf u) = tu on (0, 1) x R, for example, and if | g(t, u)\ ^ L for
£ e (0, 1), \u\ ?Si r, then we may take

r if L > 0 . (See Corollary 2.3 and Example 3.3) .

(d) The purpose of (2.3) is to ensure that the Brouwer degree,
d(QN, G Π Ker L, 0), is defined and nonzero. A weaker version of
(2.3) that is sometimes used is

x [g(t, x, 0, , 0) - f(t)] > 0 for t e J, (x, 0, , 0) 6 dΩ

or

x [git, x,ϋ, - , 0) - fit)} < 0 on the same set .

Our first corollary deals with the case where g is sublinear in
a certain sense. First some notation:

For all r e Rkxn, rip ^ 0, 1 ̂  i ^ k, 0 £ p ^ n - 1, define ΩrL =
R k χ r ' 1 a n d f o r j = 2, •••, &.

D e f i n e /3, ( r , Q = s u p { | ^ ( ί , u\ , % ( Λ - 1 } ) |: « , ^ ^ " ' O e i 2 r i , \ u ) \ ^ rd0},

COROLLARY 2.2. Suppose that g satisfies

(2.5) — Γ /3, (r, ί)dί > 0 and

(2.6) aj sgn {u))g5(t, u\ , ̂ (%~1}) > + c^ as \u^\ = r i 0 > oo

uniformly for (t, u°, , u^"^) in J x Ωrj where aά e { —1, 1}, /or
1 ^ i ^ &. Tfce^ 2.1 Aas a T-periodic solution for all f eL^J, Rk).

The proof of the corollary will be omitted. Basically the proof
consists of showing that Theorem 2.1 applies, first by choosing rlt0,
then rltP, 1 ̂  p ^ n — 1, and then proceeding to define reRkxn, a
row at a time.

The second corollary deals with the case that g is superlinear.
The proof will be omitted.

Let R > 0 be fixed and set B = {x e Rkxn: \x\^R}. For r 6 Rkxn,

0 <£ rip <; i?, 1 <̂  i ^ &, 0 <^ p <^ n — 1, define jBrl = 5 and for 1 <
Ί < IT 7? — //y. c R I /y I < Λ 4 <^ 4\
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Define as(r, t) = sup {| gtf, u\ , u{n^) |: « , u ^ ) e Brj,
\u°ά\ ^ r i 0 } , l ^ i ^ f c .

C O R O L L A R Y 2 . 3 . S u p p o s e t h a t f o r ( £ , u°, , w ( w " υ ) e J x B e i t h e r

(2.7) C(L) >0 as L >0,

or

(2.8) C(0) = 0 and assume Qf = 0 .

Suppose further that for 1 <^> j <* k, 9j satisfies

— Γ a, (r,
rj0 Jo

0 as rj0

' io

and

aj sgn {uQj)Qg^( , u°, 0, , 0) > 0

for all small \u{}\> 0, for « 0, , 0) e d £ r i where aά e {-1, 1}.
(2.1) fcαs α T-periodic solution for all f e LX(J9 Rk) with | | / | | i sufficient-
ly small.

3* Examples* Here we present some examples to which the
results of the previous section apply, hopefully illustrating the
conditions which we impose upon the nonlinearity.

EXAMPLE 3.1. Consider the systems

x" ± sgn (x) I x \* + gx(t, u, u') = f,{t)

(3.1) y" ± sgn (y) \ y \β + g2(t, x, x') + g3(t, u, uf) = /2(t)

U" ± sgn {z)\zY + Λ ( ί , a?, x\ y, y') + ft(ίf u, uf) = /8(t) ,

where 0 < α, /3, 7 < 1, % = (x, y, z), g^ is continuous for each i, 1 ^
i ^ 5, and uniformly bounded for £ = 1, 3, 5. No other conditions
are impossed upon g2 and gA. It follows from Corollary 2.2 that (3.1)
has a solution u for all fx e Lx(0, Γ) and all T > 0, satisfying w(0) =

EXAMPLE 3.2. Let g be continuous and uniformly bounded on

[0, T] x Rn and let 0 ^ α < 1, 0 < /3 < 1, then

(3.2) u{n) + r α sgn (μ) \ u \β = βr(ί, %, , ^ ( w " υ )

has a solution u such that u{i)(0) = u{ί)(T), 0 ^ i ^ n - 1. This also
follows directly from Corollary 2.2.

EXAMPLE 3.3. Consider the equation
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u" + kt° sin u = /(ί) , 0 < ί < 1 ,
( 3 ' 3 )

where a > — 1 and \ /(ί)dί = 0. Theorem 2.1 implies that (3.3) has
Jo

a s o l u t i o n , u p r o v i d e d \k\/(a + 1) + \\f\\i < π. F u r t h e r m o r e ,
\u{t)\ < π a n d \ u \ t ) \ <£ \k\/(a + 1) + \\f\\,.

EXAMPLE 3.4. Consider the fourth order system

(xiυ + x%(t} u, u\ u", u'") =
( 3 ' 4 ) [yiv + y%(t, u, u', u", uf") = / 2(t), o < t < T ,

where % = (x, y) and ^i is continuous and uniformly bounded away
from zero, i = 1, 2. Corollary 2.3 implies that (3.4) has a solution
w with u{ί)(0) = u(ί)(Γ), 0 ^ i ^ 3 , for all /x,/2 e 2 (̂0, T) with suf-
ficiently small norm.

Concluding remarks. The results of this paper are related to
some of the results of Ma whin ([7], Theorems 6.1 and 7.1) and
Gaines and Ma whin ([4], Theorem IX. 3). Those results rely on one
of Mawhin's coincidence degree theorems, as do our results here.
The results of [7] and Theorem IX. 3 of [4] both include vector
equations of the form considered here, but require the nonlinearity
to have sublinear growth. For example, Theorem 6.1 of [7] applied
to our equation (1.1) requires that for all ε > 0 there exists 7 > 0
such that \g(t, u\ , u{n~1])\ ^ ε(\u°\ + + u{n~l))\ + 7 for all
(t, u°, , u{n'1]) eRn+1. Moreover, those results all have hypotheses
which exclude periodic nonlinearities, such as sin (u), which our
results allow (Example 3.3). In comparing our results with Theorem
IX. 3 of [4], one sees that conditions (IX. 14) and (ii) are similar
to, but stronger than, conditions (2.5) and (2.6) of our Corollary 2.2.
In addition, we allow nonlinearities in the derivative terms and mild
singularities in t. Theorems 6.1, 7.1 of [7] and IX. 3 of [4] do,
however, allow for a more general linear part of the equations con-
sidered than do our results here, and Theorem 6.1 of [6] includes
functional differential equations.

In our Corollary 2.3 the nonlinear part is super linear near the
origin, and our methods require that the forcing function / be small.
If the superlinearity is assumed to hold at infinity, e.g., if g(x)/x-+
+ oo as |x| —> CXD, then our results do not apply. Here the sign of
g(x) assumes critical importance (at least in affecting the difficulty
of the problem). If the equation considered is, e.g., (—ΐ)nxi2n) +
g(x) = /, with g(x)x ^ 0 then a number of results are available in
case n = 1 (concluding vector equations); see, e.g., [I] and many
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results in [5], and many results in [4], and in case n ^ 1 see [8].
For equations such as { — l)nx{2%) — g(x) — f, with g as before, much
less seems to be known, but Fucik and Lovicar have shown in [2]
that if n = 1 there is a periodic solution for any periodic / . The
results of Gaines [3] also apply in some cases of this type.
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