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SPHERICAL MEAN PERIODIC FUNCTIONS ON
SEMI SIMPLE LIE GROUPS

SOMESH CHANDRA BAGCHI AND ALLADI SITARAM

Let G be a connected semisimple noncompact Lie group
with finite center. We define the notion of a smooth
spherical mean periodic function (with respect to a fixed
maximal compact subgroup K of G) and show that the
classical results of L. Schwartz for mean periodic functions
on the real line hold in this context.

1* Introduction* The study of mean periodic functions started
with Delsarte ([1]) who was interested in solving the convolution
equation

μ*f=0

where μ is a measure of compact support on R and / a continuous
function on R. He was able to show that under certain conditions
a general solution / can be written as a linear combination of
"exponential monomial" solutions of the above equation. A mean
periodic function on R is a continuous function / satisfying the
above convolution equation for a nontrivial μ. In his famous paper
([11]) L. Schwartz studied mean periodic functions in detail, intro-
duced the notion of the spectrum of a mean periodic function and
showed that a mean periodic function / can be approximated by
finite linear combinations of the functions in the spectrum of /.
Malgrange in [10] studied the case of mean periodic functions on
Rn for n > 1 and showed that a weaker version of Schwartz's result
holds in this case.

The study of smooth mean periodic functions for the group
SL (2, R) was taken up by Ehrenpreis and Mautner in [4], [5] and
results analogous to those of Schwartz were obtained by them.
Since then harmonic analysis of spherical functions on semisimple
Lie groups has been studied extensively ([2], [6], [7], [9], [12]).

The purpose of this paper is to use these powerful results along
with the original results of Schwartz and Malgrange to study the
case of spherical mean periodic functions on a noncompact semisimple
Lie group G with finite center.

2 Preliminaries* Throughout § 2 and § 3 G will denote a
noncompact semisimple Lie group with finite center and of real
rank 1, if a fixed maximal compact subgroup of G and R the real
line. Any unexplained terminology in this section can be found in [8].
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Certain function spaces on G and R: Let C^iR) be the set of
all (complex valued) C°°-functions on R equipped with the topology
of uniform convergence along with all derivatives on compacta. By
(C°°(jβ))e we denote the closed subspace of C°°(R) consisting of func-
tions / which are even (i.e., f(x) = /(—x) for all xeR). Equip
(C°°(R))e with the relative topology from C°°(R). Let C?(R) ((CΓ(R)Y)
denote the subspace of C°°(R) (respectively (C°°(j?))e) consisting of
the compactly supported functions.

We denote by (C~(R)Y the dual of C~(R) and equip it with the
strong topology. Then every T e (C°°(ii))' is a distribution of com-
pact support. Let g* be the dual of (C°°(R))e equipped with the
strong topology. Then g7 can be identified as a topological vector
space with the subspace of compactly supported even distributions
on JR. (A distribution T on R is said to be even if for all fe C?(R),
T(f) = T{f) where f\x) - f(x) + f(-x)/2).

For feCΓ(R) (resp. T e (C°°(iί))') let / (resp. f) denote the
usual (Euclidean) Fourier transform of / (resp. T).

Let C°°(G) be the space of C°°-functions on G. A function
/eC°°((?) is said to be K-biΛnvariant if f(kxk')^f{x) for all k,kf eK
and xeG. C°°(K\G/K) will be the space of i£-bi-invariant functions
in C°°(G). Topologise C°°(G) by means of uniform convergence along
with all derivatives on compacta. C°°(K\G/K) will have the relative
topology from C°°(G). C™(K\G/K) denotes the subspace consisting
of compactly supported functions. We recall that C?(K\G/K) is
closed under convolution and that convolution is commutative in
C?(Σ\G/K).

E will denote the dual of C°°(K\G/K) and will have the strong
topology. Then every TeE is a i£-bi-invariant distribution of
compact support. (A distribution T on G is i£-bi-invariant if Γ(/) =
Γ(V*2) for all /6C~(G) and ku k2eK where k^f\x) = f(k,xk2) for
all xeG.)

The spaces (C°°(R))e and C°°(K\G/K) are Frechet-Montel spaces,
hence reflexive. Thus the duals of i? and E can be identified with
(C°°(R))e and C°°(K\G/K) respectively.

Spherical Fourier transform: (See [8] for details.) Let G =
KAN be the Iwasawa decomposition of G. Let g be the Lie algebra
of G, a the Lie algebra of A, α* the dual of α and α* the complexi-
fication of α*. Let p denote the half sum of the positive roots
for the adjoint action of α on g: Since G is of real rank 1, dimen-
sion α* = 1 and thus sea* can be written uniquely as s = Xp with
λ e C Then for λ e C let φx denote the elementary spherical func-
tion associated with Xpea*. Again, since G is of real rank 1
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observe that φλ = φx, iff λ = λ' or λ = — λ'.
For f eCΓ(K\G/K) define the spherical Fourier transform / on

C by

/(λ) -

where dx is a fixed Haar measure on G. More generally, if T e E,
define the spherical Fourier transform f by

f(\) = T(φλ), λ e C .

Let X be the space of all entire functions h on C which are even,
i.e., h(z) = h( — z) for all zeC and satisfying the growth condition:

\h{z)\ £ K e r l I m z l ( l + \z\)n

for some r, K > 0 and nonnegative integer n. Then we have the
following Paley-Wiener type result from [2, Theorem 3].

THEOREM 2.1. The spherical Fourier transform gives a linear
bijection of E onto X.

Finally, for feCΓ(K\G/K), define a function Ff on R by

Ff(t) = β'loββf f(an)dn where α = exp ίp .

Then it is well known that Ffe(CΓ(R))e and the map/->.£V is an
isomorphism of CC°°(K\G/K) onto (Cc°°(iί))

e and, further, / = Ff.

Mean periodic functions on R: A function feC°°(R), is said
to be mean periodic if and only if there exists a nonzero distribu-
tion T of compact support such that T*f = 0 (where * denotes
convolution) or, equivalently, there exists g e C?(R), g Φ 0, such that
g*f = 0. It is easy to see that / is mean periodic if and only if
the closed linear span of {xf; xeR} is a proper subspace of C°°(R)
where *f(y) = f(y - x) for all y e R.

Examples of mean periodic functions are the functions Fλik where

F λ Λ χ ) ~ ikχk e χ P (i^>x) * x s R

for XeC and k a nonnegative integer. (Schwartz in [11] studies
in detail mean periodic functions in C(R). However, as he himself
points out, these results can be formulated and proved in exactly
the same way for C°°(JB), the space of distributions, etc.)

Let V be a proper closed subspace of C°°{R) such that if feV
then xfe V for all x e R — or, equivalently, if fe V then TF*/e V for
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all We(C°°(R)Y. Such a V will be called a variety in C~(R).
The following theorem is due to Schwartz [11].

THEOREM 2.2. Let V be a variety and let feV. Then f is
the limit in C°°(R) of finite linear combinations of functions of the
type Fλ>k with Fλ)k e V. (Note that if Fλ>k e V, it can be proved
that Fλth. 6 V for all k' ̂  k.)

Mean periodic even functions on R: We now modify the
preceding definitions and results slightly in order to apply them
later to if-bi-invariant mean periodic functions on semisimple Lie
groups of real rank 1.

DEFINITION 2.1. (a) A function fe(C°°(R))e is said to be an
even mean periodic function if there exists T e g 7 , T Φ 0 such that
T*f = 0.

(b) A proper closed linear subspace V of (C°°(R))e is said to be
a variety if W*fe V for all We gf and feV.

For λ e C and k a nonnegative integer we define ψitk e (C°°(iί))e by

e χ P ^ x "*" ^fe("~^)fe e χ P (~

It is easy to see that ψλtk is even mean periodic. A minor modifica-
tion of Theorem 2.2 yields:

THEOREM 2.3. Let V be a variety in (C°°(/ί))e and let fe V.
Then f can be approximated in (C°°(R))e by finite linear combina-
tions of functions of the type ψλtk where ψX)k e V.

K-bi-invariant mean periodic functions:

DEFINITION 2.2. A function feC°°(K\G/K) is said to be a
spherical (or iΓ-bi-invariant) mean periodic function if there exists
T e E, T Φ 0 such that T*f = 0.

Note that if / is mean periodic then the closure of the subspace
{W*f; WeE} which will be denoted by Vf in the sequel, is a proper
subspace of C°°(K\G/K). (The converse of this assertion is also true
— as will follow easily from Lemma 3.3 and the corresponding fact
for (C"(R))e)

EXAMPLES. (1) ψh λ e C is mean periodic in the above sense.
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For, let / be any nonzero function in CΓ(K\G/K) such that /(λ) = 0
(such functions certainly exist). Now

However, using the well known functional equation

the above integral is merely equal to
(2) Let 0 ^feC°°(G) Π L\K\G/K). Then we show that / can-

not be mean periodic. As is well known the spherical Fourier
transform is defined on a horizontal band containing the real axis.
If now T*/ — 0 for a nonzero TeE, then we have f f — 0. Since
f is entire its zeros on R are isolated. So / = 0 on R and hence
/=0.

(3) A similar argument shows that if / belongs to any of the
Harish-Chandra Schwartz spaces ^P(K\G/K) (see [12] for definition
of these spaces) then / cannot be mean periodic in the sense of
Definition 2.2.

DEFINITION 2.3. Let XeC and k a positive integer. Let

Φx,M = - j ^ r & t e ) > xeG

and

Φx,o(χ) = Φx(χ) , x e G .

Following Schwartz we now introduce the concept of spectrum of
a mean periodic function.

DEFINITION 2.4. Let feC°°(K\GIK) be mean periodic. Let Vf

denote the closure in C*(K\G/K) of the subspace {TF*/: WeE}.
By spectrum / we mean the collection {φχlk)ψχtkB Vf}.

It will follow from Lemma 3.3 and the corresponding fact about
the spectrum of a variety in (C°°(R))e that if φλ>kε spectrum / then
^,fc,εspectrum / for all kf <; k.

3» The main result for groups of real rank 1* As in § 2 G
will stand for a semisimple Lie group of real rank one. We begin
with a proposition which is implicit in the work of Inoue, Okamoto
and Tanaka [9].

PROPOSITION 3.1. There exists a linear topological isomorphism
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S from E onto i? such that for any feCΓ(K\G/K) {considered as
a K-bi-invariant compactly supported distribution)

S(f) = Ff .

Also, if 4 , Λ2eE, then S(Λ^Λ2) =

Proof. Given weE, let w denote its spherical Fourier trans-
form. Then weX (see §2) and there exists a unique ue& such
that u — w (by the Paley-Wiener theorem for R). Define S(w) = u.
It is easy to see from Theorem 2.1 and the Paley-Wiener theorem
for R that S is one-to-one and onto. On X we impose the topology
defined by Ehrenpreis (see [3, p. 414]). This makes X and £?
topologically isomorphic. The important observation made in [9,
Prop. 1] is that for X equipped with this topology, the spherical
Fourier transform is an isomorphism of E onto X. Thus it follows
that the map S defined above is a topological isomorphism from E
onto gf. Finally, the fact that S(f) = Ff if feC?(K\G/K) follows
from the equality f — Ff (see §2). The last statement is a con-
sequence of the relations (w^w^Γ — Wι'W2 and (S(w1)*S(w2)y —

PROPOSITION 3.2. There exists a linear topological isomorphism
T from C°°(K\G/K) onto (C°°(R))e such that

S(w)(T(f)) = w(f) for all weE and feC°°(K\G/K) .

Further, under this isomorphism

T(ψχ,k) = Φλ,k

for all XeC and k nonnegative integer.

Proof. Define T as above. Since C°°(K\G/K) and <C°°(jR))e are
Frechet-Montel spaces, they are reflexive. Hence the duals of E
and i? (equipped with the respective strong topologies) are C°°(K\G/
K) and (C°°(/?))e respectively. Since by the previous proposition S
is a linear topological isomorphism, T is also a linear topological
isomorphism.

For the second assertion, first observe that T(ψλ) = <fλ. Let
weE. Then S(w)T(φλ) = w(φλ) by definition of Γ. However w(φλ) =
w(X) = S(w)(X) = S(wXψλ).

So, S(w)(T(φχ)) = S(w)(ψχ) for all weE. Since S is an isomor-
phism this implies

Λ(T(φλ)) = Λ(ψλ) for all A e if .
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Thus T(φλ) = ψλ. Next, observe that the function

h

in the topology of (C^iR))6 as h —> 0. Since T is a topological
isomorphism, it follows that (φλ+k — φλ)/h converges in C°°(K\GIK)
but clearly it has to converge to (d/dX)φλ. Hence

d

Iteration of the above gives that

for all XeC and k nonnegative integer.

LEMMA 3.3. Let feC°°(K\G/K) and w, w'eE. Then

S(w')*T(w*f) = T(w'*w*f) .

Proof. Let AeE. Then

S(Λ)(Sw'*T(w*f)) =

Similarly we can show

S(Λ)(T(w'*w*f)) =

(1) However in checking the above one needs to use
the fact that if w e E and / e C°°(K\G/K) then w*f = /*w, where
the right hand side should be viewed as the convolution of two
distributions.

(2) For any function / on a group G by / " we mean the
function /"(#) = fig"1) and if T is a distribution, T" is defined by

PROPOSITION 3.4. Let f be mean periodic in C°°(K\G/K). Then
T(f) is mean periodic in (C°°(lί))e and spectrum f ( = spectrum Vf) =
spectrum TVf.

Proof. If / is mean periodic then Vf Φ C°°(K\G/K) and hence
TVf Φ (C°°(R))e. From Lemma 3.3 we conclude that TVf is a variety
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in (C°°(i?))e. Thus T(f) is mean periodic. The second assertion
follows from the definition of spectrum and Proposition 3.2.

We are now in a position to state our main theorem.

THEOREM 3.5. Let feC°°(K\G/K) be mean periodic. Then f is
in the closed linear span of spectrum of f, that is, f can be
approximated in the topology of C°°(K\G/K) by finite linear combi-
nations of functions of the type φx>k where φλ)kε spectrum f

Proof Immediate from Proposition 3.4 and Theorem 2.3.

Note. ( i ) One could have studied mean periodic distributions
instead of mean periodic functions and one would obtain results
analogous to Theorem 3.5.

(ii) As in Schwartz [11] and Ehrenpreis-Mautner [4, p. 52] one
can, by means of grouping of terms and Abel convergence factors,
represent a given mean periodic function fe C°°(K\G/K) by an infinite
series / ~ Σ dλ;kφλyk where dλ>k are constants and φλ>kε spectrum /.

4* The case of arbitrary rank* In this section we will drop
the assumption on the rank of G. Hence G stands for an arbitrary
semisimple Lie group with finite center. As before, K will be a
fixed maximal compact subgroup and KAN, g, α, α*, α*, p and finally
G°°(K\G/K) and E will have the same meaning as in § 2 and § 3.
(Note that now dim a — n — real rank of G Ξ> 1.) Let W be the
Weyl group of the pair (G, K) (see [8]). Let eu—-,en be an
orthonormal basis of α with respect to the Killing form B restricted
to α and e*9 , et be the dual basis of a*. Then any λeα* can be
written uniquely as

λ = zxeΐ + + z n e t , zteC , i = 1, , n .

We denote by φλ the elementary spherical function associated with
λ e α * . Let a be a multi-index, i.e., a=(al9 ••-,«») where al9 ••-,«»
are nonnegative integers. Define φλ>a to be the function d^φx/dzΐ1- 3«2
(where | α | = Σ?=i«<)

On the other hand a can be identified with Rn by means of
the orthonormal basis elf ••, en. Since W acts on a this identifica-
tion will induce a natural action of W on Rn. Let (C°°(.R*)Γ denote
the space of C°°-functions which are invariant under the action of
the Weyl group W. Topologise (C0O(iίίl))^ as a closed subspace of
C°°(Rn) with the usual topology. Let g* stand for the strong dual
of (C~(Rn))w. (Then g7 is really the space of compactly supported
distributions on Rn which are invariant under W.) Now using the
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work in [9] just as in § 3 we can establish the isomorphisms

S:E >gf

and

T: C~(K\GIK) > (C°°(Rn)yv

such that S(Λ)(T(g)) = A(g), ΛeE,ge C°°(K\G/K). Lemma 3.3 would
be valid in this set up and an easy application of this lemma
together with an approximate identity argument would yield:

( * ) S(Λ)*T(f) - 0 if and only if Λ*f = 0 .

For a function / e C°°(Rn) define fw e (C~(Rn))w by

\W\ Sew

For XβCn and a a multi-index a = (au , an) let

where

Fλ a(χ) = -21—^—i- , χeRn .
' Sλfi- Sλ

With the identification of α used above it can be shown exactly as
in § 3 that T(φλ,a) = ψχ,a for all XeCn and multi-index α. The
following theorem is due to Malgrange [10].

THEOREM 4.1. Let f be a nonzero function in C°°{Rn) and T a
nonzero distribution in (C°°(Rn)Y such that T*f = 0. Then f can be
approximated in C°°(Rn) by finite linear combinations of functions
of the type Fλj0C where the Fλ>a satisfy the convolution equation

T*Fx,a = 0 .

Just as with Schwartz's main result, we adapt the above to
yield the following

THEOREM 4.2. Let 0 φ f e (C°°(Rn))w and OφTeξ? such that
T*f = 0. Then f can be approximated in (C"°(Rn))w by finite linear
combinations of functions [of the type ψλy(X where the ψx>a satisfy
the convolution equation T*ψλ>a = 0.

In view of the isomorphisms S and T and of (*) Theorem 4.2
translates into the following result (which is a weaker version of
Theorem 3.5 when n = 1).
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THEOREM 4.3. Let 0 Φ feC°°(K\G/K) and OΦTSE such that
T*f = 0. Then f can be approximated in the topology of C°°(K\G/K)
by finite linear combinations of functions of the type φλ>a where
the φλ,a satisfy T*ψλ,a = 0.
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