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SEMILATTICES HAVING BIALGEBRAIC
CONGRUENCE LATTICES

GARR S. LYSTAD AND ALBERT R. STRALKA

The congruence lattice of a semilattice is algebraic
(=compactly generated). In this paper those semilattices
having bialgebraic congruence lattices are characterized.
We are also able to characterize those semilattices having
the stronger property that their congruence lattices sup-
port a compact, Hausdorff topology which makes them into
topological lattices.

Let .7° be the category of (meet) semilattices and meet-preserv
ing maps. A congruence on a semilattice S is a subset of S x S
which is both a subsemilattice and an equivalence relation. When
ordered by inclusion @(S), the set of all congruences on S, becomes
a coatomically generated (i.e., every element is an infimum of co-
atoms), algebraic (=compactly generated) lattice (ef. [3], [8]). As
such it will have very strong completeness or topological properties
examplified by the fact that it supports a naturally defined topology
relative to which it becomes a compact topological semilattice. In
this paper we are concerned with those semilattices whose con-
gruence lattices have even stronger topological properties. First,
we are able to characterize, both externally and internally, those
semilattices S for which 6(S) is bialgebraic (i.e., both 6(S) and its
dual are algebraic). The external characterization is based upon
whether S has either of two very elementary semilattices as a
quotient.

Bialgebraic lattices will then support two naturally defined
topologies. Meet is continuous relative to one and join is continuous
relative to the other. In general, these two topologies do not
agree. However, in many interesting cases, such as the lattice of
all subsets of a set, they do. Bialgebraic lattices in which these
topologies coincide will be caljed coordinated. In §3 we charac-
terize those semilattices having coordinated bialgebraic congruence
lattices. Again, both internal and external characterizations are
given. For the external characterization we need only add a third
familiar semilattice to the two needed for the bialgebraic situation.

The theory of algebraic lattices is fully developed in the book
by Crawley and Dilworth [2] where they are ecalled compactly-
generated lattices. Basic information about congruence lattices on
semilattices is to be found in the papers of Dean and Oehmke [3]
and Papert [8]. Kent and Atherton have previously discussed
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bialgebraic lattices in the papers [1] and [6].

1. Preliminaries. By a semilattice we shall always mean meet-
semilattice. When we discuss join-semilattices we shall always use
the modified form. For a .Z’-morphism @: S — T we define [@] to be
{(s,, 35) €S X S: @(s;) = P(s,)}. Clearly, every member of 6(S) is of
this form. An element % of a lattice L is compact if whenever A
is an upward directed subset of L with sup A =% there is an
element @ of A such that a = k. The set of compact elements of L
will be denoted by K(L). For a partially ordered set P, a point z
of P and a subset A of P, we define | = {peP:p <} and |[A=U
{la:a € A}. The sets 1z and 1A are defined dually. A lattice L is
algebraic if it is complete and for each ze L, ¢ = sup(lan K(L)).
The terms cocompact and coalgebraic have the expected meaning. L
is coatomically generated if each element z of L is the infimum of
the set of all coatoms of L contained in fx.

For a semilattice S, the zero, or least element of O(S) is 4,
the diagonal of S x S, which, of course, corresponds to the identity
map. The unit, or maximum element, of @(S) is S x S, which cor-
responds to the constant map. The set of coatoms of O(S) is
ch(S) = {[(AM]€6(S): »: S —2 is a FP-surmorphism} where 2 is the two
element chain ([8], p. 724). The .Z’-surmorphisms onto 2 are called
characters and the members of ch(S) are character congruences. A
character is a characteristic function on a proper filter of S. For
each nonzero element x € S we define [)\,] by M, (T#)=1 and N, (STx)=0.
Character congruences of this type are called principal.

For each pair a,beS with a < b there is a congruence [z,,]
which is minimal with respect to identifying o and b, it is given
by: (s, t) e[z, ] if and only if s=¢ or {s,t}2 b and s Aa =t A a.
The set K(O(S)) is obtained by taking all finite sups of congruence
[7a.] ([3], p. 1192).

2. Bialgebraic congruence lattices. In deciding whether a
coatomically generated, algebraic lattice is bialgebraic (really the
concern is whether it is coalgebraic) the coatoms play the crucial
role. From ([2], p.15) we know that a coatomically generated com-
plete lattice is coalgebraic if and only if every coatom is also co-
compact. When this result is rephrased for congruence lattices we
have

LEMMA 2.1. Let S be a semilattice. Then O(S) is bialgebraic
if and only if every character congruence on S 1s cocompact in

e(S).



SEMILATTICES HAVING BIALGEBRAIC CONGRUENCE LATTICES 133

Three very ordinary semilattices will appear very often in our
discussion. We will give two of them now.

ExamMpPLE D. Let D be the set {0}U{l/n: n is a positive integer}
equipped with the order it inherits from the real numbers.

ExampPLE U. Let U be the dual of D. U is isomorphic to the
set {1 —1n:n=1,2 ---}U {1} with its usual order.

Although U and D will not be given topologies, their implicit
topological properties are what will make them suitable test ex-
amples. D is the most elementary of examples of a convergent
downward directed set while U is the most elementary example of
a convergent upward directed set. Because of this “convergence” D
will have a nonprincipal, proper filter and U will have a non-
principal proper ideal and these sets will keep D and U from having
bialgebraic congruence lattices.

Without much difficulty it can be seen that ©(D) and ©(U) are
isomorphic. They both have countably many coatoms, only one of
which is not principal.

LeEMMA 2.2. Neither O(U) nor O(D) s bialgebraic. Consequent-
ly, no semilattice having either U or D as a quotient can have a
bialgebraic congruence lattice.

Proof. We will do the proof for D. Let [\] be the nonprincipal
character congruence on D(\7'(0) =0 and A'(1) = D\{0}). If B is
any finite set of positive integers then N{[\,.]: n € B} is not con-
tained in [A]. However, the intersection of all the principal char-
acter congruences is 4, (since they separate points). Thus [A\] is
not cocompact.

If : S— D is a .Z’-surmorphism then ©(D) is isomorphic to the
filter 7[®]. Since any principal filter of a bialgebraic lattice would
have to be bialgebriac ©(S) cannot be bialgebraic.

The situation illustrated in 2.2 is typical for semilattices whose
congruence lattices are not bialgebraic.

THEOREM 2.8. Suppose that S is a semilattice. Then 6(S) 1is
bialgebraic if and only if S has meither U mor D as a quotient.

Proof. The previous lemma takes care of one half of the proof.
Conversely, suppose that Se.Z” and 6(S) is not bialgebraic. From
Lemma 2.1, S will have a noncocompact character congruence—call it
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[M. There must be a downward directed family of congruences
& = {[yy]:vel} such that no member of # is contained in [A]
whereas N.# 2[M]. There will be two cases. In one we will get
D as a quotient and in the other U.

Case 1. Suppose that [A] is a princidal character congruence.
Let ¢ = inf x™*(1). For each velI' we define A4, to be the filter
Tprtor(e). If for some vel we had A, = fe then oqn(e)STe=
A tox(e) which would lead to the conclusion that 7e is saturated re-
lative to the congruence [v] (if (z, ¥) € [v+] and 2 € Te then (e, eAy)=
(enx, eAY)€[y;]. Thene A y<€te which means that y € le). Thus
7] would contain [+] contrary to our hypothesis. The family
{A;: vyeTI'} is then downward directed and has {e as its intersection
but no 4, = Te.

Set C, = S. We then create a subfamily {C, C,, ---} of the 4,’s
such that C, = C, and for each 7 < j,C; is a proper subset of C,.
Define C, = N{C;:1=0,1,2, ---}. Clearly, C,is a filter on S which
contains fe. Define a map 7: S— U by 7(s) = sup{l — 1/n:seC,}.
Without difficulty 7 can be shown to be a .Z’-surmorphism.

Case 2. Suppose that [A] is not principal. Then A 7*(1) contains
an infinite decreasing sequence a,, a,, ---. Define p: S — D by p(x)=
inf{l/n: ¢ 7a,}. Then g is a FP-surmorphism and our proof is
complete.

For some purposes it might be useful to have an internal char-
acterization. This we will given in terms of various sorts of com-
pleteness properties. To simplify the statements a bit we introduce
a new subcategory of .

DEFINITION 2.4. Let %" be the subcategory of Z” consisting
of those semilattices in which every proper filter is principal. The
morphisms of %7~ will be the Z’-morphisms between objects of %#.

Note that membership in %" means that every character con-
gruence is principal. It is also contingent upon the nonexistence of
Z-surmorphisms onto D.

PrOPOSITION 2.5. Let S be a semilattice. Then Se %% if and
only if D is not a quotient of S.

Proof. If S¢ %7 then there is a proper, nonprincipal filter F'
in S. Then as in Case 2 of Theorem 2.3 there is an infinite decreas-
ing sequence a, > a,> --- and a “-surmorphism ¢:S-— D given
by @lx) = inf{l/n: z ¢ la,}.
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Conversely, if there is a “P-surmorphism ¢: S — D then the
proper filter 19¢7%(D/{0}) must have a generator if S is to belong to
%". Clearly this is not possible.

As a direct consequence of 2.5 we have

COROLLARY 2.6. If Se%7 and T is a F-quotient of S, then,
T also belongs to 7.

As further evidence the “P-surmorphisms defined on objects of
%~ are particularly well-behaved, we next show that they are
almost residuated.

PROPOSITION 2.7. Suppose that S belongs to % and :S— T
1s a F-surmorphism. Define T’ to be T if T does not have a zero
and T\{0;} if T has a zero. Then there is an injective order-pre-
serving map: T" — S such that (t) = inf @7(t) and + preserves
whatever sups exist in T'.

Proof. Let teT'. Then 7t is a proper filter in T. Hence 1@7'(¢)
is a proper filter of S. Then because S€ %, inf {¢7'(t) exists and
belongs to @7*(t). Thus «: T" — S is well-defined and clearly order-
preserving.

Now, suppose that ACT’ with sup A = b. Then since : I" —S
is order-preserving we have ) = (a) for all a € A. On the other
hand, if s€S is any other upper bound of ++(A) then since @ is
order-preserving, @(s) is an upper bound of A in 7’. Thus @(s)=b
and we have 4(b) < (®(s)) < s.

COROLLARY 2.8. Suppose that Se % and ¢:S—T is a F-
surmorphism of S onto a chain T. Then there is am injective
order-preserving map : T— S such that (t) = inf @7'(t) of ¢ = 0,
and + preserves arbitrary sups.

Proof. Define : T'— S as in Proposition 2.7. If T does not
have a zero, then we are done. If S and T both have zeros, set
@(07) = 05. If T has a zero but S doesn’t, then 1~ (T") is a proper
filter in S and we may let ++(0,) be any element of |inf(T@™*(T"))\
inf(Te™(T")).

An internal characterization of semilattices having bialgebraic
congruence lattices is now possible.

THEOREM 2.9. Let S be a semilattice. Then O(S) is bialgebraic
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iof and only if Se€ % and it satisfies the following equivalent (in
") conditions.

(1) Ewvery bounded ideal in S is principal.

(2) Ewvery element of S is compact.

(8) There is an injective F-morphism from U into S.

(4) There is a pair of points s, teS with s <t such that the
set |t\ls contains an infinite chain.

Proof. Using the methods developed in this section conditions
(1), (2) and (8) can easily be shown to be equivalent in % and in
that category equivalent to the existence of a .Z’-surmorphism onto
U. Since membership in 77 precludes the existence of a .Z’-sur-
morphism onto D, this result follows from 2.3.

The condition (4) is somewhat different from the others but
using the residuation properties of %7~ it is easily shown to be
equivalent to the other three conditions.

In the next section we shall make extensive use of a condition
similar to (4) above.

3. Coordinated bialgebraic congruence lattices., Our aim in
this section is to characterize those semilattices whose congruence
lattices have stronger convergence properties than do bialgebraic
lattices. Before we can give the appropriate definition some topology
must be discussed.

A topological semilattice (join-semilattice) is a triple (S, 7, A)
((S, z, V)) where (S, ) is a Hausdorff topological space and (S, A) is
a semilattice ((S, V) is a join-semilattice) such that A: S x S— S
(V:S x 8S—8) is a continuous map when S x S is equipped with
the cartesian product topology. A topological lattice is a quadruple
(L, z, A\, V) such that (L, z, A\) is a topological semilattice and (L,
7, V) is a topological join-semilattice. An algebraic lattice L pos-
sesses a naturally defined topology, call it z,(L), which is generated
by declaring 7k to be open and closed for every compact element &
of L. This topology is compact, Hausdorff and totally disconnected.
Moreover, (L, t (L), A) is a topological semilattice ([5], p.41). If L
is bialgebraic then it will support a second compact, Hausdorfi,
totally disconnected topology, ecall it z,(L), relative to which (L,
(L), V) is a topological join-semilattice. (Of course, z.(L) is
generated by declaring |x open and closed for each co-compact
element xz of L.) From the continuity of operations in these topo-
logies it follows that both 7z,(L) and z,(L) contain the interval
topology.
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In his dissertation [7] Lystad has proved that a bialgebraic
lattice L will support a compact, Hausdorff topology = which makes
it into a topojogical lattice if and onpy if z,(L) = 7,(L). In which
case, 7,(L) = . With this result as motivation we give the follow-
ing definition.

DEFINITION 3.1. A bialgebraic lattice L is said to be coordinated
if the two intrinsic topologies 7,(L) and z,(L) coincide. A Dbialge-
braic lattice that is not coordinated is said to be uncoordinated.

We shall give both an internal and extenal characterization of
those semilattices having coordinated bialgebraic congruence lattices.
Many of the propositions are concerned with the category 2#". This
is not so surprising in view of the characterizations in the previous
section.

At this point our third familiar and elementary lattice will be
introduced. It is the prototype of an uncoordinated bialgebraic
lattice.

ExamMPLE A. Let A, be an infinite countable set and let 0, 1 be
two points not in A4,. Define A = A, U{0, 1} to be the lattice whose
partial order is generated by declaring 0 <a <1 for all acA,
(<means strict inequality here).

While U and D may be thought of as illustrations of conver-
gence on elementary directed sets, Example A will illustrate the
problems associated with convergence (or potential convergence)
across an anti-chain.

The two topological z,(4) and 7,(4) do not coincide. To see
this, note that the points of A, are isolated relative to both topo-
logies. Then since 1 is compact and 0 is co-compact, {1} € 7,(4) and
{0}ez,(4). Thus if z,(4) and 7,(4) were to coincide 7,(A) would
be discrete. But as was mentioned before (4, z,(4)) is an infinite
compact space! The problem here is that A, = 4,U {1} for z,(4)
while 4,= A, U{0} for <z,(4). (In [9] Stepp proves that
(4, ,(A), A\) cannot be embedded in a compact topological lattice.)
For ©(A) the situation is similar.

PROPOSITION 3.2. O(A) is an uncoordinated bialgebraic lattice.

Proof. Since A has no infinite chains it has neither U nor D
as a quotient. Thus @(A) is bialgebraic. To prove that O(A4) is
uncoordinated we first show that the congruence A x A is compact
in O(A). Suppose that this is not so. Then there is an upward
directed set & contained in @(4A)\{4 x A} such that sup® = A x A.
If there is [0] € & such that o7'-0(1) contained two distinct elements
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of 4, say a, and a,, then (0, 1) = (a,, 1) A (@,, 1) would have to be
in [o], which would imply that [¢] = A X A. If we always have
07%0(1) = {1} then [o] £ [\] which would imply that [\] = sup @
while if a €o7'o0(1) for some [¢]€ & then sup & =[r,]. We can
conclude that 4 X 4 is compact in 6(A).

Then O(A)/{Ax A} is a closed, and hence compact, subset of (4)6
relative to the topology z,(6(4)). But {|[\]: [A] Xch(A4)} is an in-
finite open cover of ©(A)\{A x A} which cannot be reduced. There-
fore @(A) is not coordinated.

COROLLARY 3.3. If Se& and O(S) is a coordinated bialgebraic
lattice then S canmot have U, D or A as a quotient.

Proof. If @:S— A is a Z-surmorphism then f1[@] is iso-
morphic with ©(4). If 6(S) were a coordinated bialgebraic lattice
then so would 7[®], and consequently ©(A4). This is contrary to
Proposition 3.2. An appeal to Theorem 2.3 completes the proof.

In the next lemma we learn a bit more about those semilattices
which have 4 as a quotient. Compare the condition in this lemma
with (4) of Theorem 2.9.

LEMMA 3.4. Let S€ % and suppose that S has A as a quotient.
Then there is a pair of points x, Y€ S such that x <y and |y\lx
18 infinite.

Proof. Suppose that @: S — A is a F?-surmorphism. From Pro-
position 2.7 there is an injective order-preserving map +r: A/{0} — S.
Select 2 € »7*(0) such that x < 4(1). Then |4(1)/|x is an infinite set’
since it contains +(4,).

With the finiteness condition of the previous lemma in mind we
create a new subecategory of .

DeFINITION 3.5. Let 7 be the subecategory of &’ consisting of
those semilattices S such that

(i) every proper filter of S is principal (i.e., Se %7);

(ii) if z,yeS with # < y then |y\|z is finite.
The morphisms of V are the Z°-morphisms between objects of 7.

PROPOSITION 3.6. Let S be a semilattice. Then Se 7 if and
only if S does not have either U, D or A as a quotient.

Proof. Suppose that Se 7. Then Se€ % and from Proposition
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2.5, D cannot be a quotient of S. From Lemma 8.4 A cannot be a
quotient of S. If U were a quotient of S then from Proposition 2.7
S would have to contain a copy of U which would violate the second
condition for membership in 7.

Now suppose that none of the test semilattices is a quotient of
S. Then from Proposition 2.5 S belongs to %7 so we need only be
concerned with the second condition of Definition 8.5. Let s,t€S
with s < ¢. From Theorem 2.9 every chain in [t\|s is finite. Sup-
pose that |#\|s is infinite. Form a chain ¢ = x, > x, > z, where z;,
covers «;4, and |x,/|s is infinite. Since every chain in |t\|s is finite
there is x; € [t\|s such that |x;\|s is infinite but for each x¢€ |x;/
(IsU{z;}), lx\|s is finite. It follows that «; must cover a countably
infinite subset C in |z;\|s. Let B8:C— A, be a bijection. Then de-
fine 2 map @: S — A by

1 if sefux;
¢>(3) = B(x_, A\ S) if x; A\ S8 eC
0 otherwise .

Then @ will be a Z”-surmorphism which contradicts the assumption
that |t\ls was infinite.

LEMMA 3.7. Suppose that Se7 .
(1) If :S— T is a FP-surmorphism, then T also belongs to 7.
(2) If xeS, then there is a finite set B such that |x\{x} = |B.

Proof. (1) follows from Proposition 3.6. (2) Let ye |2\{x}.
Then since |«\|y is finite it follows that |x\{x} = [((|2\l¥v) U {y}).

PROPOSITION 3.8. Let S€7°. Then O(S) is a coordinated bialge-
braic lattice.

Proof. We need only show that 7, = 7,(0(S)) coincides with
7y = 7y(0(S)). Since Se€ 7" every character congruence is of the
form [»,]. Then since O(S) is coatomically generated we see that =,
is generated by the sets [[N.]. We shall show that [[x,] belongs to
7,. Let C be the finite set of maximal elements in |a\{a}. We
claim that 6(S) is the disjoint union of |[A,] and B = U{l[z..]:
ce(C}. These two sets are disjoint since to gain membership in
[N.] a congruence [¢] must have ¢ 'o@(a) & Ta, while to belong to
B, 7 *op(a) N S\te must be nonempty. Now suppose that [¢] € O(S).
If p7rep(a)S1ta then [@] € |[N,] whereas if there is s e S\Ta such that
(s, a)elp] we then have (a A s,a)e[®]. There is ceC such that
aNs=c<a. Consequently, (¢, a)€[®] from which it follows that
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|®] € Tlz,,.]. The set B is a finite union of open and closed sets re-
lative to 7, therefore |[\,] is also open and closed with respect to z,.

The topology 7, is generated by declaring the sets 1[z.,] to be
open and closed for a < b in S. The set R = |b\la is finite since
Se7. We claim that 6(S) is a disjoint union of 1[z,,] aud
U{l[n]:reR}. The proof is very similar to that given above so
we shall omit it. We have therefore shown that z, = 7z,. Thus S
is a coordinated bialgebraic lattice.

We are now ready for our characterization.

THEOREM 3.9. Let S€.&”. Then the following three conditions
are equivalent:

(1) 6(S) is a coordinated bialgebraic lattice.

(2) S does not have either U, D or A as a quotient.

(38) S belongs to 7.

Proof. This result follows from Corollary 3.3, Proposition 3.6
and Proposition 3.8.

Let .o~ be the category of algebraic lattices. The morphisms
of .o will be maps between .o7-objects which preserve arbitrary
infs and sups of upward directed sets. This category with slight
modification was discussed extensively in [5]. The particular
morphisms of .9~ were needed to establish an equivalence of cate-
gories in that paper. In the remainder of this section we will be
concerned with finding those semilattices whose congruence lattices
are Boolean algebras or .97-quotients of Boolean algebras and with
narrowing down the family of coordinated lattices which could be
congruence lattices.

If 6(S) is a Boolean algebra for some semilattice S then since
O(S) is complete and coatomic by Tarski’s theorem it must be iso-
morphic to 2%, the power set of some set B. The power set Boolean
algebras are easily seen to be coordinated bialgebraic lattices.

ProrosITION 8.10. Let Se . Then O(S) is a Boolean algebra
if and only if S has meither U, D, A or 2* as a quotient, in which
case S 1s isomorphic with 2%,

Proof. From 3.9 we know that 6(S) will be a coordinated
bialgebraic lattice if and only if S does not have U, D or A as a
quotient. From ([3], p. 1195) or ([8], p. 727) we know that O(S) is
distributive if and only if no two noncomparable elements of S have
a common upper bound. This condition is equivalent to S not hav-
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ing 2? as a quotient. To complete the first part of the proof we
need only note that a ‘coatomically generated, distributive, coalge-
braic lattice is a Boolean algebra ([2], p. 30).

The second part of this proposition follows from the fact that
ch(S) is the set of coatoms of 6(S).

In the last result we could replace 2" by 2%, where S’ is S if
S does not have a zero and S\{0g} otherwise, since S belongs to %~
and every character congruence would then be principal! Compare
Proposition 8.10 with Theorem 5 of [11] and Theorem 4.10 of [4].
We rephrase Corollary 10 of [10] as follows:

THEOREM 3.11. If S is a coatomically generated algebraic lat-
tice, then it is am S7-quotient of a power set lattice if and only
if for each ke K(S), Tk contains all but finitely many coatoms of
S.

In our last theorem we shall greatly reduce the number of co-
ordinated bialgebraic lattices which are potential congruence lattices
for semilattices. In so doing we obtain another characterization (of
sorts) of coordinated bialgebraic congruence lattices. Again, the
lattice A plays an important role.

LEMMA 3.12. Suppose that S is a semilattice for which 6(S) is
not bialgebraic, then O(S) is not an 7 -quotient of a power set.

Proof. From 2.3 we know that S must have either U or D as
a quotient. Suppose that there is a “F’-surmorphism @: S — U. (The
following proof can be easily modified to take care of the case in
which D is a quotient of S.) The minimum congruence identifying
1/2 and 1, [z,,,] belongs to K(O(U)). However [7,,,] = [\,]. Thus
MNzie) = {Ituwe), U x U}, Then since O(U) has an infinite number
of coatoms we see from Theorem 3.11 that @(U) cannot be an .o7-
quotient of a power set.

Now, suppose that there is an .%-surmorphism d: 2% — 6(S).
The set 67 (7[®]) is a principal filter of 2. Thus it is an .7 -quoti-
ent of 2. On the other hand 71[e] is isomorphic to 6(U). We
would then have O(U) an .%7-quotient of a power set contrary to
the previous paragraph. Therefore S is not the .o”-quotient of a
power set.

LEMMA 3.13. The lattice A is an .o7-quotient of O(A).

Proof. We define a map {: 0(4) — A by setting {(A x 4A) =1,
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¢(n.]) = a for ac€ A, and {([o]) = 0 otherwise. This map will be an
S7-surmorphism because {7*(0) = [[\].

THEOREM 3.14. Let S be a semilattice. Then O(S) is a co-
ordinated bialgebraic lattice if and only if it is an 7 -quotient of
a power set.

Proof. From Lemma 3.12 we can restrict our attention to those
semilattices S for which O(S) is bialgebraic. Suppose that ©(S) is
a coordinated bialgebraic lattice and suppose that a, be S with a <b.
Then relative to the topology 7.(0(S)), 1[7...] is an open and closed
neighborhood of the congruence S x S. Since 6(S) is coatomically
generated O(S)\1[z..] = U{l[N.]: x€ E} for some subset E of S.
(Recall that Se % every character congruence is principal.) Each
l[n.] is open and closed in 7,(6(S)). But 6(S) is coordinated so they
are open and closed in 7,(0(S)). However, the family {|[\.]: x e E}
is a nonreducible open cover of the compact set O(S)\1[z,,]. Hence
E must be finite. Then by Theorem 3.11, ©(S) is an . -quotient of
a power set.

Conversely, suppose that there is an .%-surmorphism ¢: 2% —
O(S) for some set B. If O(S) were not coordinated then there
would be a -surmorphism «:S — A. Then since T[y] is iso-
morphic to O(4) and @ *({[+]) is a principal filter of 2% (and hence
an . -quotient of 2%) it follows that ©(A4) is an .o-quotient of 2Z.
But from Lemma 3.13 we know that A4 is an .97 -quotient of 6(4).
Hence A is an 7-quotient of 22 contradicting Theorem 3.11.
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